An approach for symmetric positive definite matrices

We now assume that the system matrix is symmetric and positive definite
(SPD), and discuss a different iterative approach.

Recall the problem we want to solve: given b € R”, and A € R" x R”, we
look for x* € R" solution of

Ax* = b (1)

Since A is SPD, we can define a scalar product associated with
A: (Ax,y) = yTAx. If Ais also positive definite, then

(Ax,x) >0 Vx#0.

Then we can introduce the functional F : R" — R defined as:

F(v) = %(Az, v)—(bv) VveR" (2)
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Theorem 1

If A€ R" x R" is SPD, problem (1) has a unique solution, and is
equivalent to the following minimum problem for the functional defined in
(2):
find u € R" such that
n (3)
F(u) < F(v) Vv € R

(that is, (3) has a unique solution u € R", and u = x*).

e N TR T



Proof.

Since A is positive definite, problem (1) has a unique solution
(det(A) # 0). Now, F is a quadratic functional (hence, differentiable), and

_8_,___
ovq

OF
VF(v)= |dw | =Av—b H(F)=A (H(F) = Hessian matrix)

OF
| OVp |

Since A is positive definite, the matrix H(F) has positive eigenvalues (and
real because A is symmetric). Hence, F is strictly convex, that is, it has a
unique minimum. Let u € R” be the point of minimum. As such, it verifies

Since the solution of (1) is unique, u = x*. O
v,
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Descent Methods

Given the equivalence between the linear system (1) and the minimum
problem (3), we look for x* as minimum point for F(x).

Starting from an initial guess x(®) (any), we want to construct a sequence
x(8) converging to x* in the following way:

x©given. Then, for k =1,2,--- set  x 1) = x(0) 4 o p(¥)

° E(k) are directions of descent,

e (v are numbers that tell us how much to descent along B(k).
They have to be chosen to guarantee descent, that is, to guarantee that

F(x* 1)) < F(x)) vk,
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Descent methods
The optimal value of o, can be computed by imposing

aiF(x +apky =0

which guarantees maximum descent of F along the descent direction p(¥). Indeed,

F(x 4 aph)y

(A(X + apy, x0) +ap(k)) _ (b7 (k) +ap<k>)

7 (Apm,p(k)) o (A9 -5, pW) 4 (%AXW b X(k))

With respect to the variable «, this function a quadratic polynomial, its graph is a parabola and
its minimum occurs at the stationary point:

7;:()( +ap) = o (Ap(k),p(k)> + (Ax(k) — b, p(k)> -0

(b— Ax(® plh) (k) pk))

o = optimal a = (Ap(®) | p(k) - (Apth), p(k))
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Steepest Descent Method (or Gradient Method)
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Steepest Descent Method (or Gradient Method)

p(k) = direction of steepest descent = —EF(K(")) = b — Ax(K) = (k)

This is also seen from the from the Taylor expansion:
F( +ap®) = F(x) + (ap™) TV F(x®) + O(flap|?)
Thus F(x*t)) < F(x) if pX) = —VF(x) and a > 0 is small enough:

Fx*) = F(x) — af VF () |? + O(a?)
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Pseudocode for Steepest Descent Method

Steepest Descent Method

Input: A € R™" SPD, b e R", x(O € R", tol € R, maxiter € N
r® = p— Ax(©)
for k=1,2,..., maxiter:
y = Ar(k=1)
;k_l _ (L(k—l)’ﬁ(k—l)) / (Z7£(k—1))
x(K) = x(k=1) 4 o 1 r(k=1)
r®) = p— Ax) = (7D — a1y
If Stopping criteria are satisfied exit the loop
end
Output: x(¥)

v

Like for all iterative methods, the dominant computational cost is given by
the matrix-vector product with A. Hence the cost is roughly 2n?> FLOPs
per iteration.
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Convergence of Steepest Descent Method

Theorem 2

The Steepest Descent method converges for all initial guess x(©).
Moreover it holds:

Nk
b=l < () b,

where ||v||, = VvT Av is the A—norm.

Convergence is guaranteed, but can be very slow if A is ill-conditioned.
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Summary and extensions of gradient methods...

We have our functional F(v) := 3(Av,v) — (b, v) to minimize and use
x(H1) = x(0) 0 p®) | where pk) = —VF(x(K)) = b — Ax(K). Possible
alternatives are:
e to simplify the calculation of p(¥) = —VF(x(K), e.g. in the
stochastic gradient descent method, used in machine learning: we

save time per each iteration at the expenses of an increased number
of iterations to reach a given accuracy;

e to find better descent directions p(k), such that the convergence at a
given tolerance requires less iterations, as in the conjugate gradient
method

I T T



Steepest descents vs. Conjugate Gradient
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Conjugate Gradient method

with B(O) = —VF(x(9), at each iteration k take B(k) in the plane
span{r(), pk=D1  that is:

where () is chosen so that B(k) is A—orthogonal to B(k_l) i.e.

(ptk)) T Aplk=1) = 0 (orthogonal in the scalar product associated with A).
It can be proven that

(B(k))TABU):O, =1, k-1

This approach is faster than the steepest descent. Actually, the method
converges in less than n iterations (n=dimension of the system), so it can
be considered a direct method.

Matlab function: x =pcg(A, b, ...)
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Pseudocode for Conjugate Gradient Method

Conjugate Gradient Method

Input: A € R™" SPD, b e R", x(O € R”, tol € RT, maxiter € N
r® = p— Ax(©)
p(O) = r( )
for Kk =1,2,..., maxiter:
Ap(k 1)
it = (p D, D) ] (1, p)
x(K) = x(k=1) 4 Oék—1p(k_1)
10 = p— Ax9) = (kD) — oy
Bt = (1,09) (1, o)
p(k) =r_ 3, 1p(k -1)
If Stopping criteria are satisfied exit the loop
end
Output: x(K)
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