
Checking stability for Implicit Euler

Applying Implicit Euler method to the model problem gives
(yn+1 = yn +∆tf (tn+1, yn+1) with f (tn+1, yn+1) = ayn+1)

yn+1 = yn + a∆tyn+1 n = 0, 1, =⇒ yn+1 =
1

1− a∆t
yn = G yn.

We have |G | < 1 ⇐⇒ |1− a∆t| > 1 and this happens as soon as a∆t is
outside the unit circle centered in 1.
If Re(a) < 0, then |G | < 1 and we say that Implicit Euler is A-stable: the
A-stability condition can be written as

If Re a < 0 then |G | < 1 =: A-stability

However, for Implicit Euler method, the A-stability region is too large: if
a∆t is outside the unit circle centered in 1, yn decays even if the exact
solution do not.

1 / 34

Stability for Implicit Euler: the complex setting

Z =
abt Efi

2

.

\

-

The scheme is A-stable:

|G | < 1 ⇔ |1− a∆t| > 1 ⇔ a∆t is outside the circle above ⇐ Re(a) < 0

2 / 34

Checking stability for Crank-Nicolson
Crank-Nicolson gives

yn+1 = yn+
a∆t

2
(yn+yn+1) n = 0, 1, =⇒ yn+1 =

1 + a∆t
2

1− a∆t
2

yn = G yn.

The scheme is A-stable:

|G | < 1 ⇔ |2 + a∆t| < |2− a∆t| ⇔ Re(a)∆t < 0 ⇔ Re(a) < 0

Z =
abt Efi

H k
.

a a
x sty

in

- 2
.

1 O 2
.

\

-

Heun method, being explicit, is not A-stable, only conditionally A-stable

like Explicit Euler. In fact, G = 1 + a∆t + (a∆t)2

2 , and the condition

|G | < 1 is satisfied if ∆t <
(
2/|a|

)
.

3 / 34

Checking stability for Heun

Heun method is not A-stable, only conditionally A-stable like Explicit

Euler. In fact, G = 1 + a∆t + (a∆t)2

2 , and the condition |G | < 1 is

satisfied if ∆t <
(
2/|a|

)
.

2- =
abt Efi

- 2
-

1

.

°

\

-

4 / 34

Stability regions: comparison

For each of these methods we have defined the stability region in the
complex plane as

A := {a∆t ∈ C : lim
n→∞

|yn| = 0} ≡ {a∆t ∈ C : |G | < 1}

and compared it with the stability region of the continuous problem: the
half plane Re a < 0.

For Explicit Euler A = {a∆t ∈ C : |1 + a∆t| < 1} is a circle with center
(−1, 0) and radius 1 (too small!).

For Implicit Euler A = {a∆t ∈ C : |1− a∆t| > 1} is the whole plane
minus a circle with center (1, 0) and radius 1 (too big!)

For Crank-Nicolson the region is the left-half plane, exactly as for the true
solution (the best you can have).

5 / 34

Stability regions

A-stability regions for EE (the region inside the red circle), Heun (the
region inside the blue ellipse), IE (green, the region outside the circle with
center (1, 0) and radius 1

6 / 34

Conclusions (for the four basic methods)

In general, explicit schemes are never A-stable, only conditionally A-stable,
meaning that to satisfy the A-stability property they need to proceed by
small time steps. Some implicit schemes are A-stable.

For the method we have considered:

Method Consistency Stability

Explicit Euler yes, order 1 conditionally A-stable

Implicit Euler yes, order 1 A-stable

Crank-Nicolson yes, order 2 A-stable

Heun yes, order 2 conditionally A-stable

7 / 34

Generalizing Heun idea: Runge-Kutta methods

The celebrated Runge-Kutta methods are compound 1-step methods.

The basic idea is very simple: choose a high precision quadrature formula
for

∫
f on each interval [tn, tn+1]. Then, since the values at the

quadrature nodes are not known, we predict them someway (and this is
where the detailed description could become quite complicated).

The simplest explicit RK is Heun: the starting point is the trapezoidal
rule for

∫ tn+1

tn
f , and since we want to go explicit, instead of the value yn+1

(that would be needed in the trapezoidal rule) we use yn +∆t f (tn, yn),
that is, the value predicted by Explicit Euler.

8 / 34

Runge-Kutta methods

Heun scheme:
y0 given

y∗n+1 = yn +∆t f (tn, yn)

yn+1 = yn +
∆t

2

(
f (tn, yn) + f (tn+1, y

∗
n+1)

)
n = 0, 1, · · · ,N − 1

Denoting by K1 and K2 the values of f at the two nodes tn and
tn+1 = tn +∆t we can rewrite Heun method as:

K1 = f (tn, yn), K2 = f (tn +∆t, yn +∆t K1)

yn+1 = yn +
∆t

2

(
K1 + K2

)
n = 0, 1, · · ·

9 / 34

Runge-Kutta methods
The more famous version of Runge-Kutta, RK4, is compounded four
times, it is based on Simpson rule, and achieves order p = 4. Let us see
how it is obtained.

Simpson rule uses on the interval [tn, tn+1] three nodes tn,
tn+1/2 = tn +∆t/2, and tn+1 = tn +∆t, and would give∫ tn+1

tn

f (t, y(t))dt ≃ ∆t

6

(
fn + 4fn+1/2 + fn+1

)
.

(fn = f (tn, yn), fn+1/2 = f (tn+1/2, yn+1/2), fn+1 = f (tn+1, yn+1))
The value fn is known, so we set K1 = f (tn, yn); then write 4fn+1/2 as

2f
(1)
n+1/2 + 2f

(2)
n+1/2, and we choose two different “predictions” for yn+1/2:

f
(1)
n+1/2 = f (tn+1/2, yn +

∆t

2
K1) =: K2

f
(2)
n+1/2 = f (tn+1/2, yn +

∆t

2
K2) =: K3

10 / 34

RK4

We had
K1 = f (tn, yn), K2 = f

(1)
n+1/2 = f (tn+1/2, yn +

∆t
2 K1),

K3 = f
(2)
n+1/2 = f (tn+1/2, yn +

∆t
2 K2)

For fn+1 we take here fn+1 = f (tn+1, yn +∆t K3) (although other choices
could have been possible), so that the scheme is:

K1 = f (tn, yn), K2 = f (tn+1/2, yn +
∆t

2
K1)

K3 = f (tn+1/2, yn +
∆t

2
K2), K4 = f (tn+1, yn +∆t K3)

yn+1 = yn +
∆t

6

(
K1 + 2K2 + 2K3 + K4

)
n = 0, 1, · · ·

11 / 34

Explicit Runge-Kutta

The family of explicit Runge-Kutta methods is a generalisation of the RK4
scheme above:

y0 given yn+1 = yn +∆t
s∑

i=1

biKi , n = 0, 1, · · · (1)

where

Ki = f (tn + ci∆t, yn +∆t
i−1∑
j=1

aijKj)

To specify a particular method one needs to provide the integer s (the
number of stages), and the coefficients aij , bi , ci . The matrix [aij] is called
Runge-Kutta matrix, while the bi and ci are called weights and nodes,
respectively. These coefficients are usually arranged in the Butcher tableau

12 / 34

Butcher tableau

0
c2 a2,1
c3 a3,1 a3,2
...

...
. . .

cs as,1 as,2 · · · as,s−1

b1 b2 · · · bs−1 bs

13 / 34

Consistency conditions

For consistency the coefficients must verify algebraic conditions;

a RK scheme is consistent iff
∑s

i=1 bi = 1.

(This condition is always verified since the bi are the weights of the
quadrature formula used, which has to be exact at least on constants).

For higher order of consistency, other relations must be satisfied. For
instance, for a 2 stage explicit RK to have order 2 we need, together with
b1 + b2 = 1, also b2c2 = 1/2 (check!)

14 / 34

Accuracy and stages of RK ** NOT FOR THE EXAM **

Theorem 1

An explicit s-stages Runge-Kutta method cannot have order of accuracy p
greater than s. Moreover, there are no known explicit s-stages RK
methods with order p = s for s ≥ 5.

order p 1 2 3 4 5 6 7 8

smin 1 2 3 4 6 7 9 11

RK methods are very successful and widely used in the codes for their
ductility: the time step can easily be modified from one interval to another
if needed, the initial value y0 is all what is needed to start the method,
and they have high accuracy.

15 / 34

A first multistep method

Let us start with an example. Let t0, t1, · · · , tN = T be a set of equally

spaced points in [t0,T], and let ∆t =
T − t0

N
be the time step (this time

the points must be equally spaced).

We want to construct an explicit scheme of order 2 going back two steps:

yn+1 = yn +∆t
(
αf (tn, yn) + βf (tn−1, yn−1)

)
, n = 1, 2, · · ·

This requires values at time tn−1 = t0 + (n − 1)∆t as well as at time tn.
Therefore the initial value y0 is not enough to start the procedure and we
need to compute y1 with a 1-step method. Then we have to find α and β
such that the scheme has order 2.

16 / 34

Choosing the parameters in a multistep scheme....
The starting point is the same as for 1-step methods:

y(tn+1)− y(tn) =

∫ tn+1

tn

y ′(t)dt =

∫ tn+1

tn

f (t, y(t))dt. (∗)

The function f is then approximated by its Lagrange interpolant
polynomial of degree ≤ 1 with respect to the nodes tn−1 and tn:

f (t, y(t)) ≃ Π1(t) :=
t − tn−1

tn − tn−1
f (tn, yn) +

tn − t

tn − tn−1
f (tn−1, yn−1)

Consequently,∫ tn+1

tn

f (t, y(t))dt ∼
∫ tn+1

tn

Π1(t)dt =
3

2
∆t f (tn, yn)−

1

2
∆t f (tn−1, yn−1)

The order accuracy is 2: if f ∈ P1, then f ≡ Π1 and
∫
f is computed

exactly. On the other hand, f ∈ P1 implies y ∈ P2.
17 / 34

Integral of Π1

n+1

y=
t tn−1

tn
_

t n−1
y=

t tn

t tn n−1

_

_

1

t tnn−1
t

y

t

18 / 34

Generalization

With the same approach we can design schemes that use values computed
at p previous steps and are p-accurate:

on each interval [tn, tn+1] the function f is replaced by its Lagrange
interpolant polynomial (of degree ≤ p − 1) with respect to the p points
tn, tn−1, · · · , tn+1−p:

f (t, y(t)) ≃ Πp−1(t) with Πp−1 ∈ Pp−1 verifying

Πp−1(tn) = f (tn, yn),

Πp−1(tn−1) = f (tn−1, yn−1),

· · ·
Πp−1(tn+1−p) = f (tn+1−p, yn+1−p).

The
∫ tn+1

tn
Πp−1(t)dt is then computed exactly; to complete the p-step

scheme we will need to compute p − 1 “initial values” y1, y2, · · · , yp−1 in
addition to y0 (for instance with a 1-step method).

19 / 34

Adams-Bashforth schemes

The resulting scheme will be:
y0 given, y1, y2, · · · , yp−1 to be computed

yn+1 = yn +∆t
(
c1fn + c2fn−1 + · · ·+ cpfn+1−p

)
,

n = p − 1, p, p + 1, · · ·

(2)

where ∆t c1,∆t c2, · · · are the integrals of the characteristic Lagrange
polynomials, and fn = f (tn, yn), fn−1 = f (tn−1, yn−1) and so on.

The multistep methods obtained in this way are “Adams-Bashforth’’
methods: they are explicit, p-accurate. In Table 1 below the coefficients
of the first four schemes.

20 / 34

Adams-Bashforth schemes ** NOT FOR THE EXAM **

c1 c2 c3 c4
p = 1 1

p = 2 3/2 −1/2

p = 3 23/12 −16/12 5/12

p = 4 55/24 −59/24 37/24 −9/24

Table: First Adams-Bashforth schemes of order p

21 / 34

Adams-Moulton

Note: A similar construction gives implicit methods, called
“Adams-Moulton. Compared with (2) they have an extra term c0fn+1 at
the new time level. Properly chosen, that adds one extra order of accuracy
(as it did for the Crank-Nicolson scheme).

c1 c2 c3 c4 A-stability order

p = 0 1 yes ∆t

p = 1 1/2 1/2 yes ∆t2

p = 2 5/12 8/12 −1/12 no ∆t3

p = 3 9/24 19/24 −5/24 1/24 no ∆t4

Table: First four Adams-Moulton schemes: order p+1 ** NOT FOR THE EXAM
**

22 / 34

Consistency of multistep meth.s ** NOT FOR EXAM **
As we have already seen when checking consistency of Heun method, this
amounts to impose that the local truncation error is zero when the exact
solution of the Cauchy Problem is a polynomial of degree up to 2: hence
we must require that τn ≡ 0 when the solution of the Cauchy Problem is
1, t, t2.

τn = y(tn+1)−y(tn)
∆t −

(
αf (tn, y(tn)) + βf (tn−1, y(tn−1))

)
n = 1, 2, · · ·

When y(t) = 1, y ′ = 0 = f ,=⇒ τn =
1− 1

∆t
= 0;

When y(t) = t, y ′ = 1 = f ,=⇒ τn =
tn+1 − tn

∆t
− (α+ β) = 0;

=⇒ α+ β = 1 =⇒ β = 1− α;

When y(t) = t2, y ′ = 2t = f ,=⇒ τn =
t2n+1 − t2n

∆t
− (2αtn + 2βtn−1)

= tn+1 + tn − 2(αtn + βtn−1) = 0

=⇒ αtn + βtn−1 =
tn+1 + tn

2
.

23 / 34

Consistency of multistep meth.s ** NOT FOR EXAM **

β = 1− α, αtn + βtn−1 =
tn+1+tn

2

Inserting β = 1− α in the second equation we have

α(tn − tn−1) =
tn + tn+1 − 2tn−1

2

=
n∆t + (n + 1)∆t − 2(n − 1)∆t

2
=

3∆t

2
.

Therefore we obtain α =
3

2
and β = −1

2
. The 2-step scheme is theny0 given, y1 to be computed

yn+1 = yn +∆t
(3
2
f (tn, yn)−

1

2
f (tn−1, yn−1)

)
, n = 1, 2, · · ·

By construction the scheme is consistent of order 2. Being explicit, it will
not be A-stable, only conditionally A-stable.

24 / 34

More schemes ** NOT FOR THE EXAM **

Another way of constructing explicit methods with a good accuracy is to
choose an implicit scheme, and make it explicit with a very simple and
successful trick:

P: use the explicit formula to predict a new y∗n+1

E: use y∗n+1 to evaluate f ∗n+1 = f (tn+1, y
∗
n+1)

C: use f ∗n+1 in the implicit formula to correct the new yn+1

This is the predictor-corrector method (see Heun method). The stability
is much improved if there is another E step to evaluate fn+1 with the
corrected yn+1. So PECE is the basic sequence
continue the correction repeating the CE steps until yn+1 no longer
changes: it has reached its final value for the implicit formula. Often two
or three corrections are enough, and this is faster than using Newton’s
method in solving a single step of the implicit method.

25 / 34

Systems of Ode’s

It is much more common to have systems of differential equations than a
single equation. The unknown is now a vector Y (t), and so is the
right-hand side F (t,Y (t)). The problem is: find Y (t) solution of{

Y ′(t) = F (t,Y (t)) t ∈ [t0,T]

Y (t0) = Y (0).
(3)

with

Y (t) =


y1(t)
y2(t)
...

yN(t)

 , F (t,Y (t)) =


f1(t,Y (t))
f2(t,Y (t))

...
fN(t,Y (t))

 , Y (0) =


y
(0)
1

y
(0)
2
...

y
(0)
N



26 / 34

Systems of Ode’s

The numerical schemes used for a single equation apply directly to systems
of Ode’s.
For instance, the two Euler methods become:

(EE)

{
Y (0) given

Y (n+1) = Y (n) +∆tF (tn,Y
(n)) n = 0, 1, · · ·

Ex: N = 2 equations, and 2 unknowns y1, y2:
y
(0)
1 , y

(0)
2 given

y
(n+1)
1 = y

(n)
1 +∆t f1(tn, y

(n)
1 , y

(n)
2) n = 0, 1, · · ·

y
(n+1)
2 = y

(n)
2 +∆t f2(tn, y

(n)
1 , y

(n)
2) n = 0, 1, · · ·

27 / 34

Systems of Ode’s

(IE)

{
Y (0) given

Y (n+1) = Y (n) +∆tF (tn+1,Y
(n+1)) n = 0, 1, · · ·

Ex: N = 2 equations, and 2 unknowns y1, y2:
y
(0)
1 , y

(0)
2 given

y
(n+1)
1 = y

(n)
1 +∆t f1(tn+1, y

(n+1)
1 , y

(n+1)
2) n = 0, 1, · · ·

y
(n+1)
2 = y

(n)
2 +∆t f2(tn+1, y

(n+1)
1 , y

(n+1)
2) n = 0, 1, · · ·

much more expensive now: at each step, to go from Y (n) to Y (n+1)

requires the solution of a non-linear system!

28 / 34

** NOT FOR THE EXAM **

Y (n+1) = Y (n) +∆tF (tn+1,Y
(n+1))

find X such that

G (X) := X −∆tF (tn+1,X)− Y (n) = 0,

and set Y (n+1) := X
Newton would give: 

X (0) given

JG[X (0)]δX = −G (X (0))

X (1) = X (0) + δX

X (0) =?? for example: X (0) = Y (n) +∆tF (tn,Y
(n)) (EE)

29 / 34

** NOT FOR THE EXAM **

Or you could use PECE with a few cycles of CE :

P : X (0) = Y (n) +∆tF (tn,Y
(n)) (EE)

E : F (0)(tn+1,X
(0))

C : X (1) = Y (n) +∆tF (0)(tn+1,X
(0))

E : F (1)(tn+1,X
(1))

C : X (2) = Y (n) +∆tF (1)(tn+1,X
(1))

E : F (2)(tn+1,X
(2))

Then set:

Y (n+1) = Y (n) +∆tF (2)(tn+1,X
(2))

30 / 34

Lack of A-stability ** NOT FOR THE EXAM **

For a single equation the lack of A-stability is not a major drawback: to
have a good accuracy small ∆t have to be used. Instead for systems it
could be more severe when the problem has different time scales.

Y ′(t) = AY (t)

the eigenvalues λj of the square matrix A take the place of the single
number a.

Explicit Euler would give

Y (n+1) = (I +∆t A)Y (n) ∀n =⇒ Y (n+1) = (I +∆t A)n+1Y (0)

The growth factor is now a matrix

G = (I +∆t A) with eigenvalues gj = 1 +∆t λj .

31 / 34

Lack of A-stability ** NOT FOR THE EXAM **

Suppose that both A and G are diagonalised. Then,

each component of the discrete solution grows like gn
j ,

each component of the continuous solution grows like eλj t .

The continuous solution is stable if all the λj are negative (or Reλj < 0):
hence eλj t → 0 for t → ∞.

The discrete solution is stable if all the |gj | < 1, so that gn
j → 0 for

n → ∞.

If the problem has different time scales we are in trouble...

Since ∆t is the same for all the components, its size is controlled by the
most negative eigenvalue, which corresponds to the fastest decay and dies
out first in the true solution.

32 / 34

Stiff systems ** NOT FOR THE EXAM **
When the matrix A has eigenvalues with very different magnitude, the
system is called stiff.

Let us see a simple example.

Y ′(t) =

[
−2 1
0 −100

]
Y (t) −→

y ′1(t) = −2y1(t) + y2(t)

y ′2(t) = −100y2(t)

solution: y1(t) ≃ e−2t , y2(t) ≃ e−100t .

If we use Explicit Euler method we need

∆t <
2

|λ1|
= 1 and ∆t <

2

|λ2|
=

1

50
.

Stability requires then ∆t < 1
50 even though it is e−2t that controls the

true solution: in fact, y2 decays like e−100t and dies out very fast, but its
presence forces us to proceed by small time steps even when it has virtually
disappeared and we are interested in following the e−2t component.

33 / 34

Matlab functions

Most commonly used Matlab functions:

Non stiff problems:

ode23 (low order RK), ode45 (medium order RK), ode113 (variable order)

Stiff: ode15s (low to medium order), ode23s (low order RK)

34 / 34

