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Abstract. This paper deals with the finite element approximation of evolution problems in mixed form. Following [8],
we handle separately two types of problems. A model for the first case is the heat equation in mixed form, while the time
dependent Stokes problem fits within the second one. For either case, we give sufficient conditions for a good approximation in
the natural functional spaces. The results are not obvious in the first situation. In this case, the well-known conditions for the
well-posedness and convergence of the corresponding steady problem are not sufficient for the good approximation of the time
dependent problem. This issue is demonstrated with a numerical (counter-) example and justified analytically.
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1. Introduction. Mixed finite elements are often used in engineering applications and their analysis
has been considered in several papers, starting from the 70’s (see [10, 3, 13]), mainly for the approximation
of steady source problems. For the reader’s convenience, we recall here what we mean by a general standard
mixed problem. We consider a pair of Hilbert spaces Φ and Ξ and denote by Φ′ and Ξ′ their dual spaces.
Given two data f ∈ Φ′ and g ∈ Ξ′, a general (steady) mixed problem reads: find ψ ∈ Φ and χ ∈ Ξ such that

a(ψ,ϕ) + b(ϕ, χ) = Φ′< f, χ >Φ ∀ϕ ∈ Φ,
b(ψ, ξ) = Ξ′< g, ξ >Ξ ∀ξ ∈ Ξ,

(1)

where a : Φ × Φ → R and b : Φ × Ξ → R are continuous bilinear forms.
When a finite element approximation to problem (1) is considered, it is well-known that the necessary

and sufficient condition for the well-posedness, stability and convergence of the scheme (for any given data)
is that two inf-sup constants are bounded below away from zero independently of the meshsize parameter.

In the 80’s the use of mixed finite elements has been considered also for the approximation of eigenvalue
problems (see [18, 4]) and only fairly recently it has been understood (see [8, 7]) that the inf-sup conditions
are not the main assumptions in this context. It has been observed that, in most cases, we can distinguish
between two families of mixed problems, depending on the role played by the two equations which define
the mixed problem itself and that suitable conditions have to be considered in either case for the good
convergence of the computed eigenvalues. Namely, we can consider

(

f
0

)

-type problems, when in (1) g = 0

and
(

0
g

)

-type problems when the opposite situation occurs, i.e., f = 0. For instance, the Stokes problem
belongs to the first family and the standard mixed formulation for Laplace problem to the second one.

In this paper, we want to consider the finite element approximation of evolution problems in mixed form.
The mathematical literature on this field is mainly related to the approximation of the heat equation by
means of Raviart-Thomas elements (see, e.g., [16]); mixed finite element schemes have been used extensively
for the approximation of evolution problems, in particular in fluid-dynamic applications (see [14, 15]).

It is not an unexpected result, that the theoretical analysis of such approximations strongly relies on
the behavior of the corresponding eigenvalue approximations. For this reason, we consider separately the
(

0
g

)

- and
(

f
0

)

-type formulations. Actually, it is not completely true that, for instance, in the mixed form of
the heat equation f has to vanish, being possibly related to some nonhomogeneous boundary conditions.
However, in this paper, we shall consider truly

(

0
g

)

and
(

f
0

)

problems, only; in the case of the heat equation,
for instance, we can reduce the problem into this form via a suitable extension of the boundary trace.

The outline of the paper is as follows. In the next section we recall some known results about the
standard Galerkin space semidiscretization of parabolic problems. In Section 3 we introduce the problems
we are dealing with, and present some examples. We are going to use a different notation than the one
introduced in (1). In particular, we want to adapt our notation to the mixed Laplace equation for the
(

0
g

)

-type system and to the Stokes problem when dealing with the
(

f
0

)

problem. In Section 4, we report on
some numerical experiments. In particular, we construct test cases and approximating spaces in such a way
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that the inf-sup conditions hold true (hence the corresponding steady problems are well approximated) but
for which we observe that the evolution problem is not well approximated. These results show the need for
an accurate analysis of the evolution case, which is not a straightforward extension of the standard steady
state analysis. In the next two sections, where the main results of this paper are stated and proved, we
give sufficient conditions for the convergence of the approximation of evolution problems of

(

0
g

)

and
(

f
0

)

type, respectively. The last section contains additional remarks related to the counterexample presented
in Section 4. It follows, in particular, that, if the data are smooth enough, the solution can be accurately
approximated even with the scheme used for our counterexample.

2. Galerkin semidiscretization of parabolic problems. In this section we collect some known
results on the semidiscrete approximation to parabolic problems with the aim of introducing some basic
estimates and of comparing them with those obtained in the case of mixed formulations. The interested
reader is referred to [23], e.g., for a more detailed analysis of the problem under consideration in this section.

We consider two Hilbert spaces V and H, V ⊆ H, V dense in H. We identify H with its dual space H ′.
Let a : V × V → R be a continuous bilinear form, satisfying the coercivity condition: there exist α > 0 and
µ ≥ 0 such that a(v, v) + µ||v||2H ≥ α||v||2V ∀v ∈ V . The variational formulation of the parabolic problem
(denoting by (·, ·) the scalar product in H) reads: given T > 0, f : ]0, T [ → V ′ and u0 ∈ H, for almost every
t ∈ ]0, T [ find u(t) ∈ V such that

d

dt
(u(t), v) + a(u(t), v) = V ′< f(t), v >V ∀v ∈ V ; u(0) = u0. (2)

The following existence and uniqueness theorem for problem (2) is well-known (see, e.g. [17]):
Theorem 1. Assume that the bilinear form a is continuous and coercive on V × V . Then given

f ∈ L2(]0, T [ ;V ′) and u0 ∈ H, there exists a unique solution u ∈ L2(]0, T [ ;V ) ∩ C0([0, T ];H) to (2), with
∂u/∂t ∈ L2(]0, T [ ;V ′). Moreover, the following energy estimate holds true:

max
t∈[0,T ]

||u(t)||2H + α

∫ T

0

||u||2V dt ≤ ||u0||2H + C

∫ T

0

||f ||2V ′ dt.

A suitable shift reduces our problem to the case µ = 0; for this reason we consider this case in detail.
If the bilinear form a is symmetric and the embedding of V in H is compact, then, for every f ∈

L2(]0, T [ ;H), the solution to (2) can be represented with the following series:

u(t) =

∞
∑

i=1

(

(u0, wi)e
−λit +

∫ t

0

(f(s), wi)e
−λi(t−s) ds

)

wi. (3)

Here, λi ∈ R and wi ∈ V , with wi 6= 0, are eigenvalues and eigenvectors of the bilinear form a, that is, for
each i they satisfy a(wi, v) = λi(wi, v) ∀v ∈ V .

Example 1 (The heat equation). The standard example is given by the heat equation: Ω is a polygon
in R

2 or a Lipschitz polyhedron in R
3, H = L2(Ω), V = H1

0 (Ω), and a(u, v) =
∫

Ω
gradu · grad v dx. Clearly,

in this case, the coercivity assumption is valid with µ = 0 for the Poincaré inequality.
Approximating the space V by a finite dimensional subspace Vh provides a space semidiscretization of

the variational formulation (2). Given f ∈ L2(]0, T [ ;H) and u0,h ∈ Vh, for each t ∈ [0, T ] find uh(t) ∈ Vh

such that

d

dt
(uh(t), v) + a(uh(t), v) = V ′< f(t), v >V ∀v ∈ Vh; uh(0) = u0,h. (4)

Subtracting (4) from (2) we obtain the error equation

d

dt
(u(t) − uh(t), v) + a(u(t) − uh(t), v) = 0 ∀v ∈ Vh.

Then we can derive the following estimate for all vh ∈ Vh:

max
t∈[0,T ]

||u(t) − uh(t)||2H + α

∫ T

0

||u(t) − uh(t)||2V ≤ ||u0 − u0,h||2H+

∫ T

0

(

( ∂

∂t
(u(t) − uh(t)), u(t) − vh

)

+ a(u(t) − uh(t), u(t) − vh)

)

dt.

(5)
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Let us try to get some error estimates from equation (5) in the case of the finite element approximation of
the heat equation (see Example 1). If we take vh = uI(t), the interpolant of u(t) in Vh, then we get

max
t∈[0,T ]

||u(t) − uh(t)||2H + α

∫ T

0

||u(t) − uh(t)||2V ≤ ||u0 − u0,h||2H+

∫ T

0

((

∥

∥

∥

∂u

∂t
(t)
∥

∥

∥

H
+
∥

∥

∥

∂uh

∂t
(t)
∥

∥

∥

H

)

‖u(t) − uI(t)‖H + C‖u(t) − uI(t)‖2
V )

)

dt.

If Vh is the space of continuous piecewise linear functions, and u0,h is the interpolated of u0, then we have
the optimal convergence (with the obvious modifications in the case of nonconvex domains):

||u− uh||L∞(L2) + α||u− uh||L2(H1) ≤ Ch
(

||u0||H1 + ||f ||L2(L2)

)

. (6)

Unfortunately, the generalization of (6) to higher order approximations is not optimal; when k-th order
elements are used, (5) gives only O(h(k+1)/2). On the other hand, we can take in (5) vh = Pu(t), the
L2-projection of u(t) into Vh. Now the first term in the integral on the right hand side of (5) reads

( ∂

∂t
u(t) − ∂

∂t
uh(t), u(t) − Pu(t)

)

=
( ∂

∂t
u(t) − P

∂

∂t
u(t), u(t) − Pu(t)

)

=
1

2

d

dt
||u(t) − Pu(t)||2H ,

since ∂uh(t)/∂t ∈ Vh, P is the L2 projection onto Vh, and P commutes with the time derivative. Moreover,
the estimate of the second term in the integral on the right hand side of (5) involves the term ||u(t)−Pu(t)||H1 .
If Vh is the space of continuous piecewise polynomials of degree k, and if we assume that the mesh is such
that we can use an inverse estimate, then we can obtain

||u− uh||L∞(L2) + α||u− uh||L2(H1) ≤ Chk
(

||u0||Hk + ||u||L∞(Hk) + ||u||L2(Hk+1)

)

. (7)

If, instead of using (5), we introduce the elliptic projection operator Π defined as follows for each w ∈ V

Πw ∈ Vh, a(Πw, v) = a(w, v) ∀v ∈ Vh,

then the following error estimate holds true:

max
t∈[0,T ]

||u(t) − uh(t)||2H + α

∫ T

0

||u(t) − uh(t)||2V dt ≤ ||u0 − u0,h||2H+

max
t∈[0,T ]

||u(t) − Πu(t)||2H + C

∫ T

0

(

∥

∥

∥

∥

∂

∂t

(

u(t) − Πu(t)
)

∥

∥

∥

∥

2

V ′

+ ||u(t) − Πu(t)||2V

)

dt.

In the case of the heat equation, the last equation, together with the usual error estimates for elliptic
problems, leads to an estimate similar to (7) but without using the inverse inequality (see, e.g., [23, 20]).

3. Setting of the problem.

3.1.
(

0

g

)

-type problems. We consider two Hilbert spaces Σ and V and a third Hilbert space H (which

will be identified with its dual space H ′) such that the following standard inclusions hold with dense and
continuous embedding V ⊆ H ' H ′ ⊆ V ′. When referring to the inner product of H, we shall omit the
reference to the space; in the main application we have in mind, H is simply L2. A model

(

0
g

)

-type evolution

problem reads: given T > 0, g : ]0, T [ → V ′, and u0 ∈ H, for almost every t ∈ ]0, T [ find σ(t) ∈ Σ and
u(t) ∈ V such that

a(σ(t), τ) + b(τ, u(t)) = 0 ∀τ ∈ Σ,

b(σ(t), v) − d

dt
(u(t), v) = −V ′< g(t), v >V ∀v ∈ V,

u(0) = u0,

(8)
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where the first two equations are defined in the sense of distributions in ]0, T [. We make the following
assumptions on the involved bilinear forms a : Σ × Σ → R and b : Σ × V → R:

a(·, ·) and b(·, ·) are continuous, that is
∃Ma > 0 : ∀σ, τ ∈ Σ a(σ, τ) ≤Ma||σ||Σ||τ ||Σ,
∃Mb > 0 : ∀σ ∈ Σ,∀v ∈ V b(σ, v) ≤Mb||σ||Σ||v||V .

We also assume that a(·, ·) is symmetric and positive semidefinite and set

|τ |a := (a(τ, τ))1/2.

It is immediate to check that | · |a is a seminorm on Σ and that for all σ, τ ∈ Σ we have

a(σ, τ) ≤ |σ|a|τ |a.

We suppose that problem (8) is well-posed and that the following a priori estimates hold true:

max
t∈[0,T ]

||u(t)||2H +

∫ T

0

||u(t)||2V dt ≤ ||u0||2H + C

∫ T

0

||g(t)||2V ′ dt, (9)

∫ T

0

µ2(t)||σ(t)||2Σ dt ≤ C

(

||u0||2H +

∫ T

0

||g(t)||2V ′ dt

)

, (10)

where µ(t) is a suitably chosen weight function which might tend to zero as t goes to zero.
Let Σh and Vh be finite dimensional subspaces of Σ and V , respectively. The space semidiscretization

of problem (8) reads: for almost every t ∈ ]0, T [, find σh(t) ∈ Σh and uh(t) ∈ Vh such that

a(σh(t), τ) + b(τ, uh(t)) = 0 ∀τ ∈ Σh,

b(σh(t), v) − d

dt
(uh(t), v) = −V ′< g(t), v >V ∀v ∈ Vh,

uh(0) = u0,h,

(11)

where u0,h ∈ Vh is a suitable approximation of u0.
Example 2 (The heat equation in mixed form). Let Ω be an open Lipschitz polygon in R

2 or polyhedron
in R

3. Setting Σ = H(div; Ω), V = H = V ′ = L2(Ω), the formulation given in equation (8) is a weak form
of the heat equation (σ(t) = gradu(t)) with the choices

a(σ, τ ) = (σ, τ ), b(τ , v) = (div τ , v).

It can be directly checked that the a priori estimates (10) hold with µ(t) = t. The estimates can be
improved to get µ(t) = 1 if more regularity is assumed on u0, namely u0 ∈ H1

0 (Ω) or, analogously, σ0 =
gradu0 ∈ L2(Ω).

For the mixed spatial semidiscretization of the heat equation we construct two sequences of finite element
spaces Σh ⊂ H(div; Ω) and Vh ⊂ L2(Ω) and consider the discrete problem: for almost every t ∈ ]0, T [, find
σh(t) ∈ Σh and uh(t) ∈ Vh such that

(σh(t), τ ) + (div τ , uh(t)) = 0 ∀τ ∈ Σh

(div σh(t), v) − d

dt
(uh(t), v) = −(g(t), v) ∀v ∈ Vh

uh(0) = u0,h.

(12)

Several possible choices for the spaces Σh and Vh have been presented in the literature for the corresponding
source problem. For instance, in the case of triangular or tetrahedral meshes, we can choose as Σh the spaces
of the elements RT introduced in [21, 19] or the elements BDM and BDFM introduced in [12, 11] (see [13]
for a unified presentation; see, also, [16] for the use of RT elements in the context of parabolic problems in
mixed form). In all these cases Vh is equal to div Σh. On quadrilaterals or hexahedrons the situation is more
complicated; a two-dimensional theory has been developed recently in [1], showing that the standard families
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just listed do not achieve optimal approximation properties in H(div; Ω) for general quadrilateral meshes.
There, a new family ABF has been proposed by adding internal degrees of freedom to the RT elements in
order to recover the optimal accuracy. In this case, the inclusion div Σh ⊆ Vh is no longer valid (see [1] for
the details about the definition of Vh).

All these spaces satisfy the conditions for the well-posedness of the steady problem, namely there exist
two positive constants α and β such that

(τ , τ ) ≥ α||τ ||2H(div;Ω) ∀τ ∈ Σh s.t. (div τ , v) = 0 ∀v ∈ Vh, (13)

sup
τ∈Σh

(div τ , v)

||τ ||H(div;Ω)
≥ β||v||L2(Ω) ∀v ∈ Vh. (14)

In Section 4 we shall test the lowest order RT element for the approximation of the heat equation, together
with another less standard element which also satisfies (13) and (14).

3.2.
(

f

0

)

-type problems. We consider three Hilbert spaces V , H and Q such that V ⊆ H ' H ′ ⊆ V ′

with dense and continuous inclusions. As in the previous section, we shall refer to the scalar product of H
with (·, ·). A model

(

f
0

)

-type evolution problem reads: given T > 0, f : ]0, T [ → V ′, and u0 ∈ H, for almost
every t ∈ ]0, T [ find u(t) ∈ V and p(t) ∈ Q such that

d

dt
(u(t), v) + a(u(t), v) + b(v, p(t)) = V ′< f, v >V ∀v ∈ V,

b(u(t), q) = 0 ∀q ∈ Q,

u(0) = u0,

(15)

where the first two equations are defined in the sense of distributions in ]0, T [. We recall the definitions of
the bilinear forms a : V × V → R and b : V ×Q→ R and make the following standard hypotheses:

a(·, ·) and b(·, ·) are continuous, that is
∃Ma > 0 : ∀u, v ∈ V a(u, v) ≤Ma||u||V ||v||V ,
∃Mb > 0 : ∀v ∈ V,∀q ∈ Q b(v, q) ≤Mb||v||V ||q||Q.

Moreover, we assume that the form a is coercive on the kernel of B

K = {v ∈ V : b(v, q) = 0 ∀q ∈ Q},

i.e., there exists α > 0 such that

a(v, v) ≥ α||v||2V ∀v ∈ K. (16)

A weaker ellipticity could be considered when dealing with parabolic problems. However, it can be reduced
to (16) with a change of variables. We suppose that problem (15) is well-posed and that the following a
priori estimates holds true:

max
t∈[0,T ]

||u(t)||2H + α

∫ T

0

||u(t)||2V dt ≤ ||u0||2H + C

∫ T

0

||f(t)||2V ′ dt, (17)

∫ T

0

||p(t)||2Q dt ≤ C

(

||u0||2H +

∫ T

0

||f(t)||2V ′ dt

)

. (18)

Let Vh and Qh be finite dimensional subspaces of V and Q; then the Galerkin space semidiscretization
of problem (15) reads: for almost every t ∈ ]0, T [, find uh(t) ∈ Vh and ph(t) ∈ Qh such that

d

dt
(uh(t), v) + a(uh(t), v) + b(v, ph(t)) = V ′< f, v >V ∀v ∈ Vh,

b(uh(t), q) = 0 ∀q ∈ Qh,

uh(0) = u0,h,

(19)
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where u0,h ∈ Vh is an approximation of u0.
Example 3 (The Stokes equations). Let Ω be an open Lipschitz polyhedron in R

n (with n = 2 or 3);
then the Stokes equations fit in a natural way within our setting with the following definitions:

V = (H1
0 (Ω))n, Q = L2(Ω)/R, H = (L2(Ω))n,

a(u,v) = (ε(u) : ε(v)), b(v, q) = (div v, q),

where ε is, as usual, the linearized strain tensor. It is known (see, for instance, [22]) that estimates (17)
and (18) hold true in this case. Moreover, whenever Ω is convex (with the usual modifications for the
nonconvex case), if f ∈ L2(]0, T [ ;H) and u0 ∈ K then u ∈ L2(]0, T [ ; (H2(Ω))n), ∂u/∂t ∈ L2(]0, T [ ;H), and
p ∈ L2(]0, T [ ;H1(Ω)).

For the discretization of the steady problem, we refer to [13]. We shall see at the end of Section 6 that a
good approximation of the steady Stokes equations provides a convergent approximation to the time dependent
problem also.

4. Numerical investigations. In this section we report on some numerical tests for various mixed
discretization to the heat equation presented in Example 2. The discrete problem we are dealing with is
the one presented in equation (12). We consider two possible choices for the discrete spaces Σh and Vh.

Given Ω = ]0, π[
2
, and a triangular mesh, the first method consists in choosing Σh as the lowest order RT

element [21] and as Vh the space of piecewise constant functions. We shall refer to this choice as the RT
method. In the second method, which has been analyzed in [8], the space Σh consists of continuous piecewise
linear (in each component) vectorfields and Vh is simply defined as Vh = div Σh and turns out to be a subset
of the space of piecewise constant functions. We shall refer to this example as P1 method. The RT method
is well-known to be stable [21], when applied to the steady problem, see (13) and (14). The P1 method has
been introduced in [8] in order to construct a counterexample for the approximation of eigenvalue problems.
It has been shown to be stable on a special mesh sequence of the square which is built of uniform subsquares,
each of them subdivided into four triangles (criss-cross mesh). In this section, we shall denote by N the
number of subdivisions of each side of Ω, so that a criss-cross mesh contains 4N 2 triangles. On general
triangular meshes, the P1 element does not satisfy the inf-sup condition (14) in the sense that the inf-sup
constant β tends to zero as h goes to zero.

If not otherwise indicated, we take T = 10 and advance in time using an implicit Euler scheme with step
dt = 0.1.

0
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Fig. 1. u(10) on 16-by-16 criss-cross mesh computed with the RT (left) and P1 (right) methods with g = 2 sin x sin y.

In all our tests, g does not depend on t and u0 ≡ 0, so that the solution (σ(t), u(t)) asymptotically tends
to the solution (σ∞, u∞) ∈ H(div; Ω) × L2(Ω) of the steady problem

(σ∞, τ ) + (div τ, u∞) = 0 ∀τ ∈ H(div; Ω)
(div σ∞, v) = −(g, v) ∀v ∈ L2(Ω).

In our first test, we choose g(x, y) = 2 sinx sin y, so that u∞(x, y) = sinx sin y. In Figure 1 the component
u(t) of the solution at time T = 10 is plotted for both methods on a criss-cross mesh with N = 16. The
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results look quite similar; the L2(Ω) norms of the solution is 1.5725 and 1.5674 (the reference value is
π/2 = 1.57079 . . .) for the RT and P1 methods, respectively, and the corresponding solution value at the
center are 0.9957 and 0.9925 (the reference value is 1.0). In the second test, considering again criss-cross
meshes, we take the function g = c(h) depending on the meshsize h as a checkerboard function with values
±1 on the underlying mesh of subsquares. For example, the case N = 4 is plotted in Figure 2. Let u∞(h)

+1

+1+1

+1 +1

+1+1

+1 −1 −1

−1−1

−1 −1

−1−1

Fig. 2. The checkerboard c(h) for N = 4.

3

21

4

5

Fig. 3. The reference criss-cross macroelement

be the asymptotic solution of our problem with datum g = c(h). As h goes to zero, the function c(h) tends
weakly to zero in L2(Ω), so that, for the compactness of the inverse Laplace operator, we have that u∞(h)
tends to zero strongly in L2(Ω). We expect a good numerical method to provide a solution uh(t) ∈ Vh

tending to zero as h goes to zero. We explicitly observe that our expectation is related to a sort of uniform
convergence, since the solution is computed, for each h, with respect to a different right hand side. On the
other hand, this kind of convergence is what we usually obtain from the error estimates (see (27) and (36)).

Table 1
L2 norms of the solution with g = c(h).

dt = .1 dt = .01

N RT P1 RT P1

4 0.080756 0.451091 0.080756 0.451091
8 0.020186 0.430821 0.020186 0.430821

16 0.005047 0.427416 0.005047 0.427416
32 0.001262 0.426687 0.001262 0.426687

Table 2
L2 norms of the solution when g is the 8-by-8
checkerboard.

N RT P1

4 0.053830 0.103860
8 0.020186 0.430821

16 0.022569 0.020642
32 0.020689 0.019728

In Table 1 we report the L2 norm of uh(10) for various values of N computed with RT and P1 methods.
It is evident that the solution computed with the P1 method does not go to zero. This fact clearly indicates
a different behavior for the two methods. In particular, it is evident that the stability of the steady problem
(see (13) and (14)) is not sufficient for the good approximation of the evolution problem in mixed form. Here,
by good approximation we mean a convergence like it comes from estimates (27) or (36). In Table 1 we also
show that the bad behavior of the P1 approximation is not related to a poor time discretization. Indeed,
a refinement in t does not produce any improvement. At the end of Section 5, we shall come back to this
example and analyze more deeply the differences between the two methods. In Figure 4 we show the solution
uh(10) computed with the two methods. It can be observed the resonance induced by the checkerboard in
the case of the P1 scheme. This will be related to the presence of spurious eigenvalues (see [8]) at the end
of Section 5. On the other hand, if we keep g fixed and let h go to zero, then we observe that the solution
computed with the P1 method is similar to the one obtained with the RT method (see Table 2), the only
exception being when the mesh is the one underlying the structure of g.

We introduce now another example, in which the P1 method is not converging as h goes to zero in
the L∞(L2) norm. The load term g is now a function of t; namely, at time t, g(t) is the N(t) by N(t)
checkerboard function with N(t) = dte. The norm of the solution u(t), computed with RT and P1 methods
using three different meshes (N = 8, 12, 16), is plotted in Figure 5. We notice that, when the P1 method is
used, there is a pick with constant height appearing at an increasing value of t as h decreases. This happens
when the structure of g resonates with the mesh and cannot be avoided even if the mesh is refined.

5. Convergence analysis for the
(

0
g

)

-type evolution problems. In this section we shall develop
two different error estimates. The first one, stated in Theorem 3, is new and is based on the compatibility
assumption (23). This assumption is satisfied for most standard finite elements used for the approximation of
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Fig. 4. u(10) on 16-by-16 criss-cross mesh computed with the RT (left) and P1 (right) methods when g is a checkerboard.
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Fig. 5. L2-norm of uh(t) for t ∈ [0, 20] with g(t) equal to N(t) by N(t) checkerboard function and Dirichlet (natural)
boundary conditions

the heat equation. The second estimate, given in Theorem 5, is basically equivalent to the one given in The-
orem 2.1 of [16]. Our proof is new and we explicitly observe that, in this case, the regularity hypothesis (34)
has to be made.

We start this section by recalling the continuous problem (8) and its space semidiscretization (11).
The hypotheses on the involved bilinear forms have been made explicit in Section 3.1. Given T > 0,
g : ]0, T [ → V ′, and u0 ∈ H, for almost every t ∈ ]0, T [ we look for σ(t) ∈ Σ and u(t) ∈ V such that

a(σ(t), τ) + b(τ, u(t)) = 0 ∀τ ∈ Σ,

b(σ(t), v) − d

dt
(u(t), v) = −V ′< g(t), v >V ∀v ∈ V,

u(0) = u0.

The semidiscrete counterpart reads: for almost every t ∈ ]0, T [, find σh(t) ∈ Σh and uh(t) ∈ Vh such that

a(σh(t), τ) + b(τ, uh(t)) = 0 ∀τ ∈ Σh,

b(σh(t), v) − d

dt
(uh(t), v) = −V ′< g(t), v >V ∀v ∈ Vh,

uh(0) = u0,h.

The error equations are

a(σ(t) − σh(t), τ) + b(τ, u(t) − uh(t)) = 0 ∀τ ∈ Σh,

b(σ(t) − σh(t), v) − d

dt
(u(t) − uh(t), v) = 0 ∀v ∈ Vh.
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Given two linear operators Π : Σ → Σh and P : H → Vh, and taking τ = Πσ(t) − σh(t), v = Pu(t) − uh(t)
in the error equations we get, after summation,

(

∂

∂t

(

Pu(t)−uh(t)
)

, Pu(t) − uh(t)

)

+ a(Πσ(t) − σh(t),Πσ(t) − σh(t)) =

b(σ(t) − Πσ(t), Pu(t) − uh(t)) −
(

∂

∂t

(

u(t) − Pu(t)
)

, Pu(t) − uh(t)

)

−

a(σ(t) − Πσ(t),Πσ(t) − σh(t)) − b(Πσ(t) − σh(t), u(t) − Pu(t)).

(20)

Let us now take Π as a Fortin operator and P as the H projection onto Vh, namely

Π : Σ → Σh

b(τ − Πτ, v) = 0 ∀v ∈ Vh
(21)

and

P : H → Vh

(w − Pw, v) = 0 ∀v ∈ Vh.

Then, equation (20) reduces to

(

∂

∂t

(

Pu(t)−uh(t)
)

, Pu(t) − uh(t)

)

+ a(Πσ(t) − σh(t),Πσ(t) − σh(t)) =

a(σ(t) − Πσ(t),Πσ(t) − σh(t)) − b(Πσ(t) − σh(t), u(t) − Pu(t)),

(22)

where we used the fact that Π is a Fortin operator (see (21)) and that the projection P commutes with the
time derivative.

In several interesting applications, the last term in the right hand side of (22) vanishes. Let B : Σ → V ′

denote the canonical operator defined by V ′< Bσ, v >V = b(σ, v) for all σ ∈ Σ and v ∈ V ; if

B(Σh) ⊆ Vh (23)

then we can show that, for any v ∈ V ,

b(τ, v − Pv) = 0 ∀τ ∈ Σh.

Indeed, in this case, b(τ, v−Pv) = V ′< Bτ, v−Pv >V = (Bτ, v−Pv) = 0, due to the identification H ' H ′.
Hence, we can easily obtain the following result.
Lemma 2. Let (σ, u) and (σh, uh) be the solutions of problems (8) and (11), respectively. If the inclu-

sion (23) holds, then the following error estimate is true:

max
t∈[0,T ]

||u(t) − uh(t)||2H +

∫ T

0

|σ(t) − σh(t)|2a dt ≤

||Pu0 − u0,h||2H + max
t∈[0,T ]

||u(t) − Pu(t)||2H + 2

∫ T

0

|σ(t) − Πσ(t)|2a dt.

In order to obtain a convergence result, we need some assumptions on the operators P and Π. Let us
denote by V + a subspace of V such that the second component of the solution u belongs to L2(]0, T [ ;V +)
whenever g ∈ L2(]0, T [ ;H) and by Σ+ a space such that the first component of the solution σ belongs to
L2(]0, T [ ; Σ+) whenever g ∈ L2(]0, T [ ;H). Moreover, let us assume that the following estimate holds

‖σ‖L2(Σ+) + ‖u‖L2(V +) ≤ C‖g‖L2(H). (24)

Then we assume that there exists ρ1(h), tending to zero as h goes to zero, such that for every u ∈ V +

it holds

||u− Pu||H ≤ ρ1(h)||u||V + . (25)
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In general, estimate (25) can be achieved if P is a suitable approximation operator. As far as the operator
Π is concerned, in the spirit of [7], we make the following assumption: there exists ρ2(h), tending to zero as
h goes to zero, such that

|σ − Πσ|a ≤ ρ2(h)||σ||Σ+ . (26)

The following theorem summarizes the results obtained so far.
Theorem 3. Let (σ, u) and (σh, uh) be the solutions of problems (8) and (11), respectively, and suppose

that the inclusion (23) holds true. If there exist P and Π satisfying (25) and (26), then we have the following
estimate

||u(t) − uh(t)||L∞(H)+

(

∫ T

0

|σ(t) − σh(t)|2a dt
)1/2

≤

C||Pu0 − u0,h||H + C(ρ1(h) + ρ2(h))||g||L2(H).

(27)

A different estimate, which does not require the inclusion (23), but for which some more regularity as-
sumption on the solution is required, can be obtained by using the approach of the elliptic projection (see
Section 2). Let us consider the steady problem associated to (8): given g ∈ V ′ find (σ, u) ∈ Σ× V such that

a(σ, τ) + b(τ, u) = 0 ∀τ ∈ Σ,
b(σ, v) = −V ′< g, v >V ∀v ∈ V,

(28)

and the corresponding discrete problem: find (σh, uh) ∈ Σh × V such that

a(σh, τ) + b(τ, uh) = 0 ∀τ ∈ Σh,
b(σh, v) = −V ′< g, v >V ∀v ∈ Vh.

(29)

We make the assumption that (28) and (29) are well-posed. Then, given (σ, u) ∈ Σ× V solution of (28), we
can define Πσ ∈ Σh and Pσ ∈ Vh as the solution of (29) with right hand side V ′< g, v >V = −b(σ, v), namely

a(Πσ, τ) + b(τ, Pσ) = 0 ∀τ ∈ Σh,
b(Πσ, v) = b(σ, v) ∀v ∈ Vh.

(30)

We observe that, thanks to the well-posedness of problem (28), the continuous solution of (30) is (σ, u).
Since basically Π and P depend explicitly only upon σ, we omit u from the notation for simplicity. It should
be reminded, however, that Pσ is a discrete counterpart to u. Moreover, the operator Π : Σ → Σh defined
in (30) is a Fortin operator in the sense of (21). Inserting now the elliptic projections Π and P defined in (30)
into (20), we obtain

(

∂

∂t

(

Pσ(t)−uh(t)
)

, Pσ(t) − uh(t)

)

+ a(Πσ(t) − σh(t),Πσ(t) − σh(t)) =

−
(

∂

∂t

(

u(t) − Pσ(t)
)

, Pσ(t) − uh(t)

)

,

where we made use of the fact that Π is a Fortin operator and we took advantage of the following error
equation

a(σ(t) − Πσ(t), τ) + b(τ, u(t) − Pσ(t)) = 0 ∀τ ∈ Σh.

Hence, using standard arguments and Gronwall’s lemma, we obtain the following result.
Lemma 4. Let (σ, u) and (σh, uh) be the solutions of problems (8) and (11), respectively. Let Π : Σ → Σh

and P : V → Vh be defined as in (30). Suppose, moreover, that u0 is in V and is such that there exists
σ0 ∈ Σ with (σ0, u0) solution to (28) for a suitable g ∈ V ′. Then the following error estimate is true:

max
t∈[0,T ]

||u(t) − uh(t)||2H +

∫ T

0

|σ(t) − σh(t)|2a dt ≤ ||Pσ0 − u0,h||2H+

max
t∈[0,T ]

||u(t) − Pσ(t)||2H + 2

∫ T

0

|σ(t) − Πσ(t)|2a dt+ C

∫ T

0

∥

∥

∥

∥

∂

∂t
(u(t) − Pσ(t))

∥

∥

∥

∥

2

H

dt.
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In order to get the convergence estimate from the previous lemma, we make the following assumptions.
First, we assume that there exists ω1(h), going to zero as h goes to zero, such that

||u− Pσ||H ≤ ω1(h)||u||V + . (31)

Then, we need an estimate for ||σ(t)−Πσ(t)||a. In analogy to (26), we suppose that there exists ω2(h), going
to zero as h goes to zero, such that

|σ − Πσ|a ≤ ω2(h)||σ||Σ+ . (32)

Finally, we suppose the existence of ω3(h), going to zero as h goes to zero, such that

∥

∥

∥

∥

∂

∂t
(u− Pσ)

∥

∥

∥

∥

L2(H)

≤ ω3(h)

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

L2(V +)

. (33)

Remark 1. We explicitly notice that estimate (33) is not an immediate consequence of (31) unless
the operator P commutes with the time derivative. Actually, this property is true provided some regularity
assumption is made. Indeed, we need assume

∂σ

∂t
∈ L2(]0, T [ ; Σ) (34)

in order to define P (∂σ(t)/∂t) ∈ Vh, according to (30):

a

(

Π
∂σ(t)

∂t
, τ

)

+ b

(

τ, P
∂σ(t)

∂t

)

= 0 ∀τ ∈ Σh

b

(

Π
∂σ(t)

∂t
, v

)

= b

(

∂σ(t)

∂t
, v

)

∀v ∈ Vh.

Differentiating with respect to t equations (30), we get

a

(

∂Πσ(t)

∂t
, τ

)

+ b

(

τ,
∂Pσ(t)

∂t

)

= 0 ∀τ ∈ Σh

b

(

∂Πσ(t)

∂t
, v

)

= b

(

∂σ(t)

∂t
, v

)

∀v ∈ Vh.

Comparing the last two equations, and using the uniqueness hypothesis on problem (29), we finally obtain

P
∂σ(t)

∂t
=
∂Pσ(t)

∂t
for a.e. t ∈ ]0, T [ . (35)

Relation (35), which relies on the regularity assumption (34), can be used to get the estimate

∥

∥

∥

∥

∂

∂t
(u− Pσ)

∥

∥

∥

∥

L2(H)

≤ ω1(h)

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

L2(V +)

.

Assumptions (31), (32), and (33) allow us to state the following theorem.
Theorem 5. Let (σ, u) and (σh, uh) be the solutions of problems (8) and (11), respectively. Let Π and

P be the two components of the elliptic projection (30) and let σ0 be as in Lemma 4. If (31), (32), and (33)
are satisfied, then we have the following estimate

||u(t)−uh(t)||L∞(H) +

(

∫ T

0

|σ(t) − σh(t)|2a dt
)1/2

≤

C||Pσ0 − u0,h||H + C(ω1(h) + ω2(h))||g||L2(H) + Cω3(h)

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

L2(V +)

.

(36)
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Example 4 (Convergence analysis for the mixed approximation to the heat equation). We review here
the numerical examples presented in Section 4. We start with the analysis of the RT, BDM and BDFM
method for mesh of triangles, tetrahedrons, rectangles and parallelepipeds. In these cases, Theorem 3 gives
the optimal k-th order rate of convergence (see [13, 8]).

On general quadrilateral meshes, we can use the ABF family introduced in [1]. In this case we cannot
use Theorem 3, since the inclusion (23) is not satisfied. However, we can invoke Theorem 5 and conclude
with the optimal estimate, provided some extra regularity on the time derivative of u is assumed.

On the other hand, the P1 scheme does not fit within our results. Indeed, it has been proved in [8]
that (32) does not hold. We shall make it clear, how things might go wrong (as shown numerically in
Figure 4) with the following considerations. In [8] it has been shown that the P1 element, when applied to
the mixed eigenvalue problem associated with Laplace operator, presents spurious eigenvalues. Let Ω be the
square of side length π and define fh as the eigenfunction associated to the first spurious eigenvalue λ̄h.
We normalize fh, so that ||fh||L2 = 1. This function, in particular, has a clear checkerboard pattern and a
numerical evidence shows that λ̄h tends to a number close to six (see [8] and Section 7). Take u0 = 0, then
the continuous solution uh to the heat equation is (see (3))

uh(t) =
∞
∑

i=1

wi

∫ t

0

(fh, wi)e
λi(s−t) ds.

Let us consider the discrete eigenmodes λi,h ∈ R and wi,h ∈ Vh, σi,h ∈ Σh, i = 1, . . . ,N (h), (where N (h) is
the dimension of Vh) satisfying

(σi,h, τ ) + (div τ , wi,h) = 0 ∀τ ∈ Σh

(div σi,h, v) = −λi,h(wi,h, v) ∀v ∈ Vh.

With this notation, a solution expansion holds also at the discrete level, namely

uh
h(t) =

N (h)
∑

i=1

wi,h

∫ t

0

(fh, wi,h)eλi,h(s−t) ds =

N (h)
∑

i=1

wi,h(fh, wi,h)
1 − e−λi,ht

λi,h
. (37)

Since fh tends to zero weakly in L2(Ω), the continuous asymptotic solution uh
∞ tends to zero strongly in

L2(Ω). On the other hand, from (37) we get

uh
h(t) = fh 1 − e−λ̄ht

λ̄h
and ||uh

h||L∞(L2) =
1 − e−λ̄hT

λ̄h
.

This last relation implies that an estimate like (27) cannot hold for the P1 method if we can show that
||uh||L∞(L2) tends to zero as h goes to zero. Indeed, we can split uh as the sum of u1 and u2 defined as
follows:

∂u1

∂t
− ∆u1 = fh in Ω × ]0, T [

u1(0) = uh
∞ in Ω

∂u2

∂t
− ∆u2 = 0 in Ω × ]0, T [

u2(0) = −uh
∞ in Ω.

It is clear that u1(t) = uh
∞ for all t, so that

||uh||L∞(L2) ≤ ||u1||L∞(L2) + ||u2||L∞(L2) ≤ 2||uh
∞||L2 .

6. Convergence analysis for the
(

f
0

)

-type evolution problems. Also in this section we present two
different error estimates. In the first one, we shall make the hypothesis that the bilinear form a is coercive on
the whole space V (see Theorem 9). This estimate applies, for instance, to the Stokes problem introduced in
Example 3 and in this case provides optimal rate of convergence only when lowest order elements are used.
In the second estimate, presented in Theorem 11, we only assume the ellipticity in the kernel (16), but, in
order to get the result, we require an additional approximation property. If applied to the Stokes problem,
this estimate turns out to be optimal also for higher order schemes.
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We recall the continuous problem (15) and its space semidiscretization (19). The hypotheses on the forms,
in particular the ellipticity in the kernel (16), have been made in Section 3.2. Given T > 0, f : ]0, T [ → V ′,
and u0 ∈ H, for almost every t ∈ ]0, T [ find u(t) ∈ V and p(t) ∈ Q such that

d

dt
(u(t), v) + a(u(t), v) + b(v, p(t)) = V ′< f, v >V ∀v ∈ V,

b(u(t), q) = 0 ∀q ∈ Q,

u(0) = u0.

The discrete counterpart reads: for almost every t, find uh(t) ∈ Vh and ph(t) ∈ Qh such that

d

dt
(uh(t), v) + a(uh(t), v) + b(v, ph(t)) = V ′< f, v >V ∀v ∈ Vh,

b(uh(t), q) = 0 ∀q ∈ Qh,

uh(0) = u0,h,

where u0,h ∈ Vh is an approximation of u0. The error equations are:

d

dt
(u(t) − uh(t), v) + a(u(t) − uh(t), v) + b(v, p(t) − ph(t)) = 0 ∀v ∈ Vh,

b(u(t) − uh(t), q) = 0 ∀q ∈ Qh.

In the next lemma, we shall use the kernel of the discrete operator associated to b, namely Kh = {vh ∈ Vh :
b(vh, qh) = 0 ∀qh ∈ Qh}.

Lemma 6. Let us suppose that the form a is elliptic in V , that is (16) holds for any v ∈ V . Let (u, p)
and (uh, ph) be the solutions of problems (15) and (19), respectively. If the time derivative of u and uh are
bounded in L2(]0, T [ ;H) then the following estimate holds true:

max
t∈[0,T ]

||u(t) − uh(t)||2H + α

∫ T

0

||u(t) − uh(t)||2V ≤ ||u0 − u0,h||2H+

C

(

∫ T

0

||u(t) − Πu(t)||2H dt

)1/2

+ C

∫ T

0

||u(t) − Πu(t)||2V dt+

∫ T

0

b(Πu(t) − uh(t), p(t)) dt,

(38)

where Π is an operator from V + to the discrete kernel Kh.
Proof. From the ellipticity and the error equations we get

1

2

d

dt
||u(t) − uh(t)||2H + α||u(t) − uh(t)||2V =

(

∂

∂t

(

u(t) − uh(t)
)

, u(t) − uh(t)

)

+ a(u(t) − uh(t), u(t) − uh(t)) =

(

∂

∂t

(

u(t) − uh(t)
)

, u(t) − Πu(t)

)

+ a(u(t) − uh(t), u(t) − Πu(t))−

b(Πu(t) − uh(t), p(t) − ph(t)).

(39)

From our assumption on the time derivative of u and uh and the fact that Πu(t) ∈ Kh we easily get the
result integrating from 0 to T .

Remark 2. From the previous proof it follows that the first constant C appearing on the right hand
side of (38) is related to the bound of the time derivatives of u and uh in L2(]0, T [ ;H). This is a regularity
assumption which is in general not too strong if f ∈ L2(]0, T [ ;H). On the other hand, if the time derivatives
of u and uh are only in L2(]0, T [ ;V ′), then a similar result as (38) can be obtained but with the V norm
instead of the H one in the second term in the right hand side.

In order to obtain a rate of convergence from the previous lemma, we consider V + ⊆ V and Q+ ⊆ Q
such that the solution to (15) satisfies u ∈ L2(]0, T [ ;V +) and p ∈ L2(]0, T [ ;Q+) if f ∈ L2(]0, T [ ;H) with the
a priori estimate ‖u‖L2(V +) + ‖p‖L2(Q+) ≤ C‖f‖L2(H). Then we introduce the following definitions (see [7]).
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Definition 7. We say that the weak approximability property of the space Q+ holds, if there exists
ρ1(h), tending to zero as h goes to zero, such that

sup
vh∈Kh

b(vh, p)

||vh||V
≤ ρ1(h)||p||Q+ ∀p ∈ Q+.

Moreover, we need also an approximability property of the kernel, hence we define the following strong
approximability of V +.

Definition 8. The strong approximability of V + with respect to Π is satisfied if there exists ρ2(h)
tending to zero as h goes to zero, such that for all u ∈ V + it holds:

‖u− Πuh‖V ≤ ρ2(h)‖u‖V + .

If the above definitions are fulfilled, then the following theorem holds true:
Theorem 9. Let us assume that the form a is elliptic in V and that Definitions 7 and 8 hold true.

Moreover, let us denote by ρ3(h) a function going to zero as h tends to zero such that ||u − Πu||H ≤
ρ3(h)||u||V + . Let (u, p) and (uh, ph) be the solutions of problems (15) and (19), respectively. If the time
derivatives of u and uh are bounded in L2(]0, T [ ;H) then we have the following error estimate:

||u− uh||L∞(H) + ||u− uh||L2(V ) ≤ ||u0 − u0,h||H +C
(
√

ρ3(h)||f ||L2(H) + (ρ1(h) + ρ2(h)) ||f ||L2(H)

)

. (40)

Remark 3. Since V ⊆ H with continuous embedding, we could take ρ3(h) = ρ2(h) in the previous
theorem. However, we prefer to keep separated the two functions, since in general the approximation in H
might be of higher order than in V .

From estimate (40), it is clear that, in order to derive an optimal order of convergence, we need a good
balance among the ρi, i = 1, 2, 3. We shall discuss this issue in more detail in Example 5.

Going back to the proof of the previous theorem, we notice that, taking in equation (39) Π as the H
projection onto the discrete kernel Kh, we obtain the following different estimate, provided u belongs to
L∞(V ) (see [14] for a similar approach to the analysis of the Navier–Stokes equations)

||u− uh||L∞(H) + ||u− uh||L2(V ) ≤
||u0 − u0,h||H + C

(

ρ4(h)||u||L∞(V ) + ρ2(h)‖u‖L2(V +) + ρ1(h)||p||L2(Q+)

)

,
(41)

where ρ4(h), going to zero as h tends to zero, is such that

||u− Πu||H ≤ ρ4(h)||u||V . (42)

We notice, that this estimate is not fully satisfactory either. Indeed, in some cases, in order to get a good
bound for ρ4(h), one should use an inverse inequality, leading to stronger assumptions on the mesh sequence.

We are now ready to present the second estimate of this section. Let Π : V + × Q+ → Kh and P :
V + ×Q+ → Qh denote the elliptic projections, that is, for u ∈ V + and p ∈ Q+,

a(Π(u, p), v) + b(v, P (u, p)) = a(u, v) + b(v, p) ∀v ∈ Vh

b(Π(u, p), q) = 0 ∀q ∈ Qh.
(43)

In order to give sense to equation (43), we make the assumption that the approximation to the steady
equation associated with problem (15) is stable in the sense of [13].

Lemma 10. Let (u, p) and (uh, ph) be the solutions of problems (15) and (19), respectively. Assume
that the form a is uniformly elliptic in the discrete kernel, that is (16) is satisfied for any v ∈ Kh with α
independent of h. Then we have

max
t∈[0,T ]

||u(t) − uh(t)||2H + α

∫ T

0

||u(t) − uh(t)||2V dt ≤ ||Π(u0, 0) − u0,h||2H+

max
t∈[0,T ]

||u(t) − Π(u(t), p(t))||2H +

∫ T

0

(

∥

∥

∥

∥

∂

∂t
(u(t) − Π(u(t), p(t)))

∥

∥

∥

∥

2

H

+ ||u(t) − Π(u(t), p(t))||2V

)

dt,

(44)
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where Π is the elliptic projector mapping V + ×Q+ into Kh (see equation (43)).
Proof. Using the ellipticity in the discrete kernel we have

1

2

d

dt
||Π(u(t), p(t)) − uh(t)||2H + α||Π(u(t), p(t)) − uh(t)||2V ≤

−
(

∂

∂t

(

u(t) − Π(u(t), p(t))
)

,Π(u(t), p(t)) − uh(t)

)

−

a(u(t) − Π(u(t), p(t)),Π(u(t), p(t)) − uh(t)) − b(Π(u(t), p(t)) − uh(t), p(t) − ph(t))

In the last term, ph can be replaced by P (u, p) ∈ Qh, since Π(u(t), p(t)) − uh(t) ∈ Kh. Then, using the
definition of the elliptic projections (see (43)), we get the desired estimate.

The following theorem gives the convergence result.
Theorem 11. Let the hypotheses of Lemma 10 be satisfied and suppose that the strong approximability

property (see Definition 8) is fulfilled. Then, we have the estimate

||u− uh||L∞(H) + α||u− uh||L2(V ) ≤

||Π(u0, 0) − u0,h||H + ρ4(h)

(

||u||L∞(V ) +

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

L2(V )

)

+ ρ2(h)||u||L2(V +),
(45)

where ρ4(h) has been introduced in (42).
Proof. The proof easily follows from the previous lemma, by noticing that the elliptic projection operator

Π commutes with the time derivative.
We now present an estimate for the pressure.
Theorem 12. Let (u, p) and (uh, ph) be the solutions of problems (15) and (19), respectively. Let the

hypotheses of Lemma 10 be satisfied and suppose that the following discrete inf-sup condition holds with β > 0
independent of h

inf
qh∈Qh

sup
vh∈Vh

b(vh, qh)

||vh||V ||qh||Q
≥ β.

If there exists ρ5(h) going to zero as h tends to zero such that

||p− P (u, p)||Q ≤ ρ5(h)||p||Q+ ∀q ∈ Q+,

then we have the following estimate

||p− ph||L2(Q) ≤ C

(

ρ5(h)||p||L2(Q+) + ρ4(h)

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

L2(V )

+ ||Π(u0, 0) − u0,h||V
)

. (46)

Proof. For almost any t we have

β||P (u(t), p(t)) − ph(t)||Q ≤ sup
vh∈Vh

b(vh, P (u(t), p(t)) − ph(t))

||vh||V
=

sup
vh∈Vh

b(vh, P (u(t), p(t)) − p(t)) −
(

∂

∂t

(

u(t) − uh(t)
)

, vh

)

− a(u(t) − uh(t), vh)

||vh||V
≤

||p(t) − P (u(t), p(t))||Q +

∥

∥

∥

∥

∂

∂t

(

u(t) − uh(t)
)

∥

∥

∥

∥

V ′

+ ||u(t) − uh(t)||V .

In order to conclude the proof we need to estimate the second term. We subtract from the first equation
in (43) the first equation in (19) and, taking vh ∈ Kh, we get

(

∂

∂t

(

Π(u(t), p(t)) − uh(t)
)

, vh

)

+ a(Π(u(t), p(t)) − uh(t), vh) = −
(

∂

∂t

(

u(t) − Π(u(t), p(t))
)

, vh

)

.
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We take vh = ∂(Π(u(t), p(t)) − uh(t))/∂t ∈ Kh and we have

∥

∥

∥

∥

∂

∂t

(

Π(u(t), p(t)) − uh(t)
)

∥

∥

∥

∥

2

H

+
1

2

d

dt
a(Π(u(t), p(t)) − uh(t),Π(u(t), p(t)) − uh(t)) ≤

∥

∥

∥

∥

∂

∂t

(

u(t) − Π(u(t), p(t))
)

∥

∥

∥

∥

H

∥

∥

∥

∥

∂

∂t

(

Π(u(t), p(t)) − uh(t)
)

∥

∥

∥

∥

H

.

Integrating over [0, T ], we obtain the result in a standard way.
Example 5 (Convergence analysis for the approximation to the evolution Stokes problem). Esti-

mate (40) can be used when lowest order are used. For instance, if we consider the MINI element (see [2]),
then we have ρ2(h) = Ch, ρ3(h) = Ch2, and ρ1(h) can be bounded by Ch in a standard way as follows:

sup
vh∈Kh

b(vh, p)

||vh||H1

= sup
vh∈Kh

b(vh, p− pI)

||vh||H1

≤ Ch||p||H1 ,

where pI is an approximation of p satisfying ‖p − pI‖L2 ≤ Ch‖p‖H1 . Then, Theorem 9 gives a first order
convergence estimate.

Estimate (45) can be used to analyze higher order methods. For instance, when using generalized k-th
order Hood–Taylor schemes (see [5] and [6]), we have ||u−Π(u, p)||L2 + h||u−Π(u, p)||H1 ≤ Chk+1|u|Hk+1

and Theorem 11 gives a k-th order estimate, provided suitable regularity on the solution is assumed, in
particular on the time derivative of u. An alternative estimate can be obtained from (41) with no regularity
assumptions on ∂u/∂t but with the need for an inverse inequality. As far as the approximation of the
pressure is concerned, the conclusions of Theorem 12 are that ||p− ph||L2(L2) is O(hk), as expected, provided
the solution is smooth enough (see (46)).

7. Further considerations on the heat equation in mixed form. In this section we study in
more detail the numerical results reported at the end of Section 4. We introduce a modified P1 element on
criss-cross meshes, which we call P1∗, following the notation of [8], and which has a similar behavior as the
P1 element with respect to the convergence of eigenmodes. We recall that the criss-cross mesh is constructed
by dividing Ω into N by N subsquares (macroelements) which are then partitioned into four subtriangles
by their diagonals. The elements P1 and P1∗ present different definitions of both spaces Σh and Vh. For
the P1∗ approximation, the space of scalars Vh is made of piecewise constants on the square macroelements
and the number of degrees of freedom in Σh has been reduced by eliminating those ones corresponding to
the centers of the macroelements. The elimination is performed in such a way that the divergences of the
elements in Σh are constant on each macroelement. We refer the reader to [8] for more details on how to
perform the elimination of such degrees of freedom.

To get started, we recall the mixed formulation of Laplace eigenproblem: find λ ∈ R such that there
exist w ∈ V = L2

0(Ω) and σ ∈ Σ = H0(div; Ω) with w 6≡ 0 satisfying

(σ, τ ) + (div τ , w) = 0 ∀τ ∈ Σ
(div σ, v) = −λ(w, v) ∀v ∈ V

(47)

and its numerical approximation with the P1∗ method: find λh ∈ R such that there exist wh ∈ Vh and
σh ∈ Σh with wh 6≡ 0 satisfying

(σh, τ ) + (div τ , wh) = 0 ∀τ ∈ Σh

(div σh, v) = −λh(wh, v) ∀v ∈ Vh.
(48)

It can be easily shown (in (48), set wh = −1/λh div σh which comes from the second equation, into the first
equation) that the eigenvalues of (48) correspond to the nonvanishing ones of the following problem: find
λh ∈ R such that there exists σh ∈ Σ with σh 6≡ 0 satisfying

(div σh,div τ ) = λh(σh, τ ) ∀τ ∈ Σh. (49)

In [8] it has been proved and numerically demonstrated that this method does not work. Namely, some
spurious solutions appear which pollute the numerical spectrum. Here we present the following new result
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Fig. 6. Eigenvalues corresponding to formula (50) as functions of m and n when N = 100

which shows that the only pathology of the method under consideration is the presence of spurious modes;
namely all continuous eigenmodes are correctly approximated.

Let Ω =]0, π[×]0, π[, then by separation of variable it is easy to obtain the exact solution to (47)

λmn = m2 + n2, m, n ∈ N, n+m 6= 0

σ
mn(x, y) = (m sin(mx) cos(ny), n cos(mx) sin(nx))

wmn = − cos(mx) cos(ny).

The following proposition and the next corollary give the expressions of the discrete solutions to (49) and (48).
Proposition 13. Given N ∈ N, and defined

h = π/N, cm = cos(mh), cn = cos(nh),

A = (1 + 1/3 cos(mh) + 1/3 cos(nh) + 1/3 cos(mh) cos(nh))(cos(nh) − cos(mh))

B1 = sin(mh) sin(nh)(4/3 + 2/3 cos(mh))

B2 = sin(mh) sin(nh)(4/3 + 2/3 cos(nh)),

for m,n = 0, . . . , N − 1, the eigenvalues of scheme (49) are given by λ00
h = 0,

λm0
h =

6

h2

1 − cos(mh)

2 + cos(mh)
, λ0n

h =
6

h2

1 − cos(nh)

2 + cos(nh)
,

λmn
h =

2

h2

4 + cm + cn − (cm + cn)2 − cm cn(cm + cn) + 3
√
A2 +B1B2

(1 + cm/3 + cn/3 + cm cn/3)(4 + cm + cn) −
√
A2 +B1B2

, mn > 0.

(50)

Setting for mn > 0

m =

√

A+
√
A2 +B1B2

B2

√
nm, n =

√

−A+
√
A2 +B1B2

B1

√
nm, (51)

the eigenfunctions corresponding to (50) are

σ
mn
h (xi, yj) =











(m sin(mxi), 0) if n = 0,

(0, n sin(nyj)) if m = 0,

(m sin(mxi) cos(nyj), n cos(mxi) sin(nyj) if mn > 0.

(52)

Proof. We provide a sketch of the proof which is mainly a tedious calculation. Considering the reference
criss-cross macroelement (based on the square [0, 1]× [0, 1]), we denote by ϕi(x̂, ŷ), i = 1, . . . , 5 the standard
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continuous piecewise linear functions associated to the nodes represented in Figure 3. It turns out that the
eight basis functions for the space Σh are

ψ1(x̂, ŷ) = (ϕ1(x̂, ŷ) + ϕ5(x̂, ŷ)/4, ϕ5(x̂, ŷ)/4)
ψ2(x̂, ŷ) = (ϕ5(x̂, ŷ)/4, ϕ1(x̂, ŷ) + ϕ5(x̂, ŷ)/4)
ψ3(x̂, ŷ) = (ϕ2(x̂, ŷ) + ϕ5(x̂, ŷ)/4,−ϕ5(x̂, ŷ)/4)
ψ4(x̂, ŷ) = (−ϕ5(x̂, ŷ)/4, ϕ2(x̂, ŷ) + ϕ5(x̂, ŷ)/4)
ψ5(x̂, ŷ) = (ϕ3(x̂, ŷ) + ϕ5(x̂, ŷ)/4, ϕ5(x̂, ŷ)/4)
ψ6(x̂, ŷ) = (ϕ5(x̂, ŷ)/4, ϕ3(x̂, ŷ) + ϕ5(x̂, ŷ)/4)
ψ7(x̂, ŷ) = (ϕ4(x̂, ŷ) + ϕ5(x̂, ŷ)/4,−ϕ5(x̂, ŷ)/4)
ψ8(x̂, ŷ) = (−ϕ5(x̂, ŷ)/4, ϕ4(x̂, ŷ) + ϕ5(x̂, ŷ)/4),

where the numbering is taken such that ψ2i−1(x̂, ŷ) and ψ2i(x̂, ŷ) are the two shape functions associated with
node i (i = 1, . . . , 4). Taking σh as given by (52), it is easy (even if long) to check that the expression for
λh is the one reported in (50). We acknowledge that, in order to guess the correct expression for (52), we
have used Mathematica [24].

Corollary 14. With the same notation as in Proposition 13, the solutions (λh,σh, wh) of (48) are
given by (50), (52), and by the following expressions:

wm0
h |Kij

= − 2

hλm0
h

m sin
(

m
h

2

)

cos
(

mxi+ 1
2

)

w0n
h |Kij

= − 2

hλ0n
h

n sin
(

n
h

2

)

cos
(

nyj+ 1
2

)

wmn
h |Kij

= − 2

hλmn
h

(

m sin
(

m
h

2

)

cos
(

n
h

2

)

+ n sin
(

n
h

2

)

cos
(

m
h

2

))

cos
(

mxi+ 1
2

)

cos
(

nyj+ 1
2

)

,

(53)

where the last term in (53) holds for mn > 0 and xi+1/2 = xi +h/2, yj+1/2 = yi +h/2, and Kij is the square
of vertices (xi, yj), (xi+1, yj), (xi+1, yj+1), and (xi, yj+1).

Proof. The proof follows from the expressions for λh and σh given in Proposition 13 and from the
formula wh = −div σh/λh.

Let m and n be fixed, then from (50) and (51) we have

lim
h→0

λmn
h = m2 + n2 and lim

h→0
m = m, lim

h→0
n = n,

so that it is evident that all continuous eigensolutions are approximated by a suitably chosen discrete one.
On the other hand, if we take m = n = N − 1 = π/h− 1, then

lim
h→0

λN−1,N−1
h = 6,

which does not correspond to any continuous eigenvalue of (47). This result is in agreement with the
numerical experiments presented in [8], where, in particular, it was apparent the presence of a spurious
eigenvalues converging to 6. For a better understanding of the behavior of the discrete eigenvalues, in
Figure 6 we present the graph of λmn

h as a function of m,n when N = 100. The obtained surface is similar
to the one obtained in [9] in an analogue situation. We now present the main result of this section, which
is closely related to the numerical tests reported in Section 4. In that section, we showed two examples in
order to demonstrate that the P1 method provides results which are acceptable in one case (regular right
hand side) and awful in the other (oscillatory right hand side). Here we theoretically substantiate those
tests, proving that, in general, the P1∗ methods works if the right hand side is regular enough. Our theorem
is proved under the general hypothesis that any continuous eigensolution to (47) is well approximated by
the numerical scheme, no matter whether other spurious solutions are present. For this reason we analyze
the P1∗ method, since to our best knowledge estimates like (50), (52), and (53) are not available for the P1
method. On the other hand, we chose to perform the numerical tests using the P1 method (which seems
more natural), even though the P1∗ method would behave similarly.

Theorem 15. Let us consider the P1∗ element for the approximation of the heat equation as in
scheme (12) and let g ∈ L∞(]0, T [;L2(Ω)) and u0 ∈ L2(Ω).
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Then, if (σ, u) is the continuous solution and (σh, uh) the discrete one, we have that uh converges to u
in L∞([0, T ];L2(Ω)).

Proof. The regularity assumptions on g and u0 can be written in a more convenient way as follows: for
any ε > 0 there exists N such that

∑

i>N

(g(t), wi)
2 < ε, ∀t ∈ [0, T ],

∑

i>N

(u0, wi)
2 < ε, (54)

where wi denote the eigenfunctions of problem (47).
The following structure for the continuous and discrete solutions of the mixed heat equation holds

u(t) =

∞
∑

i=1

(

(u0, wi)e
−λit +

∫ t

0

(g(s), wi)e
−λi(t−s) ds

)

wi

uh(t) =
∞
∑

i=1

(

(u0, wih
)e−λi,ht +

∫ t

0

(g(s), wi,h)e−λi,h(t−s) ds

)

wi,h,

(55)

where λi and wi (resp. λi,h and wi,h for i = 1, . . . ,N (h)) denote continuous (resp. discrete) eigensolutions
of problem (47) (resp. (48)). According to the analysis presented at the beginning of this section (see in
particular (50) and (53)) they can be ordered in such a way that for any i

λi,h → λi and wi,h → wi pointwise in Ω (56)

as h goes to zero. We explicitly note that in the previous notation we have associated with any eigenvalue
λi (resp. λi,h) a one dimensional eigenspace spanned by the eigenfunction wi (resp. wi,h); this means in
particular that it might be λi = λj (and/or resp. λi,h = λj,h) for some i 6= j. Moreover, we shall use the
orthogonalities (wi, wj) = 0 (resp. (wi,h, wj,h)) for i 6= j.

The aim of our proof is to show that for any ε > 0 we have ||u(t) − uh(t)||0 < ε for any t ∈ [0, T ] when
h is small enough. Using (55), we have

||u(t) − uh(t)||20 ≤ T1 + T2 + T3 + T4,

with

T1 =

∞
∑

i=N+1

(

(u0, wi)
2e−2λit +

∫ t

0

(g(s), wi)
2e−2λi(t−s) ds

)

T2 =

N (h)
∑

i=N+1

(

(u0, wi,h)2e−2λi,ht +

∫ t

0

(g(s), wi,h)2e−2λi,h(t−s) ds

)

T3 =

∥

∥

∥

∥

∥

N
∑

i=1

(

(u0, wi)wie
−λit − (u0, wi,h)wi,he

−λi,ht
)

∥

∥

∥

∥

∥

2

0

T4 =

∫ t

0

∥

∥

∥

∥

∥

N
∑

i=1

(

(g(s), wi)wie
−λi(t−s) − (g(s), wi,h)wi,he

−λi,h(t−s)
)

∥

∥

∥

∥

∥

2

0

ds.

Given ε > 0, thanks to the regularity hypotheses (54), we can choose N such that T1 < ε. The convergence
of the eigenvalues and eigenvectors (56) gives that, for h small enough, we also have T3 < ε and T4 < ε. It
remains to estimate T2 which we do now. We shall show that

∑

i>N (u0, wi,h)2 can be bounded by 2ε if h is
small enough. The term involving g(s) can be handled in the same way and, putting things together, this is
what we need in order to get T2 < ε. The term

∑

i>N (u0, wi,h)2 can indeed be estimated in the following
way. We have

N
∑

i=1

(u0, wi,h)2 +

N (h)
∑

i=N+1

(u0, wi,h)2 =

N (h)
∑

i=1

(u0, wi,h)2 ≤

∞
∑

i=1

(u0, wi)
2 =

N
∑

i=1

(u0, wi)
2 +

∞
∑

i=N+1

(u0, wi)
2 ≤

N
∑

i=1

(u0, wi)
2 + ε.
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From the convergence of the eigenvectors (56), we have, for h small enough,

N
∑

i=1

(u0, wi,h)2 −
N
∑

i=1

(u0, wi)
2 ≤ ε, and the bound

N (h)
∑

i=N+1

(u0, wi,h)2 ≤ 2ε.

Remark 4. The proof of the previous theorem strongly relies on (54) and (56). In particular, it
shows that any scheme which provides convergent eigenmodes for problem (47) (no matter whether spurious
solutions are present) can be successfully applied to the approximation of the heat equation in the case of
smooth data (in the sense of (54)).
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