
EXERCISE 3: LU factorization

Write a Matlab function that, given as input a matrix A, returns the
L and U factors of the LU factorization without pivoting and test it
on the following matrices: 4 0 12

−2 6 −3
1 2 5

 −5 3 4
10 −8 −9
15 1 2

  1 −3 4
−1 5 −3
4 −8 23



1 / 5



EXERCISE 4: GEM with pivoting

Write a Matlab function that, given as input a matrix A and a vector
b, solves the system Ax = b using Gaussian elimination with pivoting
and test it on the two systems: 4 0 12

−2 6 −3
1 2 5

x1x2
x3

 =

0
0
1

 ;

2 2 0
1 1 −1
3 −2 4

x1x2
x3

 =

4
1
5


whose exact solutions are respectively x =

[
−3,−1/2, 1

]T
and

x =
[
1, 1, 1

]T
.

2 / 5



EXERCISE 5: solving linear systems and more...

Using the LU factorization function above, write a Matlab function that
returns the inverse of an input matrix.
Modify the above function to compute the determinant of an input
matrix A, and test it on the matrices in the previous slide. Finally, check
the results using Matlab command det
Solve a system Ax = f with user-made functions above, where f arbitrary
chosen and

A =


2 −1 0 . . . 0
−1 2 −1 . . . 0

0
. . .

. . .
. . . 0

... −1 2 −1
0 0 . . . −1 2


In particular, compute x with either the GEM/LU methods implemented
above and by explicitly computing x = A−1f (i.e., computing A−1 with
the function above). Using the Matlab commands tic and toc, measure
the time required by the two aproaches to compute the solution. The
matrix size should be chosen large enough so that the time difference is
relevant.

3 / 5



EXERCISE 6: LU with pivoting (optional)

Write a Matlab function that, given as input a matrix A, returns the
P, L and U factors of the LU factorization with pivoting and test it
on the following matrix: 2 2 0

1 1 −1
3 −2 4



4 / 5



EXERCISE 7: sparse matrices (optional)

When the vast majority of a matrix A entries are zero, it is convenient to store only the
nonzero values (and their position) in the memory. The Matlab function sparse can
convert a non-sparse (dense) matrix into a sparse one.

Let Au = f be the matrix in the previous slide. Using the Matlab command whos,
compare the memory usage when A is stored as dense and as sparse, for a large
enough matrix size. Compare also the time spent to solve the system (use Matlab
LU factorisation, and Matlab solver to invert the trinagular systems).

Consider a similar system Bu = f , where

B =


2 −1 −1 . . . −1
−1 2 0 . . . 0

−1 0
. . .

...
... 2 0

−1 0 . . . 0 2


Note that A and B have the same sparisity, i.e. the same number of nonzero
entries. Compare again the memory and solution time required when B is stored as
sparse or as dense. Do you observe any difference with the previous case? If yes,
why? You might want to compare the sparsity pattern (Matlab command spy) of
the L U factors.

5 / 5


