Eigenvalues and eigenvectors

Let Ac R™" 1f 0#£ v € C" and A € C satisfy
Av = Av

then X is called eigenvalue, and v is called eigenvector.

Given a matrix, we want to approximate its eigenvalues and eigenvectors.

Some applications:
@ Structural engineering (natural frequency, heartquakes )
o Electromagnetics (resonance cavity)

@ Google's Pagerank algorithm
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The characteristic polynomial

The eigenvalues of a matrix are the roots of the characteristic
polynomial
p(\) :==det(AM —A)=0

However, computing the roots of a polynomial is a very ill-conditioned
problem! We cannot use this approach to compute the eigenvalues.
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Eigenvalues and eigenvectors

Algorithms that compute the eigenvalues/eigenvectors of a matrix are
divided into two categories:

© Methods that compute all the eigenvalues/eigenvectors at once.

@ Methods that compute only a few (possibly one)
eigenvalues/eigenvectors.

The methods are also different whether the matrix is symmetric or not. In
this lesson we will discuss methods of type 2.
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Diagonalizable matrices

Definition
We say that a matrix A € C"*" is diagonalizable if there exists a non
singular matrix U and a diagonal matrix D such that U"1AU = D.

The diagonal element of D are the eignevalue of A and the column u; of U
is an eigenvector of A relative to the eigenvalue D; ;.

Since a scalar multiple of an eigenvector is still an eigenvector, we can
choose U such that ||uj|o=1fori=1,...,n.

Finally, we observe that if A is diagonalizable, since U is non singular, then
the vectors {u1, ..., u,} form a basis of C".

From now on, we assume that the eigenvalues are numbered in decreasing
order (in module), i.e.

Ml > [l > o> Al
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Eigenvalues/eigenvectors of a symmetric matrix

Theorem

All the eigenvalues of a real symmetric matrix are real. Moreover, there
exists a basis of eigenvectors vy, ..., up, i.e.

Au; = \ju;

that are orthonormal, i.e.

(ui, uj) = 0
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The power method

We want to approximate the eigenvalue of A that is largest in module.

vo = some vector with ||vpl|| = 1.
fork=1,2 ...
1 = A apply A
v = w/ |lw|l normalize
Lk = (vk)H Avy Reyleigh quotient
end |
Theorem

Let A € C™" be a diagonalizable matrix. Assume |\1]| > |A2| and

Vo = >.iq ajuj, with ag # 0. Then there exists C > 0, independent of k,
such that

k
, where v, =

A2

~ Ak
Vi =l < € |5 A% vl

al)\lf

V.
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Proof

We expand v on the eigenvector basis {u, ...,

i=1,...,n

n
Vo = E Qiuj,
i=1
It holds

n
k k
Vo = E a;)\,- uj
i=1

Hence, we can write

un} choosen s.t. ||ui|]| =1 for
with a3 # 0
and b= Ao
T ARl

= AkV() z (% )\,‘ k
i =t e (%) v

At this point, it holds

Vi — will, =

i—

n

)\.k




So, we obtain

n

Vi — wnll, <)

i=2

k_C&k
= )\1 ,

a;j

k
<(n—1)- m
(n )‘ax(1

i=2,...,n

ﬁ
A1

where we have defined C = (n — 1) - maxj=2__n (

ai A2
a1 )\1

). Since C does not
o

depend on k, this concludes the proof.

The previous theorem implies that the sequence {vi} converges to the
eigenvector uy. Since Vi is a scalar multiple of vy, they have the same
direction and this direction converges to the direction of u;. As a result,
for k that goes to +o00 the vector vi tends to have the same direction of
uy,. Thus vi tends to be an eigenvector relaltive to Aj.

Remark

if [A\2] < |A1]| the convergence will be fast. On the other hand, if Ay =~ A\;
the convergence will be slow.
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