
Newton’s method

For each iterate xk , the function f is approximated by its tangent in xk :

f (x) ≈ f (xk) + f ′(xk)(x − xk)

Then we impose that the right-hand side is 0 for x = xk+1. Thus,

xk+1 = xk −
f (xk)

f ′(xk)

More assumptions needed on f :

f must be differentiable, and f ′ must not vanish.

the initial guess x0 must be chosen well, otherwise the method might
fail

suitable stopping criteria have to be introduced to decide when to
stop the procedure (no intervals here.......).
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Example
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Newton’s method: Convergence theorem

Theorem

Let f ∈ C 2([a, b]) such that:

1 f (a)f (b) < 0 (∗)
2 f ′(x) ̸= 0 ∀x ∈ [a, b] (∗∗)
3 f ′′(x) ̸= 0 ∀x ∈ [a, b] (∗ ∗ ∗)

Let the initial guess x0 be a Fourier point (i.e., a point where f and f ′′

have the same sign). Then Newton sequence

xk+1 = xk −
f (xk)

f ′(xk)
k = 0, 1, 2, · · · (1)

converges to the unique α such that f (α) = 0. Moreover, the order of
convergence is 2, that is:

∃C > 0 : |xk+1 − α| ≤ C |xk − α|2. (2)
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Newton’s method: Proof of the Theorem

Proof

Since f is continuous and has opposite signs at the endpoints then the
equation f (x) = 0 has at least one solution, say α. Moreover condition
(**) implies that α is unique (f is monotone).
To prove convergence, let us assume for instance that f is as follows:
f (a) < 0, f (b) > 0, f ′ > 0, f ′′ > 0 (the other cases can be treated in a
similar way), so that the initial guess x0 is any point where f (x0) > 0. We
shall prove that Newton’s sequence {xn} is a monotonic decreasing
sequence bounded by below.

continue...
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continuation of the proof

Use and evaluate in α the Taylor expansion centered in x0, with Lagrange
remaindera:

0 = f (α) = f (x0) + (α− x0)f
′(x0) +

(α− x0)
2

2
f ′′(z)︸ ︷︷ ︸

>0

with z between α and x0. Thus it holds

f (x0) + (α− x0)f
′(x0) < 0 i.e. α < x0 −

f (x0)

f ′(x0)
= x1

Hence, α < x1 < x0, implying, in particular, that f (x1) > 0 so that x1 is
itself a Fourier point. Repeating the same argument as above we would
get α < x2 < x1, with f (x2) > 0.

asee
https://en.wikipedia.org/wiki/Taylor%27s theorem#Explicit formulas for the remainder
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continuation of the proof

Proceeding in this way we have

α < xk < xk−1 < . . . < x0

for all positive integer k .
Hence, {xn} being a monotonic decreasing sequence bounded by below, it
has a limit, that is,

∃ η such that lim
k→∞

xk = η.

Taking the limit in (1) for k → ∞ (and remembering that both f and f ′

are continuous, and f ′ is always ̸= 0), we have

lim
k→∞

(xk+1) = lim
k→∞

(
xk −

f (xk)

f ′(xk)

)
=⇒ η = η − f (η)

f ′(η)
=⇒ f (η) = 0

Then, η is a root of f (x) = 0, and since the root is unique, η ≡ α.
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continuation of the proof

It remains to prove (2). For this, use Taylor expansion centered in xk , with
Lagrange remainder

f (α) = f (xk) + (α− xk)f
′(xk) +

(α− xk)
2

2
f ′′(z), z between α and xk .

Now: f (α) = 0, f ′(x) is always ̸= 0 so we can divide by f ′(xk) and get

0 =
f (xk)

f ′(xk)
− xk︸ ︷︷ ︸

−xk+1

+α+
(α− xk)

2

2f ′(xk)
f ′′(z)

We have found

0 = α− xk+1 +
(α− xk)

2

2f ′(xk)
f ′′(z)
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end of the proof

that we re-write as

xk+1 − α =
(α− xk)

2

2f ′(xk)
f ′′(z).

Thus,

|xk+1 − α| = (α− xk)
2

2

|f ′′(z)|
|f ′(xk)|

≤ (α− xk)
2

2

max |f ′′(x)|
min |f ′(x)|

Therefore (2) holds with

C =
max |f ′′(x)|
2min |f ′(x)|

where max and min exist since both |f ′(x)| and |f ′′(x)| are continuous on
the closed interval, and observe that f ′(x) is always different from zero.
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Newton’s method: Practical use of the theorem

The practical use of the above Convergence theorem is not easy.
• Often difficult, if not impossible, to check that all the assumptions are
verified.
In practice, we interpret the Theorem as: if x0 is “close enough” to the
(unknown) root, the method converges, and converges fast.
• Suggestions: the graphics of the function (if available), and a few
bisection steps help in locating the root with a rough approximation. Then
choose x0 in order to start Newton’s method and obtain a much more
accurate evaluation of the root.

If α is a multiple root (f ′(α) = 0 ) the method is in troubles.
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Newton’s method: Stopping criteria 1

Unlike with bisection method, here there are no intervals that become
smaller and smaller, but just the sequence of iterates.
A reasonable criterion could be

test on the iterates: stop at the first iteration n such that

|xn − xn−1| ≤ Tol ,

and take xn as “root”.

This would work, unless the function is very steep in the vicinity of the
root (that is, if |f ′(α)| >> 1): the tangents being almost vertical, two
iterates might be very close to each other but not close enough to the root
to make f (xn) also small, and the risk is to stop when f (xn) is still big.
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Newton’s method: Stopping criteria 2

In this situation it would be better to use the

test on the residual: stop at the first iteration n such that

|f (xn)| ≤ Tol ,

and take xn as “root”.

In contrast to the previous criterion, this one would fail if the function is
very flat in the vicinity of the root (that is, if |f ′(α)| << 1). In this case
|f (xn)| could be small, but xn could still be far from the root.

What to do then??

Safer to use both criteria, and stop when both of them are verified.
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Newton’s method: Examples of choices of x0

f (x) = x3 − 5x2 + 9x − 45 in [3, 6] α = 5
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Bad x0: x0 = 3 ⇒ x1 = 9 outside [3, 6]
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Newton’s method: Examples of choices of x0

f (x) = x3 − 5x2 + 9x − 45 in [3, 6] α = 5
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Good x0: 3 iterations with Tol = 1.e − 3
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Newton’s method: Solution of nonlinear systems

We have to solve a system of N nonlinear equations:
f1(x1, x2, · · · , xN) = 0

f2(x1, x2, · · · , xN) = 0

...

fN(x1, x2, · · · , xN) = 0

or, in compact form,
F (x) = 0,

having set
x = (x1, x2, · · · , xN), F = (f1, f2, · · · , fN)
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Newton method

We mimic what done for a single equation f (x) = 0: starting from an
initial guess x0 we constructed a sequence by linearizing f at each point
and replacing it by its tangent, i.e., its Taylor polynomial of degree 1.

For systems we do the same:

starting from a point x (0) = (x
(0)
1 , x

(0)
2 , · · · , x (0)N ) we construct a sequence

{x (k)} by

linearising F at each point through its Taylor expansion of degree 1:

F (x) ≃ F (x (k)) + JF (x
(k))(x − x (k))

and then defining x (k+1) as the solution of

F (x (k)) + JF (x
(k))(x (k+1) − x (k)) = 0.
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JF (x
(k)) is the jacobian matrix of F evaluated at the point x (k):

JF (x) =



∂f1(x)

∂x1

∂f1(x)

∂x2
· · · · · · ∂f1(x)

∂xN

∂f2(x)

∂x1

∂f2(x)

∂x2
· · · · · · ∂f2(x)

∂xN
...
...

∂fN(x)

∂x1

∂fN(x)

∂x2
· · · · · · ∂fN(x)

∂xN


,

System F (x (k)) + JF (x
(k))(x (k+1) − x (k)) = 0 can obviously be written

as: xk+1 = x (k) − (JF (x
(k)))−1F (x (k)).

In the actual computation of xk+1 we do not compute the inverse matrix
(JF (x

(k)))−1, but we solve the system

JF (x
(k))xk+1 = JF (x

(k))x (k) − F (x (k)).
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Newton’s method: Algorithm

Given x (0) ∈ RN , for k = 0, 1, · · ·

solve JF (x
(k))xk+1 = JF (x

(k))x (k) − F (x (k)) by the following steps

• solve JF (x
(k))δ(k) = −F (x (k))

• set x (k+1) = x (k) + δ(k)

At each iteration k we have to solve a linear system with matrix JF (x
(k))

(that is the most expensive part of the algorithm).

Note that by introducing the unknown δ(k) we pay an extra sum
(x (k+1) = x (k) + δ(k)) but we save the (much more expensive)
matrix-vector multiplication JF (x

(k))x (k).
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Newton’s method: Stopping criteria

They are the same two criteria that we saw for scalar equations:

• test on the iterates: stop at iteration k such that

∥x (k) − x (k−1)∥ ≤ Tol

for some vector norm, and take x (k) as “root”.

• test on the residual: stop at iteration k such that

∥F (x (k))∥ ≤ Tol ,

and take x (k) as “root”.

Here too, it would be wise in practice to use both criteria, and stop when
both of them are satisfied.
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