
Conjugate Gradient Method: Cost and Convergence

Also for the Conjugate Gradient Method the dominant computational cost
is given by the matrix-vector product with A. Hence the cost is roughly
2n2 FLOPs per iteration.

Theorem 1

The Conjugate Gradient method converges in at most n iterations for all
initial guess x (0). Moreover it holds:

∥∥∥x − x (k)
∥∥∥
A
≤ 2

(√
κ2 (A)− 1√
κ2 (A) + 1

)k ∥∥∥x − x (0)
∥∥∥
A

where ∥v∥A =
√
vTAv is the A−norm.

November 6, 2023 1 / 16



Note that when A is SPD it holds

κ2 (A) = ∥A∥
∥∥A−1

∥∥ =
λmax (A)

λmin (A)

It follows that convergence is fast if λmax (A) ≈ λmin (A) (i.e. A is
well-conditioned), or in other words if the eigenvalues are clustered. On
the other hand, it might be slow if λmax (A) ≫ λmin (A) (i.e. A is
ill-conditioned).

November 6, 2023 2 / 16



Preconditioners

To speedup the convergence, we can use a preconditioner. In this case, the original
linear system Ax = b with the equivalent one

P−1Ax = P−1b

where P is a nonsingular matrix called preconditioner.

A good preconditioner has two features:

An iterative method applied to the new system should converge in less iterations
than for the original system. This typically means that the eigenvalues of P−1A
should be clustered (in the case of CG, this means λmax(P

−1A) ≈ λmin(P
−1A)).

At each iteration of an iterative method we need to compute a matrix-vector
product with the system matrix. In the preconditioned case, this is done in two
steps

v −→ Av −→ P−1 (Av)

Thus, computing matrix-vector products with P−1 (or equivalently solving a linear
system with P) should be fast. Note that we never need to compute the matrix
P−1A explicitly.

November 6, 2023 3 / 16



Preconditioners

Hence a good preconditioner P should be as similar as possible to A,
while being easy to invert:

Let us consider two extreme cases: P = In and P = A

- If P = A, P−1A = In and any iterative method would converge in just
1 iteration (note that λmax(P

−1A) = λmin(P
−1A) = 1). On the other

hand, applying P−1 is as difficult as solving the original system.

- If P = In, then applying P−1 has no cost. On the other hand
P−1A = A, so there is no reduction in the number od iterations.

A good preconditioner should find a balance between these two
extremes.

November 6, 2023 4 / 16



Preconditioning for CG

In general, the problem of finding a good preconditioner is very
problem-specific.

Some black-box preconditioners:

- Jacobi: P = diag(A).

- Symmetric Gauss-Seidel: P = L∗diag(A)
−1LT∗ where L∗ =tril(A).

November 6, 2023 5 / 16



Sparse Matrices

“A matrix is sparse if many of its coefficients are zero. The interest in
sparsity arises because its exploitation can lead to enormous computational
savings and because many large matrix problems that occur in practice are
sparse.”

- Page 1, Direct Methods for Sparse Matrices, 2nd Edition, 2017.

The sparsity of an n × n matrix A is

nnz(A)

n2

where nnz(A) = # of nonzero entries in A. A matrix is sparse if its
sparsity is ≪ 1. A matrix that is not sparse is dense.

November 6, 2023 6 / 16



Sparse matrices

Sparse matrices are extremely common in engineering and computer
science. Some examples:

- Network theory (e.g. social networks).
- Data analysis and machine learning.
- Discretization of differential equations.
- ...

Sparse matrices represent problems with possibly a large of number of
variables, but where each variable “interacts” directly with few other
variables (local interactions).

November 6, 2023 7 / 16



Formats of sparse matrices
To save memory, it is convenient to store only the nonzero entries of
a sparse matrix. There are several data structure that allow this.

Compressed Sparse Column (CSC). The matrix A is specified by three
arrays: val, row ind, col ptr, nrows.

- val stores the nonzero entries of A, ordered from from top to bottom
and left to right.

- row ind stores the row indices of the nonzero entries of A.

- col ptr[i] stores the index of the element in val that begins the first
non-empty column starting from the i-th column.

- nrows stores the number of rows.
- ncols stores the number of cols.

This is the format used by Matlab.

Example:

A =


4 0 0 0
7 0 0 0
0 0 3 0
0 0 8 2


val =

[
4 7 3 8 2

]
row ind =

[
1 2 3 4 4

]
col ptr =

[
1 3 3 5

]
nrows = 4, ncols = 4

November 6, 2023 8 / 16



Sparsity and direct solvers

We can take advantage of sparsity in Gaussian elimination,
performing only the operations that are necessary (e.g. only the
nonzero entries below a pivot are eliminated, and when summing two
rows only the nonzero entries are summed). This allows to beat the
O(n3) cost for dense matrices.

This works particularly well in case of banded matrices (the nonzero
are concentrated in a narrow “band” around the diagonal). In this
case, a system can be solved in O(n) operations.

November 6, 2023 9 / 16



Example of a sparse matrix

A from 1D Poisson problem on [0, 1] (discretized with FEM/FD, h = 0.02):
sparsity pattern of A sparsity pattern of U

November 6, 2023 10 / 16



Fill-in

In general, the factor U (and L) can have much more nonzero entries than
A. This phenomenon, known as fill-in significantly increases time and
memory consumption, and represents the main drawback of direct solvers
for sparse systems.

November 6, 2023 11 / 16



Example of fill-in

We consider a matrix A generated by a Finite Element Method for solving
a 2D Poisson problem on the unit circle (meshsize h = 0.05).

sparsity pattern of A sparsity pattern of U

memory(A) ≈ 1 MB memory(U) ≈ 242 MB

November 6, 2023 12 / 16



Orderings
The level of fill-in is often sensitive to the ordering of the variables

Example:

A =


x x x x x
x x
x x
x x
x x

 =⇒ U =


x x x x x

x x x x
x x x

x x
x


A is sparse but U is completely dense.

But if we re-order rows and columns from last to first:

A =


x x

x x
x x

x x
x x x x x

 =⇒ U =


x x

x x
x x

x x
x


In this case, there is no fill-in.

November 6, 2023 13 / 16



Sparse matrices and iterative solvers

Recall that at each iteration of an iterative method we have to
compute a matrix-vector product

v −→ Av

If A is sparse, only the nonzero entries of A are involved in the
computation:

(Av)i =
n∑

j=1

aijvj =
n∑

j s.t. aij ̸=0

aijvj

The cost of a matrix-vector product is then 2nnz(A), versus 2n2 for
dense matrices.

Iterative solvers do not suffer from fill-in. In particular, the main
memory consumption is just the storing of A. Hence iterative
methods typically require much less memory than direct methods.

November 6, 2023 14 / 16



Summary on Linear Systems

Let us summarize the methods available for solving Ax = b, with
A ∈ Rn×n non singular.

Direct Methods

Methods Requirements on A Cost

GEM / LU 1det(Ai ) ̸= 0, i = 1, . . . , n ∼ 2/3 n3 FLOPs

GEM / LU + Pivoting none ∼ 2/3 n3 FLOPs

1Ai is the matrix obtained considering only the first i rows and the first i columns of
A. This condition is automatically satisfied if A is diagonally dominant or if A is SPD.

November 6, 2023 15 / 16



Iterative Methods (∼ 2n2 FLOPs for each iteration)

Methods Requirements on A
Sufficient conditions
for convergence

Jacobi Aii ̸= 0, i = 1, . . . , n A diagonally dominant

Gauss-Seidel Aii ̸= 0, i = 1, . . . , n
A diagonally dominant

or A SPD

Steepest Descent
Method

A SPD always ensured

Conjugate Gradient
Method

A SPD
always ensured

in less than n iterations

November 6, 2023 16 / 16


