Elisabetta
Rocca

Instructor:
Elisabetta Rocca Office: C4, Mathematical Department Telephone: 0382985688 Email: elisabetta.rocca@unipv.it Office hours: online by appointments by email. The lessons are over. All the informations on the course are on Kiro. Link to the PreCourse of Mathematical Analysis Course Objectives: The course is an introduction to some basic elements of linear functional analysis (Hilbert spaces and distributions), variational principles, ordinary differential equations and dynamical systems, with simple applications to basic partial differential equations (Laplace, wave and transport). Programme: Ordinary differential equations: Basic definitions, examples and properties. First order linear equations and separation of variable method. The Cauchy problem. Existence and uniqueness: the Peano's theorem, the CauchyLipschitz theorem. Linear systems, exponential matrix, higher linear orders ODEs with constant coefficients. Boundary problems. The Bernoulli and homogeneous equations. Qualitative study of solutions of Cauchy problems. Asymptotic behaviour and stability of dynamical systems. Examples. The linearization method. Basic tools of functional analysis: Basic tools for Lebesgue integration. Convergence properties. Functional spaces, norms and Hilbert spaces. Best approximation and projection theorem, orthonormal basis. Linear operators: boundedness and continuity, symmetry, selfadjointness, eigenvalues and eigenfunctions. Applications to simple PDE's. The SturmLiouville operator. Distributions: Introduction, examples and applications. Operating on distributions: sum, products, shift, rescaling, derivatives. Sequence and series of distributions: Fourier series. Fourier transform, temperate distributions, convolutions. Discrete signals and distributions. Partial differential equations: Examples and modelling. Wave equations in 1 and 2D. The D'Alambert formula, characteristics and boundary value problems. The method of separation of variables and the resolution by Fourier transform. Uniqueness for the 3D wave equation. Stability properties. Simple techniques for calculating explicit solutions; separation of variables. Introduction to the heat equation. The separation of varianle methods for the associated CauchyDirichlet boundary value problem. Uniqueness by energy methods. Suggested Reading Material: M.W. Hirsch, S. Smale. Differential Equations, Dynamical Systems and Linear Algebra. Academic Press, 1974. C.D. Pagani, S. Salsa, Analisi Matematica, Volume 2, Zanichelli, 2006 (Italian). M. Bramanti  Metodi di Analisi Matematica per l'Ingegneria, Esculapio (Italian). H. Ricardo. A modern introduction to differential equations. Elsevier. S. Salsa. Partial Differential Equations in Action. Springer. C. Gasquet, P. Witomski. Fourier Analysis and Applications. Filtering, Numerical Computation, Wavelets. Springer. W. Strauss. Partial Differential Equations: an introduction. Wiley. L. Perko, Differential Equations and Dynamical Systems, Springer. Notes of Fabio Bagagiolo on ODEs. Final Exam: The final exam consists in a written test and an oral exam. It will be online or in presence according to the Sanitary Rules. At the written test the students will be allowed to bring all the texts they want, but not text of exercises, and handwritten notes or exercises. Dates of the tests of 2022/2023 Written tests 2022/2023: 24.01.2023 The Text Solutions 23.02.2023 The Text Solutions Written tests 2021/2022: 25.01.2022 The text Solutions 24.02.2022 The text Solutions 28.06.2022 The text Solutions Written tests 2020/2021: 23.02.2021 The text Solutions 26.01.2021 The text Solutions Written tests 2019/2020: The text of 24.01.2020 Written tests 2018/2019: 31.01.2019 The text Solutions 13.02.2019 The text Solutions 18.03.2019 (appello straordinario) The text Solutions 18.06.2019 The text Written tests 2017/2018: 06.02.2018 The text Solutions 20.02.2018 The text Solutions 26.06.2018 The text Solutions Written tests 2016/2017: 31.01.2017: The text Solutions 20.02.2017: The text Solutions 21.06.2017: The text Solutions Other sources Previous years exams and material
