
Methods for solving linear systems
Reminders on norms and scalar products of vectors. The application
‖ · ‖ : Rn → R is a norm if

1− ‖v‖ ≥ 0, ∀v ∈ Rn ‖v‖ = 0 if and only if v = 0;

2− ‖αv‖ = |α|‖v‖ ∀α ∈ R, ∀v ∈ Rn;

3− ‖v + w‖ ≤ ‖v‖+ ‖w‖, ∀v ,w ∈ Rn.

Examples of norms of vectors:

‖v‖22 =
n∑

i=1

(vi)
2 Euclidean norm

‖v‖∞ = max
1≤i≤n

|vi | max norm

‖v‖1 =
n∑

i=1

|vi | 1-norm

Being in finite dimension, they are all equivalent, with the equivalence
constants depending on the dimension n. Ex: ‖v‖∞ ≤ ‖v‖1 ≤ n‖v‖∞.

January 18, 2022 1 / 50

A scalar product is an application (·, ·) : Rn × Rn → R that verifies:

1− linearity: (αv + βw , z) = α(v , z) + β(w , z) ∀α, β ∈ R, ∀v ,w , z ∈ Rn;

2− (v ,w) = (w , v) ∀v ,w ∈ Rn;

3− (v , v) > 0 ∀v 6= 0 (that is, (v , v) ≥ 0, (v , v) = 0 iff v = 0).

To a scalar product we can associate a norm defined as

‖v‖2 = (v , v).

Example: (v ,w) =
n∑

i=1

viwi , =⇒ (v , v) =
n∑

i=1

vivi = ‖v‖22.

(in this case we can write (v ,w) = v · w or vTw for “column” vectors)

January 18, 2022 2 / 50

Theorem 1 (Cauchy-Schwarz inequality)

Given a scalar product (·, ·)∗ and associated norm ‖ · ‖∗, the following
inequality holds:

|(v ,w)∗| ≤ ‖v‖∗‖w‖∗ ∀v ,w ∈ Rn

Proof.

For t ∈ R, let tv + w ∈ Rn. Clearly, ‖tv + w‖∗ ≥ 0. Hence:

‖tv + w‖2∗ = t2‖v‖2∗ + 2t(v ,w)∗ + ‖w‖2∗ ≥ 0

The last expression is a non-negative convex parabola in t (No real roots,
or 2 coincident). Then the discriminant is non-positive

(v ,w)2∗ − ‖v‖2∗‖w‖2∗ ≤ 0

and the proof is concluded.

January 18, 2022 3 / 50

Reminders on matrices A ∈ Rn×n

A is symmetric if A = AT . The eigenvalues of a symmetric matrix are
real.

A symmetric matrix A is positive definite if

(Ax , x)2 > 0 ∀x ∈ Rn, x 6= 0, (Ax , x)2 = 0 iff x = 0

The eigenvalues of a positive definite matrix are positive.

if A is non singular, ATA is symmetric and positive definite

Proof of the last statment:
- ATA is always symmetric; indeed (ATA)T = AT (AT)T = ATA.
To prove that it is also positive definite we have to show that
(ATAx , x)2 > 0 ∀x ∈ Rn, x 6= 0, (ATAx , x)2 = 0 iff x = 0. We have:

(ATAx , x)2 = (Ax ,Ax)2 = ‖Ax‖22 ≥ 0, and ‖Ax‖22 = 0 iff Ax = 0

If A is non-singular (i.e., det(A) 6= 0), the system Ax = 0 has only the
solution x = 0, and this ends the proof.

January 18, 2022 4 / 50

Reminders on matrices A ∈ Rn×n

A is symmetric if A = AT . The eigenvalues of a symmetric matrix are
real.

A symmetric matrix A is positive definite if

(Ax , x)2 > 0 ∀x ∈ Rn, x 6= 0, (Ax , x)2 = 0 iff x = 0

The eigenvalues of a positive definite matrix are positive.

if A is non singular, ATA is symmetric and positive definite

Proof of the last statment:
- ATA is always symmetric; indeed (ATA)T = AT (AT)T = ATA.
To prove that it is also positive definite we have to show that
(ATAx , x)2 > 0 ∀x ∈ Rn, x 6= 0, (ATAx , x)2 = 0 iff x = 0. We have:

(ATAx , x)2 = (Ax ,Ax)2 = ‖Ax‖22 ≥ 0, and ‖Ax‖22 = 0 iff Ax = 0

If A is non-singular (i.e., det(A) 6= 0), the system Ax = 0 has only the
solution x = 0, and this ends the proof.

January 18, 2022 4 / 50

Reminders on matrices A ∈ Rn×n

A is symmetric if A = AT . The eigenvalues of a symmetric matrix are
real.

A symmetric matrix A is positive definite if

(Ax , x)2 > 0 ∀x ∈ Rn, x 6= 0, (Ax , x)2 = 0 iff x = 0

The eigenvalues of a positive definite matrix are positive.

if A is non singular, ATA is symmetric and positive definite

Proof of the last statment:
- ATA is always symmetric; indeed (ATA)T = AT (AT)T = ATA.
To prove that it is also positive definite we have to show that
(ATAx , x)2 > 0 ∀x ∈ Rn, x 6= 0, (ATAx , x)2 = 0 iff x = 0. We have:

(ATAx , x)2 = (Ax ,Ax)2 = ‖Ax‖22 ≥ 0, and ‖Ax‖22 = 0 iff Ax = 0

If A is non-singular (i.e., det(A) 6= 0), the system Ax = 0 has only the
solution x = 0, and this ends the proof.

January 18, 2022 4 / 50

Reminders on matrices A ∈ Rn×n

A is symmetric if A = AT . The eigenvalues of a symmetric matrix are
real.

A symmetric matrix A is positive definite if

(Ax , x)2 > 0 ∀x ∈ Rn, x 6= 0, (Ax , x)2 = 0 iff x = 0

The eigenvalues of a positive definite matrix are positive.

if A is non singular, ATA is symmetric and positive definite

Proof of the last statment:
- ATA is always symmetric; indeed (ATA)T = AT (AT)T = ATA.
To prove that it is also positive definite we have to show that
(ATAx , x)2 > 0 ∀x ∈ Rn, x 6= 0, (ATAx , x)2 = 0 iff x = 0. We have:

(ATAx , x)2 = (Ax ,Ax)2 = ‖Ax‖22 ≥ 0, and ‖Ax‖22 = 0 iff Ax = 0

If A is non-singular (i.e., det(A) 6= 0), the system Ax = 0 has only the
solution x = 0, and this ends the proof.

January 18, 2022 4 / 50

Norms of matrices

Norms of matrices are applications from Rm×n to R satisfying the same
properties as for vectors. Among the various norms of matrices we will
consider the norms associated to norms of vectors, called natural norms,
defined as:

|||A||| = sup
v 6=0

‖Av‖
‖v‖

It can be checked that this is indeed a norm, that moreover verifies:

‖Av‖ ≤ |||A||| ‖v‖, |||AB||| ≤ |||A||||||B|||.

January 18, 2022 5 / 50

Examples of natural norms (of square n × n matrices)

v ∈ R; ‖v‖∞ −→ |||A|||∞ = max
i=1,··· ,n

n∑
j=1

|aij |,

v ∈ R; ‖v‖1 −→ |||A|||1 = max
j=1,··· ,n

n∑
i=1

|aij |,

v ∈ R; ‖v‖2 −→ |||A|||2 =
√
|λmax(ATA)|.

If A is symmetric, |||A|||∞ = |||A|||1, and |||A|||2 = |λmax in abs val (A)|.
Indeed, if A = AT , then maxi λi (ATA) = maxi λi (A2) = (maxi λi (A))2.

The norm |||A|||2 is the spectral norm, since it depends on the spectrum of
A.

January 18, 2022 6 / 50

Solving linear systems

The problem: given b ∈ Rn, and A ∈ Rn × Rn, we look for x ∈ Rn

solution of
Ax = b (1)

Problem (1) has a unique solution if and only if the matrix A is
non-singular (or invertible), i.e., ∃A−1 such that A−1A = AA−1 = I ;
necessary and sufficient condition for A being invertible is that det(A) 6= 0.
Then the solution x is formally given by x = A−1b.

Beware: never invert a matrix unless really necessary, due to the costs, as
we shall se later on. (Solving a system with a general full matrix is also
expensive, but not nearly as expensive as matrix inversion).

January 18, 2022 7 / 50

Solving linear systems

The problem: given b ∈ Rn, and A ∈ Rn × Rn, we look for x ∈ Rn

solution of
Ax = b (1)

Problem (1) has a unique solution if and only if the matrix A is
non-singular (or invertible), i.e., ∃A−1 such that A−1A = AA−1 = I ;
necessary and sufficient condition for A being invertible is that det(A) 6= 0.
Then the solution x is formally given by x = A−1b.

Beware: never invert a matrix unless really necessary, due to the costs, as
we shall se later on. (Solving a system with a general full matrix is also
expensive, but not nearly as expensive as matrix inversion).

January 18, 2022 7 / 50

Solving linear systems

The problem: given b ∈ Rn, and A ∈ Rn × Rn, we look for x ∈ Rn

solution of
Ax = b (1)

Problem (1) has a unique solution if and only if the matrix A is
non-singular (or invertible), i.e., ∃A−1 such that A−1A = AA−1 = I ;
necessary and sufficient condition for A being invertible is that det(A) 6= 0.
Then the solution x is formally given by x = A−1b.

Beware: never invert a matrix unless really necessary, due to the costs, as
we shall se later on. (Solving a system with a general full matrix is also
expensive, but not nearly as expensive as matrix inversion).

January 18, 2022 7 / 50

Some example of linear systems

The simplest systems to deal with are diagonal systems:

Dx = b

D =


d11 0 · · · 0
0 d22 · · · 0

0 · · · . . . 0
0 · · · dnn

 −→ xi =
bi

dii
i = 1, 2, · · · , n

The cost in terms of number of operations is negligible, given by n
division.

January 18, 2022 8 / 50

Triangular matrices

Triangular matrices are also easy to handle. If A = L is lower triangular,
the system can be solved “forward”:

L =


l11 0 · · · 0
l21 l22 · · · 0
...

...
...

ln1 ln2 · · · lnn

 −→



x1 =
b1

l11

x2 =
b2 − l21x1

l22
...

xn =
bn −

∑n−1
j=1 lnjxj

lnn

Counting the operations: for x1 we have 1 product and 0 sums; for x2 2
products and 1 sum,, and for xn n products and n − 1 sums, that is,

1 + 2 + ·+ n =
n(n + 1)

2
products, plus 1 + 2 + · · ·+ n − 1 =

(n − 1)n

2
sums, for a total number of operations = n2.

January 18, 2022 9 / 50

A special case of lower triangular matrix (useful later...)
Assume L has only 1 on the diagonal, e.g., lii = 1:

L =


1 0 · · · 0

l21 1 · · · 0
...

...
...

ln1 ln2 · · · 1

 −→


x1 = b1

x2 = b2 − l21x1
...

xn = bn −
n−1∑
j=1

lnjxj

Then the following two algorithms, for solving Lx = b are equivalent:

forward substitution as above

Input: L ∈ Rn×n, lower t., and b ∈ Rn

for i = 2, . . . , n
for j = 1, . . . , i − 1

bi = bi − li ,jbj

end
end
the solution is in b, i.e., x ← b

equivalent to forward substitution

Input: L ∈ Rn×n, lower t., and b ∈ Rn

for k = 1, . . . , n − 1
for i = k + 1, . . . , n

bi = bi − li ,kbk

end
end
the solution is in b, i.e., x ← b

January 18, 2022 10 / 50

Triangular matrices

Upper triangular systems (if A = U is upper triangular) are also easy to
deal with, and can be solved “backward” with the same costs as lower
triangular systems:

U =


u11 u12 · · · u1n

0 u22 · · · u2n
...

...
...

0 · · · unn

 −→



xn =
bn

unn

xn−1 =
bn−1 − un−1nxn

un−1n−1
...

x1 =
b1 −

∑n
j=2 u1jxj

u11

Homework

Write the above algorithm in MATLAB

January 18, 2022 11 / 50

Costs for solving triangular systems

We saw that for solving the system we perform n2 operations.

To have an idea of the time necessary to solve a triangular system,
suppose that the number of equations is n = 100.000, and the computer
performance is a TERAFLOP = 1012FLOPS (floating-point operations per
second); the time in seconds is given by

t =
#operations

#flops
=

1010ops

1012flops
=

1

100
sec .

(pretty quick)

The next target of High Performance Computing is EXAFLOP
= 1018FLOPS

January 18, 2022 12 / 50

General matrices

For a general full matrix the cost can become extremely high if we do not
work properly.

For example, Cramer method is awfully expensive, even for small matrices:

xi =
det(Ai)

det(A)
, Ai has b in the ith column

the number of operations for computing the determinant of an n × n
matrix is of the order on n! (I mean factorial of n). We have to compute
n + 1 determinants, so the total number of operations is of the order of
(n + 1)!. Try to solve a 20× 20 system on a computer with power
1012flops: how much do you have to wait?

January 18, 2022 13 / 50

Numerical methods

There are two classes of methods for solving the linear system (1): direct
and iterative.

Direct methods: they give the exact solution (up to computer precision) in
a finite number of operations.

Iterative methods: starting from an initial guess x (0) they construct a
sequence {x (k)} such that

x = lim
k→∞

x (k).

January 18, 2022 14 / 50

Direct methods

The most important direct method is GEM (Gaussian elimination method).

With GEM, the original system (1) is transformed into an equivalent
system (i.e., having the same solution)

Ux = b̃ (∗)

with U upper triangular matrix. This is done in n − 1 steps where, at each
step, one column is eliminated, that is, all the coefficients of that column
below the diagonal are transformed into zeros. The cost for computing U

is of the order of
2

3
n3, see later... the cost for computing b̃ is of the order

of n2; the cost for solving the upper triangular system is n2, so that the

total cost is ∼ 2

3
n3 + 2n2 ∼ 2

3
n3.

January 18, 2022 15 / 50

GEM algorithm
A(1) := A, b(1) := b

A(1)x =


a
(1)
11 a

(1)
12 . . . a

(1)
1n

a
(1)
21 a

(1)
22 . . . a

(1)
2n

...
...

. . .
...

a
(1)
n1 a

(1)
n2 . . . a

(1)
nn




x1
x2
...

xn

 =


b
(1)
1

b
(1)
2
...

b
(1)
n

 = b(1)

We eliminate the first column:

A(2)x =


a
(1)
11 a

(1)
12 . . . a

(1)
1n

0 a
(2)
22 . . . a

(2)
2n

...
...

. . .
...

0 a
(2)
n2 . . . a

(2)
nn




x1
x2
...

xn

 =


b
(1)
1

b
(2)
2
...

b
(2)
n

 = b(2)

li1 = a
(1)
i1 /a

(1)
11 , a

(2)
ij = a

(1)
ij − li1a

(1)
1j , b

(2)
i = b

(1)
i − li1b

(1)
1

January 18, 2022 16 / 50

GEM algorithm
A(1) := A, b(1) := b

A(1)x =


a
(1)
11 a

(1)
12 . . . a

(1)
1n

a
(1)
21 a

(1)
22 . . . a

(1)
2n

...
...

. . .
...

a
(1)
n1 a

(1)
n2 . . . a

(1)
nn




x1
x2
...

xn

 =


b
(1)
1

b
(1)
2
...

b
(1)
n

 = b(1)

We eliminate the first column:

A(2)x =


a
(1)
11 a

(1)
12 . . . a

(1)
1n

0 a
(2)
22 . . . a

(2)
2n

...
...

. . .
...

0 a
(2)
n2 . . . a

(2)
nn




x1
x2
...

xn

 =


b
(1)
1

b
(2)
2
...

b
(2)
n

 = b(2)

li1 = a
(1)
i1 /a

(1)
11 , a

(2)
ij = a

(1)
ij − li1a

(1)
1j , b

(2)
i = b

(1)
i − li1b

(1)
1

January 18, 2022 16 / 50

GEM algorithm

We go on eliminating columns in the same way. At the k−th step:

A(k)x =



a
(1)
11 a

(1)
12 a

(1)
1n

0 a
(2)
22 a

(2)
2n

...
. . .

...

0 . . . 0 a
(k)
kk . . . a

(k)
kn

...
...

...
...

0 . . . 0 a
(k)
nk . . . a

(k)
nn





x1
x2
...

xk
...

xn


=



b
(1)
1

b
(2)
2
...

b
(k)
k
...

b
(k)
n


= b(k)

At the last step A(n)x = b(n) with U upper triangular,

=⇒ U := A(n), b̃ := b(n)

January 18, 2022 17 / 50

GEM algorithm

We go on eliminating columns in the same way. At the k−th step:

A(k)x =



a
(1)
11 a

(1)
12 a

(1)
1n

0 a
(2)
22 a

(2)
2n

...
. . .

...

0 . . . 0 a
(k)
kk . . . a

(k)
kn

...
...

...
...

0 . . . 0 a
(k)
nk . . . a

(k)
nn





x1
x2
...

xk
...

xn


=



b
(1)
1

b
(2)
2
...

b
(k)
k
...

b
(k)
n


= b(k)

At the last step A(n)x = b(n) with U upper triangular,

=⇒ U := A(n), b̃ := b(n)

January 18, 2022 17 / 50

GEM pseudocode

Input: A ∈ Rn×n and b ∈ Rn

for k = 1, . . . , n − 1
for i = k + 1, . . . , n

li ,k = ai ,k/ak,k
ai ,k:n = ai ,k:n − li ,kak,k:n
bi = bi − li ,kbk

end
end
define U = A, b̃ = b, then solve Ux = b̃ with back substitution

remark: we do not need to define U and b̃, it is just to be consistent
with the notation of the previous slides

Homework

Write the above algorithm in MATLAB

January 18, 2022 18 / 50

Possible troubles and remedy

The condition det(A) 6= 0 is not sufficient to guarantee that the

elimination procedure will be successful. For example A =

[
0 1
1 0

]

To avoid this the remedy is the “pivoting” algorithm:
• first step: before eliminating the first column, look for the coefficient of
the column biggest in absolute value, the so-called “pivot”; if r is the row
where the pivot is found, exchange the first and the r th row.
• second step: before eliminating the second column, look for the
coefficient of the column biggest in absolute value, starting from the
second row; if r is the row where the pivot is found, exchange the second
and the r th row.
...
• step j : before eliminating the column j , look for the pivot in this
column, from the diagonal coefficient down to the last row. If the pivot is
found in the row r , exchange the rows j and r .

January 18, 2022 19 / 50

Possible troubles and remedy

The condition det(A) 6= 0 is not sufficient to guarantee that the

elimination procedure will be successful. For example A =

[
0 1
1 0

]
To avoid this the remedy is the “pivoting” algorithm:
• first step: before eliminating the first column, look for the coefficient of
the column biggest in absolute value, the so-called “pivot”; if r is the row
where the pivot is found, exchange the first and the r th row.

• second step: before eliminating the second column, look for the
coefficient of the column biggest in absolute value, starting from the
second row; if r is the row where the pivot is found, exchange the second
and the r th row.
...
• step j : before eliminating the column j , look for the pivot in this
column, from the diagonal coefficient down to the last row. If the pivot is
found in the row r , exchange the rows j and r .

January 18, 2022 19 / 50

Possible troubles and remedy

The condition det(A) 6= 0 is not sufficient to guarantee that the

elimination procedure will be successful. For example A =

[
0 1
1 0

]
To avoid this the remedy is the “pivoting” algorithm:
• first step: before eliminating the first column, look for the coefficient of
the column biggest in absolute value, the so-called “pivot”; if r is the row
where the pivot is found, exchange the first and the r th row.
• second step: before eliminating the second column, look for the
coefficient of the column biggest in absolute value, starting from the
second row; if r is the row where the pivot is found, exchange the second
and the r th row.

...
• step j : before eliminating the column j , look for the pivot in this
column, from the diagonal coefficient down to the last row. If the pivot is
found in the row r , exchange the rows j and r .

January 18, 2022 19 / 50

Possible troubles and remedy

The condition det(A) 6= 0 is not sufficient to guarantee that the

elimination procedure will be successful. For example A =

[
0 1
1 0

]
To avoid this the remedy is the “pivoting” algorithm:
• first step: before eliminating the first column, look for the coefficient of
the column biggest in absolute value, the so-called “pivot”; if r is the row
where the pivot is found, exchange the first and the r th row.
• second step: before eliminating the second column, look for the
coefficient of the column biggest in absolute value, starting from the
second row; if r is the row where the pivot is found, exchange the second
and the r th row.
...
• step j : before eliminating the column j , look for the pivot in this
column, from the diagonal coefficient down to the last row. If the pivot is
found in the row r , exchange the rows j and r .

January 18, 2022 19 / 50

This is the pivoting procedure on the rows, which amounts to multiply at
the left the matrix A by a permutation matrix P. (An analogous procedure
can be applied on the columns, or globally).
The pivoting procedure corresponds then to solve, instead of (1), the
system

PAx = Pb (2)

January 18, 2022 20 / 50

GEM pseudocode with pivoting

Input as before: A ∈ Rn×n and b ∈ Rn

for k = 1, . . . , n − 1
select j ≥ k that maximise |ajk |
aj ,k:n ←→ ak,k:n
bj ←→ bk

for i = k + 1, . . . , n
li ,k = ai ,k/ak,k
ai ,k:n = ai ,k:n − li ,kak,k:n
bi = bi − li ,kbk

end
end
define U = A, b̃ = b, then solve Ux = b̃ with back substitution

remark: we do not need to define U and b̃, it is just to be consistent
with the notation of the previous slides

January 18, 2022 21 / 50

LU factorisation, consists in looking for two matrices L lower triangular,
and U upper triangular, both non-singular, such that

LU = A (3)

If we find these matrices, system (1) splits into two triangular systems easy
to solve:

Ax = b → L(Ux) = b →
{

Ly = b solved forward

Ux = y solved backward

Mathematically equivalent to GEM: matrix U is the same, b̃ = L−1b.

January 18, 2022 22 / 50

LU: unicity of the factors

The factorization LU = A is unique?
l11 0 · · · 0
l21 l22 · · · 0
...

...
...

ln1 ln2 · · · lnn


︸ ︷︷ ︸

L


u11 u12 · · · u1n

0 u22 · · · u2n
...

...
...

0 · · · unn


︸ ︷︷ ︸

U

=


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann


︸ ︷︷ ︸

A

The unknowns are the coefficients lij of L, which are

1 + 2 + ·+ n =
n(n + 1)

2
, and the coefficients uij of U, also

n(n + 1)

2
, for

a total of n2 + n unknowns.
We only have n2 equations (as many as the number of coefficients of A),
so we need to fix n unknowns. Usually, the diagonal coefficients of L are
set equal to 1: lii = 1. If you do so...

January 18, 2022 23 / 50

GEM vs LU (pseudocodes)

GEM

Input: A ∈ Rn×n and b ∈ Rn

for k = 1, . . . , n − 1
for i = k + 1, . . . , n

li ,k = ai ,k/ak,k
ai ,k:n = ai ,k:n − li ,kak,k:n
bi = bi − li ,kbk

end
end
set U = A, then solve Ux = b with back
substitution

we can store the li ,k in a matrix:

L =


? ? · · · ?

l2,1 ? · · · ?
...

...
...

ln,1 ln,2 · · · ?


that can be completed as a lower
triangular matrix

L =


1 0 · · · 0

l2,1 1 · · · 0
...

...
...

ln,1 ln,2 · · · 1


the loops on the left replace b by
L−1b (see the “equivalent forward
substitution” algoritms): b ← L−1b
similarly A← L−1A, which is called
U and is an upper triangular matrix:

L−1A = U ⇒ A = LU

then the system
January 18, 2022 24 / 50

GEM vs LU (pseudocodes)
GEM

Input: A ∈ Rn×n and b ∈ Rn

for k = 1, . . . , n − 1
for i = k + 1, . . . , n

li ,k = ai ,k/ak,k
ai ,k:n = ai ,k:n − li ,kak,k:n
bi = bi − li ,kbk

end
end
set U = A, then solve Ux = b with back
substitution

LU

Input: A ∈ Rn×n

L = In ∈ Rn×n

for k = 1, . . . , n − 1
for i = k + 1, . . . , n

li ,k = ai ,k/ak,k
ai ,k:n = ai ,k:n − li ,kak,k:n

end
end
Set U = A and output: U and L

Homework

Write the LU algorithm in MATLAB as in the previous slide, then add pivoting in order to
return L,U and the permutation matrix P

January 18, 2022 25 / 50

GEM vs LU (pseudocodes)
GEM

Input: A ∈ Rn×n and b ∈ Rn

for k = 1, . . . , n − 1
for i = k + 1, . . . , n

li ,k = ai ,k/ak,k
ai ,k:n = ai ,k:n − li ,kak,k:n
bi = bi − li ,kbk

end
end
set U = A, then solve Ux = b with back
substitution

LU

Input: A ∈ Rn×n

L = In ∈ Rn×n

for k = 1, . . . , n − 1
for i = k + 1, . . . , n

li ,k = ai ,k/ak,k
ai ,k:n = ai ,k:n − li ,kak,k:n

end
end
Set U = A and output: U and L

Homework

Write the LU algorithm in MATLAB as in the previous slide, then add pivoting in order to
return L,U and the permutation matrix P

January 18, 2022 25 / 50

computation cost of LU (GEM is similar)

w !mkn:{theoperationsage
l n - 1) I rtzln - Dt2) - 2cm)

'

,

(n - 2) (11-2 (n - 2) t 2) = 2C? -223

volume of ! -!= 's Cn - D
'

a

total FLOPS = 2 . f- (n . I) ! § n
'd

+ = Ign
3

January 18, 2022 26 / 50

LU-continued

GEM and LU have the same computational cost: 2
3n3

In GEM, the coefficients lik are discarded after application to the
right-hand side b, while in the LU factorisation they are stored in the
matrix L.
If we have to solve a single linear system, GEM is preferable (less memory
storage).
If we have to solve many systems with the same matrix and different
right-hand sides LU is preferable (the heavy cost is payed only once).

Pivoting is applied also to the LU factorization to ensure that the
factorisation is succesful

PA = LU =⇒ PAx = LUx = Pb

The Matlab function that computes L and U is lu(., .).

January 18, 2022 27 / 50

LU versus GEM

If one needs to compute the inverse of a matrix, LU is the cheapest way.
Indeed, recalling the definition, the inverse of a matrix A is the matrix A−1

solution of
AA−1 = I

Hence, each column c(i) of A−1 is the solution of

Ac(i) = e(i), i = 1, 2, · · · , n

with e(i) = (0, 0, · · · , 1, · · · , 0). The factorisation can be done once and
for all at the cost of O(2n3/3) operations; for each column we have to
solve 2 triangular systems (2n2 operations) so that the total cost is of the

order of
2

3
n3 + n × 2n2 =

8

3
n3.

In case of pivoting, we solve PAc(i) = Pe(i) = P:,i , i = 1, 2, · · · , n.

January 18, 2022 28 / 50

LU versus GEM
If one needs to compute the inverse of a matrix, LU is the cheapest way.
Indeed, recalling the definition, the inverse of a matrix A is the matrix A−1

solution of
AA−1 = I


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann




c11 c12 · · · c1n
c21 c22 · · · c2n

...
...

...
cn1︸︷︷︸ cn2︸︷︷︸ · · · cnn︸︷︷︸

=


1 0 · · · 0
0 1 · · · 0
...

...
...

0︸︷︷︸ 0︸︷︷︸ · · · 1︸︷︷︸


c(1) c(2) · · · c(n) e1 e2 · · · en

Hence, each column c(i) of A−1 is the solution of

Ac(i) = e(i), i = 1, 2, · · · , n
with e(i) = (0, 0, · · · , 1, · · · , 0). The factorisation can be done once and
for all at the cost of O(2n3/3) operations; for each column we have to
solve 2 triangular systems (2n2 operations) so that the total cost is of the

order of
2

3
n3 + n × 2n2 =

8

3
n3.

In case of pivoting, we solve PAc(i) = Pe(i) = P:,i , i = 1, 2, · · · , n.

January 18, 2022 28 / 50

LU versus GEM

If one needs to compute the inverse of a matrix, LU is the cheapest way.
Indeed, recalling the definition, the inverse of a matrix A is the matrix A−1

solution of
AA−1 = I

Hence, each column c(i) of A−1 is the solution of

Ac(i) = e(i), i = 1, 2, · · · , n

with e(i) = (0, 0, · · · , 1, · · · , 0). The factorisation can be done once and
for all at the cost of O(2n3/3) operations; for each column we have to
solve 2 triangular systems (2n2 operations) so that the total cost is of the

order of
2

3
n3 + n × 2n2 =

8

3
n3.

In case of pivoting, we solve PAc(i) = Pe(i) = P:,i , i = 1, 2, · · · , n.

January 18, 2022 28 / 50

Computation of the determinant

We can use the LU factorisation to compute the determinant of a matrix.
Indeed, if A = LU, thanks to the Binet theorem we have

det(A) = det(L)det(U) =
n∏

i=1

lii

n∏
i=1

uii =
n∏

i=1

uii

Thus the cost to compute the determinant is the same of the LU
factorisation.

In the case of pivoting, PA = LU and then

det(A) =
det(L) det(U)

det(P)
=

det(U)

det(P)

It turns out that det(P) = (−1)δ where δ = # of row exchanges in the LU
factorisation.
Matlab function: det(·)

January 18, 2022 29 / 50

Computation of the determinant

We can use the LU factorisation to compute the determinant of a matrix.
Indeed, if A = LU, thanks to the Binet theorem we have

det(A) = det(L)det(U) =
n∏

i=1

lii

n∏
i=1

uii =
n∏

i=1

uii

Thus the cost to compute the determinant is the same of the LU
factorisation.
In the case of pivoting, PA = LU and then

det(A) =
det(L) det(U)

det(P)
=

det(U)

det(P)

It turns out that det(P) = (−1)δ where δ = # of row exchanges in the LU
factorisation.
Matlab function: det(·)

January 18, 2022 29 / 50

Cholesky factorization

If A is symmetric (A = AT) and positive definite (positive eigenvalues) a
variant of LU is due to Cholesky: there exists a non-singular lower
triangular matrix L such that

LLT = A

Costs: approximately ∼ n3

3
(half the cost of LU, using the symmetry of A).

Matlab function: chol(.,.)

January 18, 2022 30 / 50

Sparse Matrices

“A matrix is sparse if many of its coefficients are zero. The interest in
sparsity arises because its exploitation can lead to enormous computational
savings and because many large matrix problems that occur in practice are
sparse.”

- Page 1, Direct Methods for Sparse Matrices, 2nd Edition, 2017.

The sparsity of an n × n matrix A is

nnz(A)

n2

where nnz(A) = # of nonzero entries in A. A matrix is sparse if its
sparsity is � 1. A matrix that is not sparse is dense.

January 18, 2022 31 / 50

Sparse Matrices

“A matrix is sparse if many of its coefficients are zero. The interest in
sparsity arises because its exploitation can lead to enormous computational
savings and because many large matrix problems that occur in practice are
sparse.”

- Page 1, Direct Methods for Sparse Matrices, 2nd Edition, 2017.

The sparsity of an n × n matrix A is

nnz(A)

n2

where nnz(A) = # of nonzero entries in A. A matrix is sparse if its
sparsity is � 1. A matrix that is not sparse is dense.

January 18, 2022 31 / 50

Sparse matrices

Sparse matrices are extremely common in engineering and computer
science. Some examples:

- Network theory (e.g. social networks).
- Data analysis and machine learning.
- Discretization of differential equations.
- ...

Sparse matrices represent problems with possibly a large of number of
variables, but where each variable “interacts” directly with few other
variables (local interactions).

January 18, 2022 32 / 50

Sparse matrices

Sparse matrices are extremely common in engineering and computer
science. Some examples:

- Network theory (e.g. social networks).
- Data analysis and machine learning.
- Discretization of differential equations.
- ...

Sparse matrices represent problems with possibly a large of number of
variables, but where each variable “interacts” directly with few other
variables (local interactions).

January 18, 2022 32 / 50

Formats of sparse matrices

To save memory, it is convenient to store only the nonzero entries of
a sparse matrix. There are several data structure that allow this.

Compressed Sparse Column (CSC). The matrix A is specified by three
arrays: val, row ind and col ptr.

- val stores the nonzero entries of A, ordered from from top to bottom
and left to right.

- row ind stores the row indices of the nonzero entries of A.

- col ptr stores the indices of the elements in val which start a column
of A.

This is the format used by Matlab.

Example:

A =


4 0 0 0
7 3 0 0
0 0 3 0
0 0 8 2

 val =
[
4 7 3 3 8 2

]
row ind =

[
1 2 2 3 4 4

]
col ptr =

[
1 3 4 6

]
January 18, 2022 33 / 50

Sparsity and direct solvers

We can take advantage of sparsity in Gaussian elimination,
performing only the operations that are necessary (e.g. only the
nonzero entries below a pivot are eliminated, and when summing two
rows only the nonzero entries are summed). This allows to beat the
O(n3) cost for dense matrices.

This works particularly well in case of banded matrices (the nonzero
are concentrated in a narrow “band” around the diagonal). In this
case, a system can be solved in O(n) operations.

January 18, 2022 34 / 50

Example of a sparse matrix

A from 1D Poisson problem on [0, 1] (discretized with FEM/FD, h = 0.02):
sparsity pattern of A sparsity pattern of U

January 18, 2022 35 / 50

Fill-in

In general, the factor U (and L) can have much more nonzero entries than
A. This phenomenon, known as fill-in significantly increases time and
memory consumption, and represents the main drawback of direct solvers
for sparse systems.

January 18, 2022 36 / 50

Example of fill-in
We consider a matrix A generated by a Finite Element Method for solving
a 2D Poisson problem on the unit circle (meshsize h = 0.05).

sparsity pattern of A sparsity pattern of U

memory(A) ≈ 1 MB memory(U) ≈ 242 MB

January 18, 2022 37 / 50

Orderings

The level of fill-in is often sensitive to the ordering of the variables

Example:

A =


x x x x x
x x
x x
x x
x x

 =⇒ U =


x x x x x

x x x x
x x x

x x
x


A is sparse but U is completely dense.

But if we re-order rows and columns from last to first:

A =


x x

x x
x x

x x
x x x x x

 =⇒ U =


x x

x x
x x

x x
x


In this case, there is no fill-in.

January 18, 2022 38 / 50

Appendix on pivoting for the LU algorithm

January 18, 2022 39 / 50

Pivoting in GEM and LU factoritatiou

P is a permutation matrix if it has only one

entry 1 on each row and each column
,
and

then only $
.

It produces permutation of rows when multipeiug on the
left and of columns when multi peeing on the

right . For example

P= I 0001: :p at:=÷1 -14444
0 00 I

January 18, 2022 40 / 50

I 0 0 0•af:÷11÷⇒=I÷⇒
0 00 1

1 00 0n-e-f.fi/4f.l::::.1--H4YY
Successive row permutation

Pn Pn
. .

- - . . Pap, A =/ §
-1
" " §P(A)) :))

→ i¥÷PEA
January 18, 2022 41 / 50

GEM with (partial) pivoting looks like

A-
"'
= A

AH
=
L
' " Pc " A "

A = [(2) plz) A- (2)

:

A-
In)= Lcn-1p/m-1) Acn - D

pl 'd
= switch row k with now jzk when

left multi peeing
UH

=
eliminate the under diagonal entries
when multiplying from the left

January 18, 2022 42 / 50

P
'"

is a permutation matrix

?⃝
° ° ° " " °

° " ° ' " ' " '

?⃝← k row÷__-"&
:

← g- rowO---------1.______.
:

o -
- - l

January 18, 2022 43 / 50

L
'"

is called an atomic lower triangular
matrix

f
:-. °

[
Ck' Y

,

=

-?⃝ ' - n ,il: '
.

- In ,k

[k column

January 18, 2022 44 / 50

Assuming we do not have pivoting :

A
'M

=
Lcm) 1141"> A

¢ ' ")
"

. .com#cn7-- A

when A
' "

is upper triangular = U

C.
'" J
"

. . . (L
"")

- '

=
lower triaeeg - L

and easy to compute . . .

1=11: ":?)lni cnn.it

January 18, 2022 45 / 50

but pivoting mix everything :

A
' "

= A

A
'"
=

L
"' P' " A ")

D- (3)
=
[
(2)
p
(2) Ace)

:
A
'M

=
In - 1) pln -11A in - e)

therefore :

U = AIM =L ' "
-" pen") Ll ' > PH A

=/ Len
-"

. . . . L
C "

. Plm) . . . p G) A

January 18, 2022 46 / 50

We cannot commute the matrices ! things
are more complicated and are based on the

following : if

PIDLCK)
=
Then pls)

where PIM switch J with i > J

J , i = k

[↳
= obtained from L

'"

by
switching L !!! → ↳

'÷

January 18, 2022 47 / 50

this observation allows us to rearrange the

factors

U =
Acn> = (

Cn
-
' 7 pcn - D [

(n - e) pcn -z) . . . A

=L
en - 1) [In -27 pen -17 pen

- 2)
. .

. . A

and so on . . .

=
yen - it [en- 2) Écn -31 . . .

É ' "
. Pln - ?

. . .

.PH A

→to be inverted

but still lower tr
.

and atomic

January 18, 2022 48 / 50

and finally :

(É
")
"
: :

. . ([in
-"Hing

- '

U
=
PA

I U
= PA

which is named
"

Doolittle decomposition
"

[is
easy to compute ,

as is L = A
"'t ' (Lcm))

"

I entries are the same of L but rearranged
In fact I is computed on the fly in→

January 18, 2022 49 / 50

final algorithm -
for LU = PA factor Italian

this is the needed

rearranging in the e-{
L matrix

January 18, 2022 50 / 50

