
LU factorization

LU factorisation, consists in looking for two matrices L lower triangular,
and U upper triangular, both non-singular, such that

LU = A (1)

If we find these matrices, the original system Ax = b splits into two
triangular systems easy to solve:

Ax = b → L(Ux) = b →
{

Ly = b solved forward

Ux = y solved backward

Mathematically equivalent to GEM: matrix U is the same, b̃ = L−1b.

October 9, 2024 1 / 18

LU: unicity of the factors

The factorization LU = A is unique?
l11 0 · · · 0
l21 l22 · · · 0
...

...
...

ln1 ln2 · · · lnn


︸ ︷︷ ︸

L


u11 u12 · · · u1n
0 u22 · · · u2n
...

...
...

0 · · · unn


︸ ︷︷ ︸

U

=


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann


︸ ︷︷ ︸

A

The unknowns are the coefficients lij of L, which are

1 + 2 + ·+ n =
n(n + 1)

2
, and the coefficients uij of U, also

n(n + 1)

2
, for

a total of n2 + n unknowns.
We only have n2 equations (as many as the number of coefficients of A),
so we need to fix n unknowns. Usually, the diagonal coefficients of L are
set equal to 1: lii = 1. If you do so...

October 9, 2024 2 / 18

How to compute L and U

Let us introduce Atomic Lower Triangular matrix L(k) defined as

L(k) =



1 0
. . .

1

−lk+1,k

. . .
...

0 −ln,k︸ ︷︷ ︸
k-th column

1


The basic version of GEM can be rewritten in terms of matrix
multiplications as:

A(1) = A, A(2) = L(1)A, . . . , A(n) = L(n−1)L(n−2) · · · L(1)A = U,

where U is upper triangular.

October 9, 2024 3 / 18

We observe that

L(k)
−1

=



1 0
. . .

1

lk+1,k

. . .
...

0 ln,k︸︷︷︸
k-th column

1


, is still lower triangular

Let us define L as:

L :=
(
L(n−1) · · · L(1)

)−1
= L(1)

−1 · · · L(n−1)−1
, that is still lower triangular

and contains the coefficients li ,k computed in GEM:

L =


1 0 · · · 0
l2,1 1 · · · 0
...

...
...

ln,1 ln,2 · · · 1


Recalling that L(n−1)L(n−2) · · · L(1)A = U, we obtain A = LU.

October 9, 2024 4 / 18

GEM vs LU (pseudocodes)

GEM

Input: A ∈ Rn×n and b ∈ Rn

for k = 1, . . . , n − 1
for i = k + 1, . . . , n

li ,k = ai ,k/ak,k
ai ,k:n = ai ,k:n − li ,kak,k:n
bi = bi − li ,kbk

end
end
set U = A, then solve Ux = b with back
substitution

we can store the li ,k in a matrix:

L =


? ? · · · ?
l2,1 ? · · · ?
...

...
...

ln,1 ln,2 · · · ?


that can be completed as a lower
triangular matrix

L =


1 0 · · · 0
l2,1 1 · · · 0
...

...
...

ln,1 ln,2 · · · 1


the loops on the left replace b by
L−1b (see the “equivalent forward
substitution” algoritms): b ← L−1b
similarly A← L−1A, which is called
U and is an upper triangular matrix:

L−1A = U ⇒ A = LU

then the system
October 9, 2024 5 / 18

GEM vs LU (pseudocodes)
GEM

Input: A ∈ Rn×n and b ∈ Rn

for k = 1, . . . , n − 1
for i = k + 1, . . . , n

li ,k = ai ,k/ak,k
ai ,k:n = ai ,k:n − li ,kak,k:n
bi = bi − li ,kbk

end
end
set U = A, then solve Ux = b with
backward substitution

LU

Input: A ∈ Rn×n

L = In ∈ Rn×n

for k = 1, . . . , n − 1
for i = k + 1, . . . , n

li ,k = ai ,k/ak,k
ai ,k:n = ai ,k:n − li ,kak,k:n

end
end
Set U = A and output: U and L

Homework

Write the LU algorithm in MATLAB

October 9, 2024 6 / 18

Permutation matrices
P ∈ Rn×n is a permutation matrix if it has only one entry 1 on each row
and each column, while the remaining entries are all 0. P produces
permutation of rows when multiplying on the left and of columns when
multiplying on the right. For example:

P =


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

 , A =


–––r1–––
–––r2–––
–––r3–––
–––r4–––

 =

 | | | |
c1 c2 c3 c4
| | | |



PA =


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1



–––r1–––
–––r2–––
–––r3–––
–––r4–––

 =


–––r3–––
–––r1–––
–––r2–––
–––r4–––



AP =

 | | | |
c1 c2 c3 c4
| | | |



0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

 =

 | | | |
c2 c3 c1 c4
| | | |



Remark 1

The product of permutation matrices is still a permutation matrix
October 9, 2024 7 / 18

GEM: possible troubles and remedy

The condition det(A) ̸= 0 is not sufficient to guarantee that the

elimination procedure will be successful. For example A =

[
0 1
1 0

]
To avoid this the remedy is the “pivoting” algorithm:
• first step: before eliminating the first column, look for the coefficient of
the column biggest in absolute value, the so-called “pivot”; if r is the row
where the pivot is found, exchange the first and the r th row.
• second step: before eliminating the second column, look for the
coefficient of the column biggest in absolute value, starting from the
second row; if r is the row where the pivot is found, exchange the second
and the r th row.
...
• step j : before eliminating the column j , look for the pivot in this
column, from the diagonal coefficient down to the last row. If the pivot is
found in the row r , exchange the rows j and r .

October 9, 2024 8 / 18

This is the pivoting procedure on the rows, which amounts to multiply at
the left the matrix A by a permutation matrix P. (An analogous procedure
can be applied on the columns, or globally).

Lemma 1

Let A ∈ Rn×n be a non singular matrix. Then, at each step of GEM, the
“pivot” is not null.

Remark 2

If A is non singular, Lemma 1 ensures that GEM with pivoting can be
successfully completed.

The pivoting procedure corresponds then to solve, instead of the original
system Ax = b, the system

PAx = Pb (2)

October 9, 2024 9 / 18

GEM pseudocode with pivoting

Input as before: A ∈ Rn×n and b ∈ Rn

for k = 1, . . . , n − 1
select j ≥ k that maximise |ajk |
aj ,k:n ←→ ak,k:n
bj ←→ bk
for i = k + 1, . . . , n

li ,k = ai ,k/ak,k
ai ,k:n = ai ,k:n − li ,kak,k:n
bi = bi − li ,kbk

end
end
define U = A, b̃ = b, then solve Ux = b̃ with backward substitution

remark: we do not need to define U and b̃, it is just to be consistent
with the notation of the previous slides

October 9, 2024 10 / 18

LU-continued

GEM and LU have the same computational cost: 2
3n

3

In GEM, the coefficients lik are discarded after application to the
right-hand side b, while in the LU factorisation they are stored in the
matrix L.
If we have to solve a single linear system, GEM is preferable (less memory
storage).
If we have to solve many systems with the same matrix and different
right-hand sides LU is preferable (the heavy cost is payed only once).

Pivoting is applied also to the LU factorization to ensure that the
factorisation is succesful

PA = LU =⇒ PAx = Pb → L(Ux) = Pb →
{

Ly = Pb

Ux = y

The Matlab function that computes L and U is lu(., .).

October 9, 2024 11 / 18

LU with pivoting... how to compute L, U and P
Not fot the exam

GEM with pivoting can be rewritten in terms of matrix multiplications as:

A(1) = A, A(2) = L(1)P(1)A, . . . ,

A(n) = L(n−1)P(n−1)L(n−2)P(n−2) · · · L(2)P(2)L(1)P(1)A = U,

where U is upper triangular.

Given two generic matrices M,N, it holds MN ̸= NM, but if P(j) is a
permutation matrix that switches i-th and j-th rows, then, for i ≥ j > k :

P(j)L(k) = L̃(k)P(j),

where L̃(k) is obtained from L(k) by switching L
(k)
i ,k and L

(k)
j ,k .

L̃(k) is still atomic lower triangular, thus L̃(k)
−1

is obtained from L̃(k) by
changing signs of the off-diagonal coefficients.

October 9, 2024 12 / 18

U =L(n−1)P(n−1)L(n−2)P(n−2)L(n−3) · · · L(1)P(1)A

=L(n−1)L̃(n−2)P(n−1)P(n−2)L(n−3)P(n−3) · · · L(1)P(1)A

=L(n−1)L̃(n−2)˜̃L(n−3)

P(n−1)P(n−2)P(n−3) · · · L(1)P(1)A

=

(
L(n−1)L̃(n−2)˜̃L(n−3)˜̃̃

L

(n−4)

· · ·

)
P(n−1)P(n−2)P(n−3) · · ·P(1)A

Defining

L =

(
L(n−1)L̃(n−2)˜̃L(n−3)˜̃̃

L

(n−4)

· · ·

)−1

P =P(n−1)P(n−2)P(n−3) · · ·P(1)

we get
LU = PA.

October 9, 2024 13 / 18

LU with pivoting (pseudocode)
Not fot the exam

Input as before: A ∈ Rn×n

L = In ∈ Rn×n

P = In ∈ Rn×n

for k = 1, . . . , n − 1
select j ≥ k that maximise |ajk |
aj,k:n ←→ ak,k:n
pj,: ←→ pk,:

if k ≥ 2
l j,1:k−1 ←→ lk,1:k−1

end
for i = k + 1, . . . , n

l i,k = ai,k/ak,k
ai,k:n = ai,k:n − l i,kak,k:n

end
end
define U = A and output: U, L and P

October 9, 2024 14 / 18

LU versus GEM

If one needs to compute the inverse of a matrix, LU is the cheapest way.
Indeed, recalling the definition, the inverse of a matrix A is the matrix A−1

solution of
AA−1 = I


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann



c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
...

cn1︸︷︷︸ cn2︸︷︷︸ · · · cnn︸︷︷︸

=


1 0 · · · 0
0 1 · · · 0
...

...
...

0︸︷︷︸ 0︸︷︷︸ · · · 1︸︷︷︸


c(1) c(2) · · · c(n) e1 e2 · · · en

October 9, 2024 15 / 18


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann



c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
...

cn1︸︷︷︸ cn2︸︷︷︸ · · · cnn︸︷︷︸

=


1 0 · · · 0
0 1 · · · 0
...

...
...

0︸︷︷︸ 0︸︷︷︸ · · · 1︸︷︷︸


c(1) c(2) · · · c(n) e1 e2 · · · en

Hence, each column c(i) of A−1 is the solution of

Ac(i) = e(i), i = 1, 2, · · · , n

with e(i) = (0, 0, · · · , 1, · · · , 0). The factorisation can be done once and
for all at the cost of O(2n3/3) operations; for each column we have to
solve 2 triangular systems (2n2 operations) so that the total cost is of the

order of
2

3
n3 + n × 2n2 =

8

3
n3.

In case of pivoting, we solve PAc(i) = Pe(i) = P:,i , i = 1, 2, · · · , n.

October 9, 2024 16 / 18

Computation of the determinant

We can use the LU factorisation to compute the determinant of a matrix.
Indeed, if A = LU, thanks to the Binet theorem we have

det(A) = det(L)det(U) =
n∏

i=1

lii

n∏
i=1

uii =
n∏

i=1

uii

Thus the cost to compute the determinant is the same of the LU
factorisation.
In the case of pivoting, PA = LU and then

det(A) =
det(L) det(U)

det(P)
=

det(U)

det(P)

It turns out that det(P) = (−1)δ where δ = # of row exchanges in the LU
factorisation.
Matlab function: det(·)

October 9, 2024 17 / 18

Cholesky factorization

If A is symmetric (A = AT) and positive definite (positive eigenvalues) a
variant of LU is due to Cholesky: there exists a non-singular lower
triangular matrix L such that

LLT = A

Costs: approximately ∼ n3

3
(half the cost of LU, using the symmetry of A).

Matlab function: chol(.,.)

October 9, 2024 18 / 18

