Ordinary Differential Equations (Ode’s): Example 1
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Ordinary Differential Equations (Ode’s): Example 1
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Ordinary Differential Equations (Ode’s): Example 2
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Ordinary Differential Equations (Ode’s): Example 2
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Ordinary Differential Equations (Ode's)

We shall consider some numerical schemes to solve initial-value problems
(Cauchy's problems) written as: Find y = y(t) solution of

{y’(t) = f(t,y(t)) t€t, T]
y(to) = yo.

(1)
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Ordinary Differential Equations (Ode's)

We shall consider some numerical schemes to solve initial-value problems
(Cauchy's problems) written as: Find y = y(t) solution of

{y’(t) = f(t,y(t)) tec[to, T]

¥(t0) = yo. 1)

We assume y : [to, T] — R but can be generalized to y : [tg, T] — R?

J
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Ordinary Differential Equations (Ode's)

We shall consider some numerical schemes to solve initial-value problems
(Cauchy's problems) written as: Find y = y(t) solution of

{y’(t) = f(t,y(t)) t€t, T]
y(to) = yo.

(1)

In general f(t,y(t)) is a non-linear function describing the evolution in
time of y(t). The true solution y(t) of (1) evolves continuously in time,
and we want to follow it by a discrete approximation.
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Ordinary Differential Equations (Ode's)

We shall consider some numerical schemes to solve initial-value problems
(Cauchy's problems) written as: Find y = y(t) solution of

{y’(t) = f(t,y(t)) t€t, T]
y(to) = yo.

(1)

In general f(t,y(t)) is a non-linear function describing the evolution in
time of y(t). The true solution y(t) of (1) evolves continuously in time,
and we want to follow it by a discrete approximation.

Both exact and discrete solution of (1) start from the same initial value
yo at tp. The discrete one takes finite steps At, and after n steps it
reaches a value y,. We hope and expect that y, is close to the exact value
y(to + nAt). We shall see that this may or may not happen.
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Numerical methods for Ode's

let us see some schemes to solve numerically (1). They are numerous, and

a first distinction is among 1-step methods and multi-step methods. Let
us see 1-step methods.
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Numerical methods for Ode's

let us see some schemes to solve numerically (1). They are numerous, and
a first distinction is among 1-step methods and multi-step methods. Let
us see 1-step methods.

They can all be derived in the following way.

Le to, t1,--- ,ty = T be a set of points in [ty, T]; as usual, for simplify

T—1t
N

notation we take them equally spaced: (N given, we define At =
and we set tg, t; = tog+ At,tpo =t; + At,--- ,ty=T).
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At each step, (on each subinterval [t,, to11]) we integrate the differential
equations...
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let us see some schemes to solve numerically (1). They are numerous, and
a first distinction is among 1-step methods and multi-step methods. Let
us see 1-step methods.

They can all be derived in the following way.

Le to, t1,--- ,ty = T be a set of points in [ty, T]; as usual, for simplify
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N
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At each step, (on each subinterval [t,, t,11]) we integrate the differential
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y'(t) = f(t, (1))
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Numerical methods for Ode's

let us see some schemes to solve numerically (1). They are numerous, and
a first distinction is among 1-step methods and multi-step methods. Let
us see 1-step methods.

They can all be derived in the following way.

Le to, t1,--- ,ty = T be a set of points in [ty, T]; as usual, for simplify

T—1t
N

notation we take them equally spaced: (N given, we define At =
and we set tg, t; = tog+ At,tpo =t; + At,--- ,ty=T).

At each step, (on each subinterval [t,, to11]) we integrate the differential
equations...

i) =) = [ "y (t)de = / Ty (4)

Then, as y(t) in the interval [t,, t,+1] is unknown to us (and moreover, in
general, we are unable to compute the integral exactly), we use some
quadrature formula.
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tht1
/ f(t,y(t))dt ~ quadrature formula.
tn
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tht1
/ f(t,y(t))dt ~ quadrature formula.
tn

Different choices of quadrature formulas give rise to different schemes.
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Examples of numerical schemes

Example 1 We consider first the quadrature formula

d
/C g(s)ds ~ (d — ) g(c)

that, indeed, is very poor (and is exact only for g = constant).



Examples of numerical schemes

Example 1 We consider first the quadrature formula

d
/C g(s)ds ~ (d — ) g(c) 2

that, indeed, is very poor (and is exact only for g = constant). Then

/tt"“ F(t, (D) dt = (tns1 — t2)F(tmy(£2)) n=0,1,2,---  (3)



Examples of numerical schemes

Example 1 We consider first the quadrature formula

d
| e)ds=(d-9e(c) )
C
that, indeed, is very poor (and is exact only for g = constant). Then
tht1
/ F(t,y(t))dt 2= (tor1 — ta)f(tn, ¥(tn)) n=0,1,2,---  (3)
Jtn
Using (3) into y(t,11) — y(t,) = f:ﬂ”“ ft”“ f(t,y(t))dt we get:
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Examples of numerical schemes

Example 1 We consider first the quadrature formula

d
| e)ds=(d - 9elc) )
that, indeed, is very poor (and is exact only for g = constant). Then
tn+1
[ ey (@) = (a6t y(8)) n=0.120 (3
th
Using (3) into y(tyr1) — y(tn) = f;,”“ ft"“ f(t,y(t))dt we get:

y(t1) ~ y(to) + At (to, y(to)) = yo + At F(to, yo) =: y1
y(t2) = }/(tl) + Atf(tlay(tl)) ~y+ At f(tlv_)/l) =y

y(tn) ~ y(tn—1) + At f(ty—1, y(tn—-1)) =~ yn—1 + At f(tn_1,Yn—1) = YN
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Examples of numerical schemes

It is clear from this that errors accumulate at each step and might produce
unexpected results. We will analyse the scheme later on. Let us write it in
a compact form:

Yo given
yn+1:yn+Atf(tn7yn) n:0517"'7N_1 (EE)

This is called EXPLICIT EULER method or FORWARD EULER method:
at each step, the value y, can be explicitly computed using values at the
previous steps. It is very simple and inexpensive but, as we shall see, there
isa “but”...
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Examples of numerical schemes

Example 2 This time we consider the quadrature formula

d
/ g(s)ds ~ (d — ¢) g(d) (4)

that is also very poor and is exact only if g = constant, like the previous
one. However the resulting scheme will be very different.
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Examples of numerical schemes

Example 2 This time we consider the quadrature formula
d
| e9)ds = (d - )e(@) *)
c
that is also very poor and is exact only if g = constant, like the previous
one. However the resulting scheme will be very different.

In fact, applying it to our case we get

the1
/ f(t, y(t))dt = (tnt1 — tn)f(tnt1,¥(tn41)) n=0,1,2,--
Jty
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Examples of numerical schemes

Example 2 This time we consider the quadrature formula

d
/ g(s)ds ~ (d — ¢) g(d) (4)

that is also very poor and is exact only if g = constant, like the previous
one. However the resulting scheme will be very different.
In fact, applying it to our case we get

the1
/ f(t, y(t))dt = (tnt1 — tn)f(tnt1,¥(tn41)) n=0,1,2,--
Jty

that used into y(tn1) — y(t,) = [ y/(t)dt = [;"* F(t,y(t))dt gives
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Examples of numerical schemes

Example 2 This time we consider the quadrature formula

d
/C g(s)ds ~ (d — c) g(d) (4)

that is also very poor and is exact only if g = constant, like the previous
one. However the resulting scheme will be very different.
In fact, applying it to our case we get

tn+1
/ F(t,y(t))dt = (tnt1 — tn)f(tar1, ¥(tns1)) n=0,1,2,---
tn

that used into y(tn1) — y(t,) = [ y/(t)dt = [;"* F(t,y(t))dt gives

n) =
y(t1) = y(to) + At f(t1,y(t1)) = yo + At f(t1,y1) = »1
y(t2) = y(t1) + At f(t2, y(2)) = y1 + At f(t2, y2) = y>

y(tn) = y(tn—1) + At f(tn, y(tn)) =~ yn—1 + At f(tn, yn) =: yn
] 8/50



Examples of numerical schemes

The scheme becomes

Yo given
}/n+1:)/n+Atf(tn+1a)/n+1) nZOalv"' aNfl (IE)
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Examples of numerical schemes

The scheme becomes

Yo given
}/n+1:)/n+Atf(tn+1a}/n+1) nZOalv"' )Nfl (IE)

This is called IMPLICIT EULER method or BACKWARD EULER method.
Note that, at every time step, the unknown y,.1 in (/IE) appears both on
the left-hand side and in the right-hand side, and in order to perform the
step we must solve an equation in the unknown y,11. Since f is in general
non-linear, at each step, to find y, we need to solve a non-linear equation
(for example, with Newton method). The method is obviously more
expensive than Explicit Euler.
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Examples of numerical schemes

Example 3 As a third example we consider the quadrature formula

/Cdg(s)ds ~ (d - o) (89181 (5)

(trapezoidal rule) that is better than the previous ones since it is exact
whenever g is a polynomial of degree < 1.
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Example 3 As a third example we consider the quadrature formula

/Cdg(s)ds ~ (d - o) (89181 (5)

(trapezoidal rule) that is better than the previous ones since it is exact
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Examples of numerical schemes

Example 3 As a third example we consider the quadrature formula

/Cdg(s)ds ~ (d - o) (89181 (5)

(trapezoidal rule) that is better than the previous ones since it is exact
whenever g is a polynomial of degree < 1.
Applying it to our case we get

/ttnﬂ f(t,y(t))dt ~ (tnﬂztn) (f(tn,y(tn)) + f(tn+1vY(t"+1))) o

The corresponding scheme becomes
Yo given
At
Ynt1 = Yn + 7<f(tnv)/n) + f(tn+17)’n+1)) n=0,1,--- ,N-1
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Examples of numerical schemes

Yo given

At
Ynt1 =Yn+ 7<f(tn;}/n) + f(tn+1a}/n+1)) n=0,1,--- ,N—-1
This is called CRANK-NICOLSON method. It is an implicit method (and

hence, as the previous Implicit Euler, expensive) but it has a good
accuracy, as we shall see.
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Examples of numerical schemes

Explicit methods could be derived from an implicit scheme:

@ P: use the explicit formula to predict a new y,
e E: use yy , to evaluate f ; = f(tni1, Y5, 1)

e C: use f; ; in the implicit formula to correct the new y, 11

Example 4 In the Crank-Nicolson scheme, use Explicit Euler as a

predictor, we get rid of the implicit part and obtain a new explicit method,
called HEUN method, which reads

Yo given
erJrl =yn+ At f(tm)/n)

At
Yn+1 = Yn + T(f(tm)/n) + f(tn+17y:+1)> n= 07 17 Tty N-—1
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Systems of Ode's

It is much more common to have systems of differential equations than a
single equation. The unknown is now a vector Y (t), and so is the
right-hand side F(t, Y(t)). The problem is: find Y (t) solution of

Y'(t) = F(t,Y(t) te]to,T]
Y(to) = Y.

. 13755



Systems of Ode's

It is much more common to have systems of differential equations than a
single equation. The unknown is now a vector Y (t), and so is the
right-hand side F(t, Y(t)). The problem is: find Y (t) solution of

Y/(t) = F(t,Y(¢)) t€[to, T]
Y(to) = Y. (6)
with
yi(t) AL, Y (1)) ylg
v = ||, By - | POV oo |
yn(t) fult, Y (1) ,O

] 13/59



Systems of Ode's

The numerical schemes used for a single equation apply directly to systems
of Ode’s.

For instance, the two Euler methods become:

(EE) Y(© given
X(n+1) _ X(n) + AtE(tnuX(n)) n = O, 17 N
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Systems of Ode's

The numerical schemes used for a single equation apply directly to systems
of Ode’s.

For instance, the two Euler methods become:

(EE) Y© given
X(,'H.]_) :X(n)—l_AtE(tn’X(n)) n:o,l,

Ex: N = 2 equations, and 2 unknowns y1, y»:

yl(o), 2(0) given
yjfn+1) = y:E”) + At fl(tn',yl(n)v 2(”)) n= 07 17 T
AT = Y 4 At bty A7) n =01,
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Systems of Ode's

(IE) y© given
X(H—H) _ X(n) + AtE(thrl’X(n-i-l)) n=0,1,---
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Systems of Ode’s

(i) {Y(O) given

X('H_l) — X(n) + AtE(tn—‘,-l’X(rH_l)) n= O, ]_7 e

Ex: N = 2 equations, and 2 unknowns y1, y»:

© 0

i Yo given
yfnJr].) _ y{n) + At fl(tn+1,y{n+l); y2(n+1)) n—= 0, 17 e
y2(n+1) — yz(n) + At f2(tn+17y{n+l)7 y2(n+1)) n= 07 17 e
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Systems of Ode's

(IE) y© given
X('H_l) — X(n) + AtE(tn—‘,-l’X(rH_l)) n= O, ]_7 e

Ex: N = 2 equations, and 2 unknowns y1, y»:

yl( ), y2( ) given

1( ): (n)+Atf1(tn+1,y1(n+l) 2(
yg( D= ()+Atfz(tn+1,y1( )yg( Yy n=01,---

much more expensive now: at each step, to go from Y () to y(ntl)
requires the solution of a non-linear system!

15 /59



X(n+1) — X(n) + AtE(tn+1sX(n+1))
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X(n+1) — X(n) 4 AtE(tn+1aX(n+1))

find X such that
G(X) = X — AtF(tp41,X) = Y =0,

and set Y(r+1) .— X
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X(n+1) — X(n) 4 AtE(tn+1aX(n+1))

find X such that

G(X) = X — AtF(tp41,X) = Y =0,

and set Y(nt1) .= X

One Newton would give:
Xx© given
JGyPX = —G(X1)
XM = X 4 5x
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X(n+1) — X(n) 4 AtE(tn+1aX(n+1))

find X such that

G(X) = X — AtF(tp41,X) = Y =0,

and set Y(nt1) .= X
One Newton would give:

K(O) given
JGix00X = —G(X1?)
XM = x4 5x

X0 =77 for example: X(© = (") 4 AtF(t,, Y(")) (EE)
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Or you could use PECE with a few cycles of CE:
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Or you could use PECE with a few cycles of CE:
P: X0 =y 4 AtF(t,, Y(7) (EE)
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Or you could use PECE with a few cycles of CE:
P XO =y AtF(t,, Y) (EE)
E: EO(tn11,X)
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Or you could use PECE with a few cycles of CE:
P: X =y 4 AtF(t,, Y(™) (EE)

E: EO(tn11,X)

C: XM =y 4 AtFO (¢4, X(O)
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Or you could use PECE with a few cycles of CE:
P: XO =yt AtF(t,, Y) (EE)

E E(O)(th’K(O))

C: XD =y 4 AtFON (10, X))

E E(l)(tn+1,ﬁ(1))
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Or you could use PECE with a few cycles of CE:
P: XO =y 4 AtF(t,, (") (EE)
FO(t1, XO)

c: XM=y AtE(O)(thrl,K(o))
E: FO(tgy,XD)
C: 5(2) _ X(n) + Atﬂ(l)(t,,ﬂ,&(l))
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Or you could use PECE with a few cycles of CE:
P. XO =y ¢ AtF(t,, YV) (EE)
E(O)(tn-i-lyﬁ(o))

XM = ¥ 4 AtFO (ty45, XO)
E(l)(tn+1,ﬁ(1))

X® =y 4 AtFO (2,44, XD
E(z)(trﬂrlv&@))

m o m o
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Or you could use PECE with a few cycles of CE:
P. XO =y ¢ AtF(t,, YV) (EE)
E(O)(tn-i-lyﬁ(o))

XM = ¥ 4 AtFO (ty45, XO)
E(l)(tn—‘,-l;K(l))

X® =y 4 AtFO (2,44, XD

E: E@(thyy,X@)

Then set:

O m o

YD) — y() L AtF@) (2,44, X))
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Study of convergence

So we have two classes: explicit methods, and implicit methods.
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Study of convergence

So we have two classes: explicit methods, and implicit methods.
In all cases we want the sequence {yo, y1,- - ,yn} to converge to the

sequence {yo, y(t1),---,y(T)}.
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Study of convergence

So we have two classes: explicit methods, and implicit methods.
In all cases we want the sequence {yo, y1,- - ,yn} to converge to the
sequence {yo,y(t1), -+ ,y(T)}.

If, given a method, we can prove that

3C > 0 such that  max|y, — y(t,)| < CAtP

with C independent of At and p > 0, then we say that the method is
convergent, and the order of convergence is p (the bigger p, the faster the
convergence).

Theorem 1 (Lax)

If a scheme is consistent and stable, then it is convergent, and the order
of convergence is the order of consistency.

We have however yet to define what consistency and stability are....

. -



Intuitive explanation of consistency and stability

@ consistency is a measure of how much the discrete scheme resembles
the differential problem: the consistency error at a given time step
measures the error which is created at that step; it is defined as the
error made when the scheme is applied to the exact solution of the
problem.

@ stability measures how the error, created and accumulated during the

previous steps, goes to the next step (is it amplified? does it
decay?...)

The detailed definition is given at the end of these slides for the methods
introduced, but is not a topic for the final exam.

. 19755



Consistency of a scheme

Consistency is a measure of how much the discrete scheme resembles the
differential problem: the consistency error is the error made when the
scheme is applied to the exact solution of the problem.
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Consistency of a scheme

Consistency is a measure of how much the discrete scheme resembles the
differential problem: the consistency error is the error made when the
scheme is applied to the exact solution of the problem.

Denoting by 7 the consistency error of a given scheme, if we have
T < CAtP
for some positive constant C independent of At and p positive, we say

that the scheme is consistent (i.e., 7 — 0 for At — 0) and the order of
consistency is p.
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Consistency of a scheme

Consistency is a measure of how much the discrete scheme resembles the
differential problem: the consistency error is the error made when the
scheme is applied to the exact solution of the problem.

Denoting by 7 the consistency error of a given scheme, if we have
T < CAtP

for some positive constant C independent of At and p positive, we say
that the scheme is consistent (i.e., 7 — 0 for At — 0) and the order of
consistency is p.

Let us see how to check consistency for the simplest scheme, Explicit
Euler.
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Consistency of Explicit Euler

= R |

Il
OP
= =

the exact solution fulfils: y/(t,) — f(tn, y(tn)) =0,
the discrete solution fulfils: =" — f(t,,y,) =0
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Consistency of Explicit Euler

the exact solution fulfils: y/(t,) — f(tn, y(ts)) =0,
the discrete solution fulfils: =17

If we apply the EE scheme to the exact solution we will have

_ W C F(tmy(t) 0 n=0,1,2,....

n

n=20,1,2, ..
— f(tn,yn) =0, n=0,1,2,..
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Consistency of Explicit Euler

the exact solution fulfils: y/(t,) — f(tn, y(tn)) =0, n=0,1,2,.
the discrete solution fulfils: 12" — f(t,,y,) =0, n=0,1,2,.

If we apply the EE scheme to the exact solution we will have

~ y(tag1) — y(ta)

)

i

n — f(tn, y(tn =0,1,2,...
g = (tn ¥ () £0 1 =0,1,2,

The quantity 7, is called the local truncation error at the step n, and
the consistency error will be T = max, |7,|
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Consistency of Explicit Euler

the exact solution fulfils: y/(t,) — f(tn, y(ts)) =0,

n=0,1,2,..
the discrete solution fulfils: %

— f(tn,yn) =0, n=0,1,2,...
If we apply the EE scheme to the exact solution we will have

th —ylth
- y(“)my() (b y () £0 n=0,1,2, ...

n

The quantity 7, is called the local truncation error at the step n, and
the consistency error will be 7 = max, |7,|.

Since y'(t,) = f(tn, y(tn)) by Taylor expansion at t, we have, for z such
that t, < z < toy1, that y(tar1) = y(tn) + At F(tn, y(ta)) + 2Ly (2)

e M)A ey Bty

At
= ma < =— ma "(t)| = CAt.
T x|7al = = max ly"(¢)]

21/59
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the exact solution fulfils: y/(t,) — f(tn, y(ts)) =0,

n=0,1,2,..
the discrete solution fulfils: %

— f(tn,yn) =0, n=0,1,2,...
If we apply the EE scheme to the exact solution we will have

th —ylth
- y(“)my() (b y () £0 n=0,1,2, ...

n

The quantity 7, is called the local truncation error at the step n, and
the consistency error will be 7 = max, |7,|.

Since y'(t,) = f(tn, y(tn)) by Taylor expansion at t, we have, for z such
that t, < z < toy1, that y(tar1) = y(tn) + At F(tn, y(ta)) + 2Ly (2)

e M)A ey Bty

At
= ma < =— ma "(t)| = CAt.
T x|7al = = max ly"(¢)]

Thus, Explicit Euler scheme is consistent with order of consistency 1.
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Consistency of Implicit Euler method

Yatl = Yn

At f(try1,¥n41) =0 n=0,1,2,.....
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Consistency of Implicit Euler method

Yn+1 — Yn
At

Applying this scheme to the exact solution y(-) we will have

— f(tpi1 Ynp1) =0 n=0,1,2,....

y(tat1) — y(tn)

— f(tht1, y(tn 0 =0,1,2,....
= (tns1,¥(trs1)) 20 1=0,12

Th =
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Consistency of Implicit Euler method

Yn+1 — Yn
At

Applying this scheme to the exact solution y(-) we will have

— f(tpi1 Ynp1) =0 n=0,1,2,....

y(tat1) — y(tn)

— f(tht1, y(tn 0 =0,1,2,....
= (tns1,¥(trs1)) 20 1=0,12

Th =
Since f(tpt1,y(tnt1)) = ¥ (tn+1), we use Taylor expansion at t,i1:

y(tn) = y(tnt1)

Ar V'(2) th<z<thi1

At
= _y/(tn+1) + 5
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Consistency of Implicit Euler method

Yn+1 — Yn
At

Applying this scheme to the exact solution y(-) we will have

— f(tht1,¥n+1) =0 n=0,1,2,.....

y(tat1) — y(tn)

— f(the1, v(tn 0 =0,1,2,....
At (tnt1,y(tns1)) #0 n=0,1,2,

Tn =
Since f(tpt1,y(tnt1)) = ¥ (tn+1), we use Taylor expansion at t,i1:

y(tn) = y(tnt1)

Ar V'(2) th<z<thi1

At
= _y/(tn+1) + 5

Hence we obtain

At At
Tnh = —7_)///(2) s T = maX|Tn‘ S — MmaXx |y”(t)’ = CAt
2 2 tefty,T]
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Consistency of Implicit Euler method

Yn+1 — Yn
At

Applying this scheme to the exact solution y(-) we will have

— f(tht1,¥n+1) =0 n=0,1,2,.....

y(tat1) — y(tn)

— f(the1, v(tn 0 =0,1,2,....
At (tnt1,y(tnt1)) #0 n , 2,

Tn =
Since f(tpt1,y(tnt1)) = ¥ (tn+1), we use Taylor expansion at t,i1:

}/(tn) - }/(tn—i-l)

N V'(2) th<z<thi1

At
= _y/(tn+1) + 5

Hence we obtain

At At
Tnh = —7_)///(2) s T = maX|Tn‘ S — MmaXx |y//(t)’ = CAt
2 2 tefty,T]

Thus, Implicit Euler scheme is consistent with order of consistency 1.
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Consistency of the Crank-Nicolson method

— 1
% - 5 <f(tna)/n) + f(tn+1,yn+1)) =0 n=012...
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Consistency of the Crank-Nicolson method

— 1
% _ §<f(tn,y,,) + f(t,,+1,y,,+1)) =0 n=0,1,2,...
Applying this scheme to the exact solution y(-) we will have

1

o W . 5(f(tmy(tn)) - f(tn+1,y(tn+1)))
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Consistency of the Crank-Nicolson method

— 1
% _ §<f(tn,y,,) + f(t,,+1,y,,+1)) =0 n=0,1,2,...
Applying this scheme to the exact solution y(-) we will have

1

o W . 5(f(tmy(tn)) - f(tn+1,y(tn+1)))

2

At At

_ ;(y(tnﬂ)—y(t,,) *y/(tn)) + L (w *)/(tnﬂ))'
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Consistency of the Crank-Nicolson method

— 1
% - 5 <f(tna)/n) + f(tn+1,yn+1)) =0 n=012...

Applying this scheme to the exact solution y(-) we will have

_— W _ %(f(tmy(tn)) + F(tns1, ¥(tni1))
L)) ) )0

Taylor expansion centered at t, for the first term, at t,1 for the second:

_!

_ (g ” 1, At , 1 At?
2" 2

y'(@)+5(-5y"(2) = Atz - 2)y"(23) < —y"(2)

Tn
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Consistency of the Crank-Nicolson method

— 1
% - 5 <f(tna)/n) + f(tn+1,yn+1)) =0 n=012...

Applying this scheme to the exact solution y(-) we will have

_— W _ %(f(tmy(tn)) + F(tns1, ¥(tni1))

1 Y(thrl)_Y(tn) / ) ]-(Y(tn+l)_)/(tn) / )
= (= (¢, (T Y (1) ).
(B y(t) +35 ~ Y (tns1)
Taylor expansion centered at t, for the first term, at t,1 for the second:

_!

_ (g ” 1, At , 1 At?
2" 2

y'(@)+5(-5y"(2) = Atz - 2)y"(23) < —y"(2)

Tn

" o
where above we used the mean value theorem: % =y"(z)
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Consistency of the Crank-Nicolson method

— 1
% - 5 <f(tna)/n) + f(tn+1,yn+1)) =0 n=012...

Applying this scheme to the exact solution y(-) we will have

_— W _ %(f(tmy(tn)) + F(tns1, ¥(tni1))

1 Y(thrl)_Y(tn) / ) ]-(Y(tn+l)_)/(tn) / )
= (= (¢, (T Y (1) ).
(B y(t) +35 ~ Y (tns1)
Taylor expansion centered at t, for the first term, at t,1 for the second:

1 At 1 1 At " 1 " At2 "
n= =(— —(—— = At — < —
T, 2( A (221))+2( >y (2)) 2 (nn 222))’ (z3) < A (%)

At At
— |7] < == |y"(z3)|] = 7 = max|1,| < —— max_|y"(t)| = CAt>.
4 4 tefto,T]

Thus, Crank-Nicolson scheme is consistent with order of consistency 2.
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A closer look at consistency error

We found that:

o for the two Euler methods, the consistency error is zero whenever

y"” =0, that is, whenever the solution of (1) is a polynomial of degree
up to 1.

@ the consistency error for Crank-Nicolson is zero whenever y"' =0,
that is, whenever the solution of (1) is a polynomial of degree up to 2.
This suggests that to have order of consistency p means that the scheme

computes exactly the solution of (1) whenever this solution is a
polynomial of degree up to p.

This is another way of checking consistency of a scheme, less rigorous but
practical, and this is how we will check consistency for Heun scheme.
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Consistency of Heun method

n+1 — Yn 1
St 5(f(tn,yn) + F(tnn, Yo+ DtF(tn, yn)) =0 ¥
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Consistency of Heun method

1
% _ 5(f(tn,yn) + F(tnr1, yn + Atf(tn,yn))) _0 Vn

Applying this scheme to the exact solution of (1) we will have
_ y(tn+1) - y(tn) - 1

- X 5(y’(tn) + F(tns, y(tn) + Aty’(rn))) # 0.
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Consistency of Heun method

— 1
St 5(f(tn,yn) + F(tnn, Yo+ DtF(tn, yn)) =0 ¥
Applying this scheme to the exact solution of (1) we will have

th —ylt, 1

= W _ 5(y/(t.n) + f(tn+1=)/(tn) + Aty’(t,,))) # 0.
This scheme originated from Crank-Nicolson, by making explicit the

implicit part. Is the order of consistency still 2?7 For this we should have

7» = 0 when the solution of (1) is 1, t, t2.
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Consistency of Heun method

— 1
St 5(f(tn,yn) + F(tnn, Yo+ DtF(tn, yn)) =0 ¥
Applying this scheme to the exact solution of (1) we will have

th —ylt, 1
= W _ §<y/(tn) + f(tn+1=)/(tn) + Aty’(t,,))> # 0.
This scheme originated from Crank-Nicolson, by making explicit the
implicit part. Is the order of consistency still 2?7 For this we should have
7» = 0 when the solution of (1) is 1, t, t2.
1-1 1

Wheny(t):]wy/:O:f7:>7-”:ﬁ_§(0+0):0;
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Consistency of Heun method

n+1 — Yn 1
St 5(f(tn,yn) + F(tnn, Yo+ DtF(tn, yn)) =0 ¥

Applying this scheme to the exact solution of (1) we will have

7y = YY) 2 (10) 4 (i, (1) + Aty/(8)) £ 0

This scheme originated from Crank-Nicolson, by making explicit the
implicit part. Is the order of consistency still 2?7 For this we should have
7» = 0 when the solution of (1) is 1, t, t2.

1-1 1

J— /_ — J— . — .
When y(t) =1,y =0=f,= 7, = — =~ 5(0+0) =0;
n — tn 1
When y(t) = £,y = 1= f,= 7 = P2 (14 1) =1-1=0,
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Consistency of Heun method

n+1 — Yn 1
St 5(f(tn,yn) + F(tnn, Yo+ DtF(tn, yn)) =0 ¥

Applying this scheme to the exact solution of (1) we will have

7y = YY) 2 (10) 4 (i, (1) + Aty/(8)) £ 0

This scheme originated from Crank-Nicolson, by making explicit the
implicit part. Is the order of consistency still 2?7 For this we should have
7» = 0 when the solution of (1) is 1, t, t2.

1-1 1

Wheny(t):]wy/:O:f7:>7-”:ﬁ_§(0+0):0;
n — tn 1
When y(t) = t.y' = 1= f,—s 7, = "0 _Z(141y—1-1-0,
At 2
2 to—tn 1
When y(t) =ty :2t:fa:>Tn:T—§(2tn+2tn+1)=0
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Consistency of Heun method

n+1 — Yn 1
St 5(f(tn,yn) + F(tnn, Yo+ DtF(tn, yn)) =0 ¥

Applying this scheme to the exact solution of (1) we will have

7y = YY) 2 (10) 4 (i, (1) + Aty/(8)) £ 0

This scheme originated from Crank-Nicolson, by making explicit the
implicit part. Is the order of consistency still 2?7 For this we should have
7» = 0 when the solution of (1) is 1, t, t2.

1-1 1

Wheny(t):]wy/:O:f7:>7-”:ﬁ_§(0+0):0;
n — tn 1
When y(t) = t.y' = 1= f,—s 7, = "0 _Z(141y—1-1-0,
At 2
2 to—tn 1
When y(t) =ty :2t:fa:>Tn:T—§(2tn+2tn+1)=0

Hence, the order of consistency of Heun method is 2.
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Stability

The concept of stability is a very important and useful concept whose
precise definition has to be made precise at various occurrences. Roughly
speaking, stability is what guarantees that the errors generated during a
numerical procedure do not grow too much.

With Ode's stability is a delicate issue, especially when the phenomenon
under study has to be followed for a long time. To better see what
happens, let us consider a simple model problem, for which we know the
exact solution:

{y’(t) =ay(t) t>0
y(0) = yo

. 25750



Stability

The concept of stability is a very important and useful concept whose
precise definition has to be made precise at various occurrences. Roughly
speaking, stability is what guarantees that the errors generated during a
numerical procedure do not grow too much.

With Ode's stability is a delicate issue, especially when the phenomenon
under study has to be followed for a long time. To better see what
happens, let us consider a simple model problem, for which we know the
exact solution:

y'(t) =ay(t) t>0 exact solution: y(t) = ype®
¥(0) =

. 25750



If a> 0 (or Rea > 0 if a € C) the exact solution grows exponentially. We
cannot expect (and we do not want!) that the discrete scheme remains
bounded, and it is not even the case to discuss “stability”.
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If a> 0 (or Rea > 0 if a € C) the exact solution grows exponentially. We
cannot expect (and we do not want!) that the discrete scheme remains
bounded, and it is not even the case to discuss “stability”.

Instead, if a < 0 the exact solution not only is bounded, but decays
exponentially:

a<0 — |y(t)] <|w| and lim |y(t)]=0.
t—o0
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If a> 0 (or Rea > 0 if a € C) the exact solution grows exponentially. We
cannot expect (and we do not want!) that the discrete scheme remains
bounded, and it is not even the case to discuss “stability”.

Instead, if a < 0 the exact solution not only is bounded, but decays

exponentially:
a<0 — |y(t)] <|w| and lim |y(t)]=0.
t—00
When a is a complex number, the exact solution is given by

y(t) = yoe(Redt(cos((Im a)t) + isin((Im a)t)), and has the same
behaviour if Rea < 0:

ae CwithRea<0 — |y(t)| < |w| and tle ly(t)] = 0.
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If a> 0 (or Rea > 0 if a € C) the exact solution grows exponentially. We
cannot expect (and we do not want!) that the discrete scheme remains
bounded, and it is not even the case to discuss “stability”.

Instead, if a < 0 the exact solution not only is bounded, but decays
exponentially:

a<0 — |y(t)] <|w| and lim |y(t)]=0.
t—00
When a is a complex number, the exact solution is given by

y(t) = yoe(Redt(cos((Im a)t) + isin((Im a)t)), and has the same
behaviour if Rea < 0:

ae CwithRea<0 — |y(t)| < |w| and tle ly(t)] = 0.

In this case we need to analyse the discrete schemes, and see whether
the discrete solution decays too, and behaves like the exact solution.
Hence, let 2 < 0 (or Rea < 0 if a € C), and let {y,} be the sequence
generated by a numerical scheme. Does {y,} satisfy the following relation?

ac CwithRea<0 — |y, <|w| and lim |y,| =07?
n—00

If this happens, the scheme is called Absolutely stable, or A-stable.
] 27 /59



Checking stability for Explicit Euler

By applying Explicit Euler method to the model problem, we get
(Vnt1 = Yn + Atf(tn, yn) with f(tn, yn) = ayn)

VYo+r1 = (1 4+ aAt)y, n=0,1,.... = y, = yo(1+ aAt)".

The exact solution decays exponentially from the initial value yp, while the
growth-decay factor for the discrete scheme is G = 1 + aAt.

For having lim,_ |yn| = 0 we need |G| < 1. Since a is negative, we
always have G = 1+ aAt < 1, but to have G > —1 we need to satisfy the
condition

14 aAt> —1, thatis, At < (2/|a|) —: stability condition for EE

This is the drawback of Explicit Euler scheme, and of all the explicit
schemes: for small enough time steps the stability condition is satisfied,
but when a is strongly negative (exactly the case of rapid decay in the true
solution) we are compelled to keep At small.

. 2550



Stability for Explicit Euler: the real setting
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Stability for Explicit Euler: the real setting

-2 i 0
-
2 - oo bt
EE v sfable > [ 1+ anat] = 1
=> ~2 caast < )
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Stability for Explicit Euler: the complex setting

A

t_aateC

2
EE s sfable &—=> [ 1+ aat] = ¢
Z=> re el witle b 4 aud R -
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Checking stability for Implicit Euler

Applying Implicit Euler method to the model problem gives
(Ynt+1 = yn + Atf(tat1, Ynr1) with £(tni1, Yar1) = ayns1)
Yo+l =Yn+ altypr1 n=0,1,.... = ypp1 =

1_aAtYn:G}/n-

@ For negative a the growth-decay factor G is positive, and the
denominator is always larger than 1. Therefore |G| < 1 and we always
have decay.

@ |G| < 1 holds also if a is any complex number in the left-half plane

Then we say that Implicit Euler is A-stable: the A-stability condition can
be written as

| IfRea<Othen |G| <1 = A-stability
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Stability for Implicit Euler: the complex setting

2. a4t eC

The scheme is A-stable:

|G| <14 |1 —aAt| > 1« aAt is outside the circle above <= Rea < 0
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Checking stability for Crank-Nicolson

Crank-Nicolson gives

t

—

+a

N>

aAt
Yn+1 = yn+?()/n+yn+1) n= 07 17 ceee = Ypy1 =

Yn = G yn.

N
m‘[>

The scheme is A-stable:

|G| <1< |2+ aAt| < |2 — aAt| < (Rea)At <0< Rea< 0

/iy
2. a4t eC

33/59



Checking stability for Heun

Heun method is not A-stable, only conditionally A-stable like Explicit
2
Euler. In fact, G =1+ aAt + @, and the condition |G| < 1is

satisfied if At < (2/13\).

i.oateC
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Stability regions: comparison

For each of these methods we have defined the stability region in the
complex plane as

A:={aAte C: lim |y, =0} ={aAte C: |G| < 1}
n—o0
and compared it with the stability region of the continuous problem: the

half plane Re a < 0.

For Explicit Euler A = {aAt € C: |1+ aAt| < 1} is a circle with center
(—1,0) and radius 1 (too small!).

For Implicit Euler A = {aAt € C: |1 — aAt| > 1} is the whole plane
minus a circle with center (1,0) and radius 1 (too big!)

For Crank-Nicolson the region is the left-half plane, exactly as for the true
solution (the best you can have).
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Stability regions

HEUN

(1,0

Re

A-stability regions for EE (the region inside the red circle), Heun (the

region inside the blue ellipse), IE (green, the region outside the circle with

center (1,0) and radius 1
]
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Conclusions (for the four basic methods)

In general, explicit schemes are never A-stable, only conditionally A-stable,

meaning that to satisfy the A-stability property they need to proceed by

small time steps. Some implicit schemes are A-stable.

For the method we have considered:

Method Consistency Stability
Explicit Euler yes, order 1 | conditionally A-stable
Implicit Euler yes, order 1 A-stable
Crank-Nicolson | yes, order 2 A-stable
Heun yes, order 2 | conditionally A-stable
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Lack of A-stability ** NOT FOR THE EXAM **

For a single equation the lack of A-stability is not a major drawback: to
have a good accuracy small At have to be used. Instead for systems it
could be more severe when the problem has different time scales.
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Y/(£) = AY (1)

the eigenvalues A; of the square matrix A take the place of the single
number a.
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Lack of A-stability ** NOT FOR THE EXAM **

For a single equation the lack of A-stability is not a major drawback: to
have a good accuracy small At have to be used. Instead for systems it
could be more severe when the problem has different time scales.

Y/(£) = AY (1)

the eigenvalues A; of the square matrix A take the place of the single
number a.

Explicit Euler would give

YO = (14 At A)Y™) va — YD) = (1 4 Ar ALy ©

The growth factor is now a matrix

G = (I + AtA) with eigenvalues gj = 1+ At ).
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Lack of A-stability ** NOT FOR THE EXAM **

Suppose that both A and G are diagonalised. Then,

@ each component of the discrete solution grows like gj”,

@ each component of the continuous solution grows like e,
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@ each component of the discrete solution grows like gj”,

@ each component of the continuous solution grows like e,

The continuous solution is stable if all the \; are negative (or Re \; < 0):
hence eVt — 0 for t — oo.
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Lack of A-stability ** NOT FOR THE EXAM **

Suppose that both A and G are diagonalised. Then,

@ each component of the discrete solution grows like gj”,

@ each component of the continuous solution grows like e,

The continuous solution is stable if all the \; are negative (or Re \; < 0):
hence eVt — 0 for t — oo.

The discrete solution is stable if all the [gj| < 1, so that g{" — 0 for
n— oo.

If the problem has different time scales we are in trouble...

Since At is the same for all the components, its size is controlled by the
most negative eigenvalue, which corresponds to the fastest decay and dies
out first in the true solution.

. 357/50



Stiff systems ** NOT FOR THE EXAM **

When the matrix A has eigenvalues with very different magnitude, the
system is called stiff.
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Stiff systems ** NOT FOR THE EXAM **

When the matrix A has eigenvalues with very different magnitude, the
system is called stiff.

Let us see a simple example.

YO =3 ] Y0
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Stiff systems ** NOT FOR THE EXAM **

When the matrix A has eigenvalues with very different magnitude, the
system is called stiff.

Let us see a simple example.

o[22 1 yi(t) = =2y1(t) + ya(t)
YO= 3 i YO — VA(t) = —100ya(2)
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Stiff systems ** NOT FOR THE EXAM **

When the matrix A has eigenvalues with very different magnitude, the
system is called stiff.

Let us see a simple example.

y1(t) = =2x(t) + y2(t)
ya(t) = —100y,(t)

YO =3 Y0 —

solution: yi(t) ~ e 2%, yo(t) ~ e~ 100¢,
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Stiff systems ** NOT FOR THE EXAM **

When the matrix A has eigenvalues with very different magnitude, the
system is called stiff.

Let us see a simple example.

0-[3 o — 70
y2(t) = —100y2(t)
solution: yi(t) ~ e 2%, yo(t) ~ e~ 100¢,
If we use Explicit Euler method we need
At < — =1 and At<—:i,
A1 X2] ~ 50

Stability requires then At < % even though it is e2t that controls the
and dies out very fast, but its

true solution: in fact, y» decays like e~100¢

presence forces us to proceed by small time steps even when it has virtually

2t

disappeared and we are interested in following the e™<'. component.
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Matlab functions

Most commonly used Matlab functions:

Non stiff problems:
ode23 (low order RK), ode45 (medium order RK), odel13 (variable order)

Stiff: odelbs (low to medium order), ode23s (low order RK)
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Generalizing Heun idea: Runge-Kutta methods

The celebrated Runge-Kutta methods are compound 1-step methods.

The basic idea is very simple: choose a high precision quadrature formula
for [ f on each interval [tp, t,11]. Then, since the values at the
quadrature nodes are not known, we predict them someway (and this is
where the detailed description could become quite complicated).
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Generalizing Heun idea: Runge-Kutta methods

The celebrated Runge-Kutta methods are compound 1-step methods.

The basic idea is very simple: choose a high precision quadrature formula
for [ f on each interval [tp, t,11]. Then, since the values at the
quadrature nodes are not known, we predict them someway (and this is
where the detailed description could become quite complicated).

The simplest explicit RK is Heun: the starting point is the trapezoidal
rule for ft " f, and since we want to go explicit, instead of the value y,11
(that would be needed in the trapezoidal rule) we use y, + At f(tn, yn),
that is, the value predicted by Explicit Euler.
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Runge-Kutta methods

Heun scheme:

Yo given
Yns1 = Yn + At f(tn, yn)

At .
Yn+1 :yn+7(f(tnayn)+f(tn+layn+1)) n:0717"'
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Runge-Kutta methods

Heun scheme:

Yo given
Yns1 = Yn + At f(tn, yn)

At %
Yn+1 = Yn + 7(f(thn) + f(tn+17yn+1)) n= 07 17 e aN -1

Denoting by K; and Kj the values of f at the two nodes t, and
th+1 = tn, + At we can rewrite Heun method as:

K]- = f(tn,)/n)a K2: f(tn+At,yn+AtK]_)

At
Ynr1=ya+ o (Ki+K2) =01
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Runge-Kutta methods

The more famous version of Runge-Kutta, RK4, is compounded four

times, it is based on Simpson rule, and achieves order p = 4. Let us see
how it is obtained.
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The more famous version of Runge-Kutta, RK4, is compounded four
times, it is based on Simpson rule, and achieves order p = 4. Let us see
how it is obtained.

Simpson rule uses on the interval [t,, ty+1] three nodes t,,
tht1/2 = ta + At/2, and ty 1 = t, + At, and would give

tht1 At
/ f(t,y(t))dt ~ - (fn + 4fpp10 + fn+1>.
Jty
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Runge-Kutta methods

The more famous version of Runge-Kutta, RK4, is compounded four
times, it is based on Simpson rule, and achieves order p = 4. Let us see
how it is obtained.

Simpson rule uses on the interval [t,, t,+1] three nodes t,,
tht1/2 = tn + At/2, and tn1 = t, + At, and would give

tnt1 At
/ f(t,y(t))dt ~ F(f,1+4f,,+1/2+ f,,H).
tn

(fn = f(tn-,)/n): fn+1/2 = f(tn+1/27)/n+1/2)7 fn+1 - f(t”+1’y”+1))
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Runge-Kutta methods

The more famous version of Runge-Kutta, RK4, is compounded four

times, it is based on Simpson rule, and achieves order p = 4. Let us see
how it is obtained.

Simpson rule uses on the interval [t,, ty+1] three nodes t,,
tht1/2 = ta + At/2, and ty 1 = t, + At, and would give

tht1 At
/ f(t,y(t))dt ~ - (fn + 4fpp10 + fn+1>.
Jty

The value f, is known, so we set K1 = f(tp, ys); then write 4f, ;> as
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Runge-Kutta methods

The more famous version of Runge-Kutta, RK4, is compounded four

times, it is based on Simpson rule, and achieves order p = 4. Let us see
how it is obtained.

Simpson rule uses on the interval [t,, ty+1] three nodes t,,
tht1/2 = ta + At/2, and ty 1 = t, + At, and would give
tht1 At
/ f(t,y(t))dt ~ o (f,, + 410 + fn+1>.
Jt,

The value f, is known, so we set K1 = f(tp, ys); then write 4f, ;> as
20 42

ni1/2 i1/ and we choose two different “predictions” for y, 1/
1 At
fn(+)1/2 = f(tn+1/2a}/n + TKI) = Kz
(@) At

nt1/2 = f(tnr1/2, Yn + 7Kz) = K3
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RK4

We had ! N
Kl ey f(tnayn); K2 — r1(+)1/2 = f(tn+1/2,yn Jr TtKl),

2
Ky = f/1(+)1/2 = F(tni1/2:¥n + %Kﬂ

] 4550



RK4

We had

1
Kl = f(tnayn); K2 = n(+)1/2 = f(tn+1/2,yn + %Kl),
Ky = £

n+l/2 = f(tn+1/2:)/n + %Kﬂ

For f,+1 we take here f,11 = f(th+1,yn + At K3) (although other choices
could have been possible), so that the scheme is:
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RK4

We had

1
Kl — f(tnayn); K2 — n(+)]_/2 — f(tn+1/2,yn Jr %Kl)‘
Ky = %)

n+l/2 = f(tn+1/2:)/n + %Kﬂ

For f,+1 we take here f,11 = f(th+1,yn + At K3) (although other choices
could have been possible), so that the scheme is:

At
K]- = f(tna)’n)7 K2 = f(tn+1/2,yn + 7K1)
At

—K:
2 2))

At
Y1 = Yo+ o (Ki+2K2 +2Ks + Ky) n=0,1,- -

Ks = f(tn+1/2’yn + Ky = f(t,,+1,y,, + At K3)
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Explicit Runge-Kutta

The family of explicit Runge-Kutta methods is a generalisation of the RK4
scheme above:

S
Yogiven  yni1=y,+At> bKi, n=01,-- (7)
i=1
where
i—1

Ki = f(tn+ Gt yn+ At Y a;K;)
j=1
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Explicit Runge-Kutta

The family of explicit Runge-Kutta methods is a generalisation of the RK4
scheme above:

S
Yogiven  yni1=y,+At> bKi, n=01,-- (7)
i=1

where
i—1

Ki = f(tn+ Gt yn+ At Y a;K;)
j=1

To specify a particular method one needs to provide the integer s (the
number of stages), and the coefficients aj;, b;, ¢c;. The matrix [aj] is called
Runge-Kutta matrix, while the b; and ¢; are called weights and nodes,
respectively. These coefficients are usually arranged in the Butcher tableau
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Butcher tableau

G | a2:1
C3 | a31 a32
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Consistency conditions

For consistency the coefficients must verify algebraic conditions;

a RK scheme is consistent iff Y7 ; b = 1.
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Consistency conditions

For consistency the coefficients must verify algebraic conditions;

a RK scheme is consistent iff Y7 ; b = 1.

(This condition is always verified since the b; are the weights of the
quadrature formula used, which has to be exact at least on constants).

] 4859



Consistency conditions

For consistency the coefficients must verify algebraic conditions;

a RK scheme is consistent iff Y7 ; b = 1.

(This condition is always verified since the b; are the weights of the
quadrature formula used, which has to be exact at least on constants).

For higher order of consistency, other relations must be satisfied. For
instance, for a 2 stage explicit RK to have order 2 we need, together with
b1 + by =1, also bycy = 1/2 (check!)

] 4859



Accuracy and stages of RK ** NOT FOR THE EXAM **

Theorem 2

An explicit s-stages Runge-Kutta method cannot have order of accuracy p
greater than s. Moreover, there are no known explicit s-stages RK
methods with order p = s for s > 5.
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Theorem 2

An explicit s-stages Runge-Kutta method cannot have order of accuracy p
greater than s. Moreover, there are no known explicit s-stages RK
methods with order p = s for s > 5.

orderp|1 2 3 4 5 6 7 8

1 2 3 46 7 9 11

Smin
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Accuracy and stages of RK ** NOT FOR THE EXAM **

Theorem 2

An explicit s-stages Runge-Kutta method cannot have order of accuracy p
greater than s. Moreover, there are no known explicit s-stages RK
methods with order p = s for s > 5.

orderp|1 2 3 4 5 6 7 8

Smin |1 2 3 4 6 7 9 11

RK methods are very successful and widely used in the codes for their
ductility: the time step can easily be modified from one interval to another
if needed, the initial value yg is all what is needed to start the method,
and they have high accuracy.
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A first multistep method

Let us start with an example. Let tg, t1,--- ,ty = T be a set of equally

o T — ¢ , .
spaced points in [tg, T], and let At = TO be the time step (this time
the points must be equally spaced).
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A first multistep method

Let us start with an example. Let tg, t1,--- ,ty = T be a set of equally

o T — ¢ , .
spaced points in [tg, T], and let At = TO be the time step (this time
the points must be equally spaced).

We want to construct an explicit scheme of order 2 going back two steps:

Yn+1 =Yn+ At(flf(tm)/n) + 57[(1'”71,)/”71)),” =12,
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A first multistep method

Let us start with an example. Let tg, t1,--- ,ty = T be a set of equally

o T — ¢ , .
spaced points in [tg, T], and let At = TO be the time step (this time
the points must be equally spaced).

We want to construct an explicit scheme of order 2 going back two steps:

Yn+1 =Yn+ At(flf(tm)/n) + 57[(1'”71,)/”71)),” =12,

This requires values at time t,_1 = to + (n — 1)At as well as at time t,.
Therefore the initial value ygp is not enough to start the procedure and we
need to compute y; with a 1-step method. Then we have to find o and 3
such that the scheme has order 2.

. s37/50



Choosing the parameters in a multistep scheme....

The starting point is the same as for 1-step methods:

rthyl

Y(tner) — y(tn) = /

th

J()dt = /tt F(ty()de. (%)
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Choosing the parameters in a multistep scheme....

The starting point is the same as for 1-step methods:

th

Wews) vl = [ V(ae= [ e ()

The function f is then approximated by its Lagrange interpolant
polynomial of degree < 1 with respect to the nodes t,_1 and t,:

t—ty 1 ty—t
f(t, y(t)) = My(t) := t—it_lf(t”’y”) + t_il__lf(tn—lv)/n—l)
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Choosing the parameters in a multistep scheme....

The starting point is the same as for 1-step methods:

rthyl

Y(tner) — y(tn) = /

"t
y(d= [ ey ()
tl7 tﬂ
The function f is then approximated by its Lagrange interpolant
polynomial of degree < 1 with respect to the nodes t,_1 and t,:
t—th-1

th—t
F(tn, yn) + ———
th — th—1 ( ny)/n) th — th—1

F(t, y(t)) = Mi(t):

f(tn—17 Yn—l)
Consequently,

thi1 tht1 3 1
/ f(t,y(t))dt ~ / Ni(t)dt = 54t f(tn, yn) — 54t f(tn-1,¥n-1)
th [
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Choosing the parameters in a multistep scheme....

The starting point is the same as for 1-step methods:

rthyl

Y(tner) — y(tn) = /

"t
y(d= [ ey ()
tl7 tﬂ
The function f is then approximated by its Lagrange interpolant
polynomial of degree < 1 with respect to the nodes t,_1 and t,:
t—th-1

f(tay(t)) = nl(t) = 7f(tn7)/n) + t, —t

——f(ty— _
th — th—1 th — th—1 (n LY 1)

Consequently,

thi1 tht1 3 1
/ f(t,y(t))dt ~ / Ni(t)dt = 54t f(tn, yn) — 54t f(tn-1,¥n-1)
th [

The order accuracy is 2: if f € P1, then f =T1; and f f is computed
exactly. On the other hand, f € P; implies y € P».
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Integral of 1y
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Generalization

With the same approach we can design schemes that use values computed
at p previous steps and are p-accurate:
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Generalization
With the same approach we can design schemes that use values computed
at p previous steps and are p-accurate:

on each interval [t,, t,11] the function f is replaced by its Lagrange

interpolant polynomial (of degree < p — 1) with respect to the p points
tny th—1, " s thy1—p:
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Generalization
With the same approach we can design schemes that use values computed
at p previous steps and are p-accurate:

on each interval [t,, t,11] the function f is replaced by its Lagrange

interpolant polynomial (of degree < p — 1) with respect to the p points
tny th—1, " s thy1—p:

f(t,y(t)) ~MNp_1(t) with My_1 € Pp_1 verifying
I_Ipfl(tn) = f(tm)/n)a
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npfl(thrlfp) = f(thrl*Pv Yn+lfp)'
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Generalization

With the same approach we can design schemes that use values computed
at p previous steps and are p-accurate:

on each interval [t,, t,11] the function f is replaced by its Lagrange

interpolant polynomial (of degree < p — 1) with respect to the p points
tny th—1, " s thy1—p:

f(t,y(t)) ~MNp_1(t) with My_1 € Pp_1 verifying
I_Ipfl(tn) = f(tm)/n)a
I_Ipfl(tnfl) - f(tnfla}/nfl)v

npfl(thrlfp) = f(thrl*Pv Yn+lfp)'

The t:"“ Mp—1(t)dt is then computed exactly; to complete the p-step
scheme we will need to compute p — 1 “initial values” y1,y>,--- ,yp—1 in
addition to yp (for instance with a 1-step method).
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Adams-Bashforth schemes

The resulting scheme will be:
Yo given, yi,¥2, - ,Y¥p—1 to be computed
Yntl = Yn + At(clfn +oofp 14+ + cpf,,+1_p>, (8)
n=p—1,p,p+1,---

where At cy, At cp,--- are the integrals of the characteristic Lagrange
polynomials, and f, = f(ts, yn), fa—1 = f(tn—1, ¥n—1) and so on.
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Adams-Bashforth schemes

The resulting scheme will be:

Yo given, yi,¥2, - ,Y¥p—1 to be computed
Yn+l = Yn + At<C1 fo+cofp1 4+ + Cpfn+1—p>7 (8)
n=p—1pp+1,---
where At cy, At cp,--- are the integrals of the characteristic Lagrange
polynomials, and f, = f(ts, yn), fa—1 = f(tn—1, ¥n—1) and so on.

The multistep methods obtained in this way are “Adams-Bashforth’’
methods: they are explicit, p-accurate. In Table 1 below the coefficients
of the first four schemes.
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Adams-Bashforth schemes ** NOT FOR THE EXAM **

C1 (&) C3 Cy
p=1 1
p=2 3/2 —1/2

p=3|23/12 —16/12 5/12

p=4|55/24 —59/24 37/24 —9/24

Table: First Adams-Bashforth schemes of order p
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Adams-Moulton

Note: A similar construction gives implicit methods, called
“Adams-Moulton. Compared with (8) they have an extra term cofpy1 at
the new time level. Properly chosen, that adds one extra order of accuracy
(as it did for the Crank-Nicolson scheme).

lsee the last part of these slides for the definition
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Adams-Moulton

Note: A similar construction gives implicit methods, called
“Adams-Moulton. Compared with (8) they have an extra term cofpy1 at
the new time level. Properly chosen, that adds one extra order of accuracy
(as it did for the Crank-Nicolson scheme).

c 1e)) c3 cs | A-stability® | order
p=20 1 yes At
p=1]1/2 1/2 yes At?
p=2|5/12 8/12 —1/12 no At3
p=3|9/24 19/24 -5/24 1/24 no At

Table: First four Adams-Moulton schemes: order p+1 ** NOT FOR THE EXAM
*%

lsee the last part of these slides for the definition
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Consistency of multistep meth.s ** NOT FOR EXAM **

As we have already seen, consistency amounts to impose that the local
truncation error is zero when the exact solution of (1) is a polynomial of

degree up to 2: hence we must require that 7, = 0 when the solution of
(1)is 1,t,t2.
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Consistency of multistep meth.s ** NOT FOR EXAM **

As we have already seen, consistency amounts to impose that the local
truncation error is zero when the exact solution of (1) is a polynomial of
degree up to 2: hence we must require that 7, = 0 when the solution of
(1)is 1,t,t2.

r = Hw)=y(ta)

oy(t) _ (af(tn,y(tn)) + /3f(tn,1,y(tn,1))) n=12, .
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Consistency of multistep meth.s ** NOT FOR EXAM **

As we have already seen, consistency amounts to impose that the local
truncation error is zero when the exact solution of (1) is a polynomial of
degree up to 2: hence we must require that 7, = 0 when the solution of
(1) is 1,t, t2.

Th = }/(tn+1)7y(t")

S (af (tr,y(8) + BF(tr 1 (8 1)) n=1,2, -
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Consistency of multistep meth.s ** NOT FOR EXAM **

As we have already seen, consistency amounts to impose that the local
truncation error is zero when the exact solution of (1) is a polynomial of
degree up to 2: hence we must require that 7, = 0 when the solution of
(1) is 1,t, t%.

7o = Wtne1)—y(tn)

A — (@f (ta, y () + BF(ta-1, ¥ (tn-1))) n=1,2,---

1-1
Wheny(t):17y/:O:fa:>Tn:Tt:0;

the1 — th
When y(t) = t.y' =1 = f, =7 = "5 (a4 ) =0,
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As we have already seen, consistency amounts to impose that the local
truncation error is zero when the exact solution of (1) is a polynomial of
degree up to 2: hence we must require that 7, = 0 when the solution of
(1) is 1,t, t%.

7o = Wtne1)—y(tn)

A — (@f (ta, y () + BF(ta-1, ¥ (tn-1))) n=1,2,---

1-1
Wheny(t):17y/:O:fa:>Tn:Tt:0;

the1 — th
When y(t) = t.y' =1 = f, =7 = "5 (a4 ) =0,

—a+pf=1=—=0=1—0;
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Consistency of multistep meth.s ** NOT FOR EXAM **

As we have already seen, consistency amounts to impose that the local
truncation error is zero when the exact solution of (1) is a polynomial of
degree up to 2: hence we must require that 7, = 0 when the solution of
(1) is 1,t, t%.

ry = W X0 (af (b, y () + BF(ta1,y(801))) M =12,
1-1
When y(t):l,y’:O:f,:>Tn:W:0;

t — t
Wheny(t):tvy/:1:f7:>7”:%_(a+/8):0;

—oa+f=1=p=1—-q;

2, — t2
When y(t) = tz,y/ =2t=f,— 1, = % - (2atn + 257:'n—1)
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Consistency of multistep meth.s ** NOT FOR EXAM **

As we have already seen, consistency amounts to impose that the local
truncation error is zero when the exact solution of (1) is a polynomial of

degree up to 2: hence we must require that 7, = 0 when the solution of
(1) is 1,t, t%.

7y = M) (af (. y(6)) + B (tr-1.y (1)) =12,
When y(t) =1,y =0=f,— _1-l,,

y =Ly =U=r, Th = At =0V,

t — t
When }/(t):t,y/:]_: f,= 7o = %—(a—i—ﬁ):o;
—atf=1—=f=1-0o
1.'2 t2

When y(t) = £,y = 2t = f,= 7 = "2 (202, + 251, 1)

=tht1+th — (atn ﬁtn 1)—0
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Consistency of multistep meth.s ** NOT FOR EXAM **

As we have already seen, consistency amounts to impose that the local
truncation error is zero when the exact solution of (1) is a polynomial of

degree up to 2: hence we must require that 7, = 0 when the solution of
(1) is 1,t, t%.

7y = M) (af (. y(6)) + B (tr-1.y (1)) =12,
When y(t) =1,y =0=f,— _1-l,,
y =Ly =U=r, Th = At =0V,
thy1r — t
Wheny(t):t,y/:]_:f7:>7'n:%_(CV—I—/B):O;
—a+B=1=pf=1-o
1.'2 —t2
When y(t) = t?y' =2t = f, = 7, = 2L

Tn - (2atn + 2Btn—l)
= thy1 + tnp — 2(aty + Btp—1) =0

tha1 + ¢
— atp + Bta_1 = %
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Consistency of multistep meth.s ** NOT FOR EXAM **

b=1—«a, at,+ Lty 1= t”*éﬂ
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Consistency of multistep meth.s ** NOT FOR EXAM **

B=1—a, at,+ Bthy_1= t”*éﬁ
Inserting 5 =1 — « in the second equation we have

th + tn+1 - 2tn—l
2
nAt 4+ (n+1)At —2(n—1)At  3At
2 2

oty — th—1) =
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Consistency of multistep meth.s ** NOT FOR EXAM **

b=1—«a, at,+ Lty 1= t”*éﬂ

Inserting 5 =1 — « in the second equation we have

th + tn—|—1 - 2tn—l
2
nAt 4+ (n+1)At —2(n—1)At  3At
2 2

oty — th—1) =

1
Therefore we obtain o = g and 8 = —5 The 2-step scheme is then

Yo given, y; to be computed

3 1
Yn+1 = Yn + At<§f(tn/)/n) - Ef(tn—hyn—l)), n= 1727 e
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Consistency of multistep meth.s ** NOT FOR EXAM **

b=1—«a, at,+ Lty 1= t”*éﬂ

Inserting 5 =1 — « in the second equation we have

th + tn—|—1 - 2tn—l
2
nAt 4+ (n+1)At —2(n—1)At  3At
2 2

oty — th—1) =

1
Therefore we obtain o = g and 8 = —5 The 2-step scheme is then

Yo given, y; to be computed

3 1
Yn+1 = Yn + At<§f(tn/)/n) - Ef(tn—hyn—l)), n= 1727 e

By construction the scheme is consistent of order 2. Being explicit, it will
not be A-stable, only conditionally A-stable.
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More schemes ** NOT FOR THE EXAM **

Another way of constructing explicit methods with a good accuracy is to

choose an implicit scheme, and make it explicit with a very simple and
successful trick:

59 /59



More schemes ** NOT FOR THE EXAM **

Another way of constructing explicit methods with a good accuracy is to

choose an implicit scheme, and make it explicit with a very simple and
successful trick:

@ P: use the explicit formula to predict a new y,
e E: use yy ; to evaluate f = f(tni1, Y5, 1)

e C: use f ; in the implicit formula to correct the new yj 11

59 /59



More schemes ** NOT FOR THE EXAM **

Another way of constructing explicit methods with a good accuracy is to
choose an implicit scheme, and make it explicit with a very simple and
successful trick:

@ P: use the explicit formula to predict a new y,

e E: use yy ; to evaluate f = f(tni1, Y5, 1)

e C: use f ; in the implicit formula to correct the new yj 11
This is the predictor-corrector method (see Heun method). The stability

is much improved if there is another E step to evaluate f,1 with the
corrected yp11. So PECE is the basic sequence
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More schemes ** NOT FOR THE EXAM **

Another way of constructing explicit methods with a good accuracy is to
choose an implicit scheme, and make it explicit with a very simple and
successful trick:

@ P: use the explicit formula to predict a new y,
e E: use yy ; to evaluate f = f(tni1, Y5, 1)

e C: use f ; in the implicit formula to correct the new yj 11

This is the predictor-corrector method (see Heun method). The stability
is much improved if there is another E step to evaluate f,1 with the
corrected yp11. So PECE is the basic sequence

continue the correction repeating the CE steps until y,+1 no longer
changes: it has reached its final value for the implicit formula. Often two
or three corrections are enough, and this is faster than using Newton's
method in solving a single step of the implicit method.
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