Approssimazione di problemi agli autovalori non coercivi (2003/2004)


Orario delle lezioni

Ve 18 Giu 11-12 (Sala riunioni piano C) Lezione organizzativa
Gi 24 Giu  9-11 (E10) Richiami su operatori compatti
Ma 29 Giu 14-16 (Beltrami)
Me 30 Giu  9-12 (Beltrami)
[anticipata alle ore 13 precise] Ma  6 Lug 14-17 (Beltrami)
Gi  8 Lug 14-16 (Beltrami)

Temi per seminari

Bibliografia

[1]   D. Boffi, F. Brezzi, L. Gastaldi. On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Comp., 69 (2000), no. 229, pp. 121-140.

[2]   D. Boffi, F. Brezzi, L. Gastaldi. On the convergence of eigenvalues for mixed formulations. Annali Sc. Norm. Sup. Pisa Cl. Sci., Vol. 25, 131-154 (1997)

[3]   D. Boffi, P. Fernandes, L. Gastaldi, I. Perugia. Computational models of electromagnetic resonators: analysis of edge element approximation. SIAM Journal on Numerical Analysis, Vol. 36, 1264-1290 (1999)

[4]   D. Boffi, L. Gastaldi. Finite element approximation of Maxwell's eigenproblem. Proc. of Enumath99, Jyväskylä, Finland, July 26-30, 1999, ed. by P. Neittaanmäki, T. Tiihonen and P. Tarvainen, World Scientific, Singapore,2000. pp. 502-509.

[5]   D. Boffi, L. Gastaldi. Edge finite elements for the approximation of Maxwell resolvent operator. M2AN Math. Model. Numer. Anal. 36 (2002), 293-305.

[6]   D. Boffi, L. Gastaldi. On the time harmonic Maxwell equations in general domains. In Numerical Mathematics and Advanced Applications, Enumath 2001, Brezzi et al. eds., Springer Verlag Italia 2003, 243-253.

[7]   D. Boffi. Fortin operator and discrete compactness for edge elements. Numer. Math., 87 (2000) 2, 229-246.

[8]   D. Boffi. A note on the discrete compactness property and the de Rham complex. Appl. Math. Letters, 14 (2001) 33-38.

[9]   D. Boffi, L. Gastaldi, G. Naldi. Application of Maxwell equations. Quaderno del Seminario Matematico di Brescia n. 25/2002.

[10]   D. Boffi, M. Conforti, L. Gastaldi. Modified edge elements for photonic crystals.

[11]   D. Boffi, L. Gastaldi. Analysis of finite element approximation of evolution problems in mixed form. SINUM, to appear.