Methods for solving linear systems
Reminders on norms and scalar products of vectors. The application
-] : R" — Ris a norm if
1—Jv|| >0, Vv eR" lv|]| = 0 if and only if v = 0;
2—|lav| = |allv]| Vo€eR, VveR"
3= [lv+wl <|lv] +llwll, Vv,weR"

Examples of norms of vectors:

n

Ivl3 = Z(V,-)2 Euclidean norm
i—1

|v]loo = max |vj| max norm
1<i<n

n
lele=>"1ul Lo
i=1

Being in finite dimension, they are all equivalent, with the equivalence
constants depending on the dimension n. Ex: [|v]|co < J|V]1.< n||v]|ce-

e ey s L

A scalar product is an application (-,-) : R” x R” — R that verifies:

1 — linearity: (av + fw,z) = a(v,z) + B(w, z) Vo, B € R, Vv, w,z € R";
2—(v,w)=(w,v) Vv,w € R
3—(v,v) >0 Vv #0 (thatis, (v,v) >0,(v,v) =0iff v =0).

To a scalar product we can associate a norm defined as

lv]® = (v, v).

n n

Example: (v, w) = Z viwi, = (v,v)= Z viv; = ||v||3.
i=1 i=1
(in this case we can write (v,w) = v - w or v' w for “column” vectors)

L Ty e D

Theorem 1 (Cauchy-Schwarz inequality)
«, the following

Given a scalar product (-,-). and associated norm || - |
inequality holds:

(v, w)s| < [lullllwlls Vv, w €R"

Proof.
For t € R, let tv + w € R". Clearly, ||tv + w|/« > 0. Hence:

[ty + w|2 = £2||v]| + 2t(v, w)s + |lw|2 >0

The last expression is a non-negative convex parabola in t (No real roots,
or 2 coincident). Then the discriminant is non-positive

(v, W) = [lv[Zllw] <0

and the proof is concluded. O

V.

TSN Tonany 182033750

Reminders on matrices A € R"*"

real.

o Ais symmetric if A= AT. The eigenvalues of a symmetric matrix are

Reminders on matrices A € R"*"

o Ais symmetric if A= AT. The eigenvalues of a symmetric matrix are
real.

@ A symmetric matrix A is positive definite if
(Ax,x)2 >0Vx € R", x#0, (Ax,x)2=0iffx=0

The eigenvalues of a positive definite matrix are positive.

L Ty (o e

Reminders on matrices A € R"*"

o Ais symmetric if A= AT. The eigenvalues of a symmetric matrix are
real.

@ A symmetric matrix A is positive definite if
(Ax,x)2 >0Vx € R", x#0, (Ax,x)2=0iffx=0

The eigenvalues of a positive definite matrix are positive.
e if Ais non singular, AT A is symmetric and positive definite

L Ty s e

Reminders on matrices A € R"*"
o Ais symmetric if A= AT. The eigenvalues of a symmetric matrix are
real.

@ A symmetric matrix A is positive definite if
(Ax,x)2 >0Vx €R", x #0, (Ax,x)2=0iffx=0

The eigenvalues of a positive definite matrix are positive.
e if Ais non singular, AT A is symmetric and positive definite

Proof of the last statment:
- AT A is always symmetric; indeed (ATA)T = AT(AT)T = ATA.
To prove that it is also positive definite we have to show that
(ATAx,x)2 >0Vx €R", x#0, (ATAx,x)> =0 iff x =0. We have:

(AT Ax, x)2 = (Ax, Ax)2 = ||Ax||3 > 0, and ||Ax||3 = 0 iff Ax =0

If Ais non-singular (i.e., det(A) # 0), the system Ax = 0 has only the
solution x = 0, and this ends the proof.
] January 18,2022 4/50

Norms of matrices

Norms of matrices are applications from R™*" to R satisfying the same
properties as for vectors. Among the various norms of matrices we will
consider the norms associated to norms of vectors, called natural norms,

defined as:
|Av|]

=sup —~
v#o [yl

ATl

It can be checked that this is indeed a norm, that moreover verifies:

[Av]| < [[[A[[lvll, — [[IABI[| < [[|AllI[IIBI]]-

L e m—

Examples of natural norms (of square n x n matrices)

n
VER: vlw — [[IAllle = max layl,
k)) j:l

n
veR vy — Al = max 3" fay)
I I i:l

veR: vla — [Alllz = \/Amac(ATA).

If Ais symmetric, |||Al|loc = [||All]1, and [||A]|l2 = [Amax in abs val (A)]-
Indeed, if A= AT, then max; \;(AT A) = max; \;(A?) = (max; \;(A))2.

The norm |||Al||2 is the spectral norm, since it depends on the spectrum of
A.

L e m——

Solving linear systems

solution of

Ax =

The problem: given b € R”, and A € R" x R", we look for x € R”
x=0b

Solving linear systems

The problem: given b € R", and A € R” x R”, we look for x € R”
solution of

Ax=b (1)

Problem (1) has a unique solution if and only if the matrix A is
non-singular (or invertible), i.e., 3A~! such that A=A = AA~! =,
necessary and sufficient condition for A being invertible is that det(A) # 0.
Then the solution x is formally given by x = A~1b.

L T o e

Solving linear systems

The problem: given b € R", and A € R” x R”, we look for x € R”
solution of
Ax=b (1)

Problem (1) has a unique solution if and only if the matrix A is
non-singular (or invertible), i.e., JA™! such that A=*A = AA™1 = |
necessary and sufficient condition for A being invertible is that det(A) # 0
Then the solution x is formally given by x = A~1b.

Beware: never invert a matrix unless really necessary, due to the costs, as
we shall se later on. (Solving a system with a general full matrix is also
expensive, but not nearly as expensive as matrix inversion).

L T o e

Some example of linear systems

The simplest systems to deal with are diagonal systems:

Dx=b
d; 0O -~ 0
0 d22 0 bi
D= . — x;=— i=12,---,n
0O --- . 0 dii
0o ... don

The cost in terms of number of operations is negligible, given by n
division.

] January 18, 2022

8/50

Triangular matrices

Triangular matrices are also easy to handle. If A= L is lower triangular,
the system can be solved “forward”:

rX B ﬂ
Y
hh 0 - 0 o = D2 k1
, by /2-2 .0 . 2= T
/nl /n2 Inn n—
by — Zj:ll InjXj
Xp = ;

Counting the operations: for x; we have 1 product and 0 sums; for x; 2
products and 1 sum,, and for x, n products and n — 1 sums, that is,
1 -1
142+ -+n= n(r12—|—) products, plus 1+2+---+n—1_('72)n
sums, for a total number of operations = n?.

L E———

A special case of lower triangular matrix (useful later...)

Assume L has only 1 on the diagonal, e.g., i = 1:

1 0

b1 1

L=1 .
lnl /n2

- O O

x1 = by

x2 = by — hix

n—1
Xp = by — E Injx;
j=1

Then the following two algorithms, for solving Lx = b are equivalent:

forward substitution as above
Input: L € R"™*" lower t., and b € R"

fori=2,....n
forj=1,...,i—1
b,':b,'—/,'ij
end
end

the solution is in b, i.e., x < b

equivalent to forward substitution

Input: L € R"™" lower t., and b € R"
for k=1,...,n—1
fori=k+1,...,n
bi = bj — I; by
end
end
the solution is in b, i.e., x < b

] January 18, 2022

10 /50

Triangular matrices

Upper triangular systems (if A = U is upper triangular) are also easy to
deal with, and can be solved “backward” with the same costs as lower
triangular systems:

(b,
Xp = —
Unn
ui1 Uiz -+ Uip bn_1 — Un—1nXn
X —1 = —-—-———---
u e u n
U 0 wux 2n U 1n 1
0 o Upp
n
N by — Ej:2 u1jXj
1 =
\ ui1
Homework
Write the above algorithm in MATLAB J

L iy e i)

Costs for solving triangular systems

We saw that for solving the system we perform n? operations.

To have an idea of the time necessary to solve a triangular system,
suppose that the number of equations is n = 100.000, and the computer
performance is a TERAFLOP = 10'2FLOPS (floating-point operations per
second); the time in seconds is given by

#operations 10%0ps 1
t= = = ——sec
 #flops 10%2flops 100"

(pretty quick)

The next target of High Performance Computing is EXAFLOP
= 108 FLOPS

L iy e)

General matrices

For a general full matrix the cost can become extremely high if we do not
work properly.

For example, Cramer method is awfully expensive, even for small matrices:

det(A,-)
xj = ———2 " A; has b in the it" column

1 det(A) 9 1 =
the number of operations for computing the determinant of an n x n
matrix is of the order on n! (I mean factorial of n). We have to compute
n + 1 determinants, so the total number of operations is of the order of

(n+ 1)!. Try to solve a 20 x 20 system on a computer with power
102 flops: how much do you have to wait?

L iy e 5]

Numerical methods

There are two classes of methods for solving the linear system (1): direct
and iterative.

Direct methods: they give the exact solution (up to computer precision) in
a finite number of operations.

lterative methods: starting from an initial guess x(9) they construct a
sequence {x(K} such that
k)

x = lim 5(.
k—o00

L iy L)

Direct methods

The most important direct method is GEM (Gaussian elimination method).

With GEM, the original system (1) is transformed into an equivalent
system (i.e., having the same solution)

Ux=b (%)

with U upper triangular matrix. This is done in n — 1 steps where, at each
step, one column is eliminated, that is, all the coefficients of that column
below the diagonal are transformed into zeros. The cost for computing U

is of the order of §n3, see later... the cost for computing b is of the order

of n?; the cost for solving the upper triangular system is n®, so that the

. 2
total cost is ~ §n3 +2n% ~ Znd.

3

L iy e A5

GEM algorithm
AL = A pD) = p

oo m [
Ay — |%20 22 e B | 2] by — b
OJCURN(Y) [P Y0

L Ty

GEM algorithm
A(l) = A, b(l) — b

ot][
Ay — |%20 22 e B | 2] by — b
af;ll) 35;12) ag,) Xn bf;l)
@ We eliminate the first column:
AQ)y 0 ay ... a | |* _ by e
G INC] B I B

oD/ o7 = a7 = of?

L iy e)

GEM algorithm

@ We go on eliminating columns in the same way. At the k—th step:

- (1 1
agl) agz)
0 agzz)
0
0

K
aE(k)

(%)

ai, |
a5,

(k)

akn

(k)

dnn

X1
X2

Xk

Xn

0
b

b

639

January 18, 2022

17 /50

GEM algorithm

@ We go on eliminating columns in the same way. At the k—th step:

r (1 1 7 -~ A r, (1)

AV D a1y bt

0 3222) ag,) X2 bgz)
ARy = | 2 10 [I R S

0 ... 0 &% M x| s

L0 o0 a0 el B8

o At the last step A(Mx = b(" with U upper triangular,

— U:=A", p:=p"

L iy e A7)

GEM pseudocode

Input: A€ R™" and b € R"
for k=1,...,n—1
for i=k+1,...,n
lik = aik/ak K
i k:n = i k:n — li k3K k:n
bi = b; — I; x by
end
end B B
define U = A, b = b, then solve Ux = b with back substitution

remark: we do not need to define U and b, it is just to be consistent
with the notation of the previous slides

Homework
Write the above algorithm in MATLAB

v

] January 18, 2022

18 /50

Possible troubles and remedy
The condition det(A) # 0 is not sufficient to guarantee that the

1
elimination procedure will be successful. For example A = [2 O]

L Ty

Possible troubles and remedy

The condition det(A) # 0 is not sufficient to guarantee that the

D . 1
elimination procedure will be successful. For example A = [2 0]
To avoid this the remedy is the “pivoting” algorithm:

e first step: before eliminating the first column, look for the coefficient of
the column biggest in absolute value, the so-called “pivot”; if r is the row
where the pivot is found, exchange the first and the rt" row.

January 18, 2022 19 /50

Possible troubles and remedy

The condition det(A) # 0 is not sufficient to guarantee that the
elimination procedure will be successful. For example A = [2 (1)]
To avoid this the remedy is the “pivoting” algorithm:

e first step: before eliminating the first column, look for the coefficient of
the column biggest in absolute value, the so-called “pivot”; if r is the row
where the pivot is found, exchange the first and the rt" row.

e second step: before eliminating the second column, look for the
coefficient of the column biggest in absolute value, starting from the
second row; if r is the row where the pivot is found, exchange the second
and the rt" row.

L iy e D)

Possible troubles and remedy

The condition det(A) # 0 is not sufficient to guarantee that the
elimination procedure will be successful. For example A = [2 (1)]
To avoid this the remedy is the “pivoting” algorithm:

e first step: before eliminating the first column, look for the coefficient of
the column biggest in absolute value, the so-called “pivot”; if r is the row
where the pivot is found, exchange the first and the rt" row.

e second step: before eliminating the second column, look for the
coefficient of the column biggest in absolute value, starting from the
second row; if r is the row where the pivot is found, exchange the second
and the rt" row.

e step j: before eliminating the column j, look for the pivot in this
column, from the diagonal coefficient down to the last row. If the pivot is
found in the row r, exchange the rows j and r.

L iy e D)

This is the pivoting procedure on the rows, which amounts to multiply at
the left the matrix A by a permutation matrix P. (An analogous procedure
can be applied on the columns, or globally).
The pivoting procedure corresponds then to solve, instead of (1), the
system

PAx = Pb (2)

L iy s ZD)

GEM pseudocode with pivoting

Input as before: A € R™" and b € R”
for k=1,...,n—1
select j > k that maximise |aj|
aj k:n <7 Ak,k:n
bj — bk
fori=k+1,...,n
lik = aik/ak K
aj k:n = i k:n — i kak k:n
bi = bj — I; x by
end
end B B
define U = A, b = b, then solve Ux = b with back substitution

remark: we do not need to define U and b, it is just to be consistent
with the notation of the previous slides

] January 18, 2022

21/50

LU factorisation, consists in looking for two matrices L lower triangular,
and U upper triangular, both non-singular, such that

LU=A (3)

If we find these matrices, system (1) splits into two triangular systems easy
to solve:

solved forward

Ly=»5b
y solved backward

Ux

Ax=b — L(Ux)=b — {

Mathematically equivalent to GEM: matrix U is the same, b=L"1b.

L iy e)

LU: unicity of the factors

The factorization LU = A is unique?

hi 0 --- 0 Uil U2 Uln a1 aw - an

b1 by --- 0 0 wxp -+ Wy a1 axp - a

Inl /n2 tee /nn 0 s+ Upp anl dn2 - ann
L U A

The unknowns are the coefficients /;; of L, which are
1

1424 4n= ")

a total of n?> + n unknowns.

We only have n? equations (as many as the number of coefficients of A),

so we need to fix n unknowns. Usually, the diagonal coefficients of L are

set equal to 1: /;; = 1. If you do so...

n(n+1) ¢
2

, and the coefficients uj; of U, also , for

L iy e)

GEM vs LU (pseudocodes)

@ we can store the /; xin a matrix:

? 7?7
GEM . hi ? - 7
Input: A€ R™" and b € R" I :
for k=1,...,n—-1 Ih1 lho -+ 7
fori=k+1,....n ’ ’
lik = ai,k/ak,k that can be completed as a lower
i kin = Aiken — likak kin triangular matrix
bi = bj — l; bk
end 1o -0
end [— a1 -0
set U = A, then solve Ux = b with back
substitution) Ihi lho - 1

@ the loops on the left replace b by
L=1b (see the “equivalent forward
substitution” algoritms): b < L~1b

o similarly A+ L=1A, which is called
U and is an upper triangular matrix:

LTTA=U = A=ILU
] January 18, 2022 24/50

GEM vs LU (pseudocodes)

GEM

Input: A€ R™" and b e R"
for k=1,...,n—1
fori=k+1,...,n
lik = ajk/aKk
aj k:n = ai kin — li,kak,k:n
bi = bj — I; by
end
end
set U = A, then solve Ux = b with back
substitution

LU

Input: A € R™"
L=1, e R™"
for k=1,...,n—1
fori=k+1,...,n
lik = ajk/aKk
A k:n = i ken — i kAk kin
end
end
Set U = A and output: U and L

] January 18, 2022

25 /50

GEM vs LU (pseudocodes)

GEM
Input: A€ R"" and b€ R"
for k=1,...,n—1
fori=k+1,...,n
lik = ajk/aKk
aj k:n = ai kin —
bi = bj — I; by

li kak k:n

end
end
set U = A, then solve Ux = b with back
substitution

Homework

LU
Input: A € R™"
L=1,eR™"
for k=1,...,n—1
fori=k-+1,...,n
lik = ajk/aKk
i k:n = i kin —
end

li kak k:n

end
Set U = A and output: U and L

Write the LU algorithm in MATLAB as in the previous slide, then add pivoting in order to

return L,U and the permutation matrix P

January 18, 2022

25 /50

computation cost of LU (GEM is similar)
whw ko1 He DF“QJ:I%L o (n-1)(4+2(n-0+z§: 2 (n4)?

u k=2 v o () (142 (-2 2N 2 (n-2)®

(~ é (V}-{)B

\&—
|

R

Total Flops = 2-4—(n—l>3= % N+ Dac
,,,,,

LU-continued

GEM and LU have the same computational cost: %n3

In GEM, the coefficients /; are discarded after application to the
right-hand side b, while in the LU factorisation they are stored in the
matrix L.

If we have to solve a single linear system, GEM is preferable (less memory
storage).

If we have to solve many systems with the same matrix and different
right-hand sides LU is preferable (the heavy cost is payed only once).

Pivoting is applied also to the LU factorization to ensure that the
factorisation is succesful

PA=LU = PAx=LUx=PFb

The Matlab function that computes L and U is lu(.,.).

L iy e L)

LU versus GEM

If one needs to compute the inverse of a matrix, LU is the cheapest way.

Indeed, recalling the definition, the inverse of a matrix A is the matrix A1
solution of

AA"L = |

January 18, 2022 28/50

LU versus GEM

If one needs to compute the inverse of a matrix, LU is the cheapest way.

Indeed, recalling the definition, the inverse of a matrix A is the matrix AL
solution of

AATL =
ail ai2 -+ Aain 1 Ci2 - Cin 1 0 <o 0
ar1 ax -+ asny @1 €2 -+ C2p 0 1 cee 0
anl ap2 ** anpn Cni Cn2 ce Cnn 0 0 cee 1
R OB Q)) el g2 e"

January 18, 2022 28 /50

LU versus GEM

If one needs to compute the inverse of a matrix, LU is the cheapest way.
Indeed, recalling the definition, the inverse of a matrix A is the matrix A~
solution of

[y

AA"L = |

Hence, each column c() of A=1 is the solution of

Acl) = () i=1,2,---.n

)

with e() = (0,0,---,1,---,0). The factorisation can be done once and
for all at the cost of O(2n3/3) operations; for each column we have to
solve 2 triangular systems (2n? operations) so that the total cost is of the

2
order of §n3 +nx2n®= §n3.

In case of pivoting, we solve PAc() = peli) = P.i i=12---,n.

L iy s D)

Computation of the determinant

We can use the LU factorisation to compute the determinant of a matrix.
Indeed, if A= LU, thanks to the Binet theorem we have

det(A) = det(L)det(U H li H ujj = H Ui
i=1

Thus the cost to compute the determinant is the same of the LU
factorisation.

January 18, 2022 29 /50

Computation of the determinant

We can use the LU factorisation to compute the determinant of a matrix.
Indeed, if A= LU, thanks to the Binet theorem we have

det(A) = det(L)det(U H li H ujj = H Ui
i=1

Thus the cost to compute the determinant is the same of the LU
factorisation.

In the case of pivoting, PA = LU and then

det(L)det(U) det(V)

d4etA) = —4et(P) ~ der(P)

It turns out that det(P) = (—1)? where § = # of row exchanges in the LU
factorisation.

Matlab function: det(-)

L iy e D)

Cholesky factorization

If Ais symmetric (A= AT) and positive definite (positive eigenvalues) a
variant of LU is due to Cholesky: there exists a non-singular lower
triangular matrix L such that

LLT=A

3
Costs: approximately ~ % (half the cost of LU, using the symmetry of A).

Matlab function: chol(.,.)

L Ty

Sparse Matrices

“A matrix is sparse if many of its coefficients are zero. The interest in
sparsity arises because its exploitation can lead to enormous computational
savings and because many large matrix problems that occur in practice are

sparse.”
- Page 1, Direct Methods for Sparse Matrices, 2nd Edition, 2017.

L iy e)

Sparse Matrices

“A matrix is sparse if many of its coefficients are zero. The interest in
sparsity arises because its exploitation can lead to enormous computational
savings and because many large matrix problems that occur in practice are
sparse.”

- Page 1, Direct Methods for Sparse Matrices, 2nd Edition, 2017.

The sparsity of an n x n matrix A is

nnz(A)

n

where nnz(A) = # of nonzero entries in A. A matrix is sparse if its
sparsity is < 1. A matrix that is not sparse is dense.

L iy e)

Sparse matrices

@ Sparse matrices are extremely common in engineering and computer
science. Some examples:
- Network theory (e.g. social networks).
Data analysis and machine learning.
- Discretization of differential equations.

L iy e)

Sparse matrices

@ Sparse matrices are extremely common in engineering and computer
science. Some examples:

- Network theory (e.g. social networks).
- Data analysis and machine learning.
- Discretization of differential equations.

@ Sparse matrices represent problems with possibly a large of number of
variables, but where each variable “interacts” directly with few other
variables (local interactions).

L iy e)

Formats of sparse matrices

@ To save memory, it is convenient to store only the nonzero entries of
a sparse matrix. There are several data structure that allow this.

@ Compressed Sparse Column (CSC). The matrix A is specified by three
arrays: val, row_ind and col _ptr.

- val stores the nonzero entries of A, ordered from from top to bottom
and left to right.

- row_ind stores the row indices of the nonzero entries of A.

- col_ptr stores the indices of the elements in val which start a column
of A.

This is the format used by Matlab.

@ Example:
;‘ g 8 8 val = [4 7 3 3 8 2]
A= row_ind = [1 2 2 3 4 4]
0030 col ptr = [1 3 4 6]
008 2 P =

L Ty

Sparsity and direct solvers

@ We can take advantage of sparsity in Gaussian elimination,
performing only the operations that are necessary (e.g. only the
nonzero entries below a pivot are eliminated, and when summing two
rows only the nonzero entries are summed). This allows to beat the
O(n®) cost for dense matrices.

@ This works particularly well in case of banded matrices (the nonzero
are concentrated in a narrow “band” around the diagonal). In this
case, a system can be solved in O(n) operations.

L iy e e

Example of a sparse matrix

A from 1D Poisson problem on [0, 1] (discretized with FEM/FD, h = 0.02):
sparsity pattern of A sparsity pattern of U

N %
“&. o,
5 s ",
e
*%
10 10 3,
2,
t
15 15 2,
t
® 3
20 20 L
2.
2
25 25+ S,
2
*%
30 30r S,
(X
%
35 35 2,
2
t
40 40 %,
t
*%
45 45+ L
2,
°%e

50 50 b 3

0 10 20 30 40 10 20 30 40 50

nz = 148 nz =99

January 18, 2022

35/50

Fill-in

In general, the factor U (and L) can have much more nonzero entries than
A. This phenomenon, known as fill-in significantly increases time and
memory consumption, and represents the main drawback of direct solvers

for sparse systems.

L Ty

Example of fill-in

We consider a matrix A generated by a Finite Element Method for solving
a 2D Poisson problem on the unit circle (meshsize h = 0.05).

sparsity pattern of A sparsity pattern of U

1000 [1000

2000 2000
3000 [§ 3000
4000 [4000

5000 r- 5000

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

nz = 66193 nz = 12916715
memory(A) ~ 1 MB memory(U) ~ 242 MB

L i L)

Orderings

@ The level of fill-in is often sensitive to the ordering of the variables

@ Example:
X X X X X X X X X X
X X X X X X
A= [x X = U= X X X
X X X X
X X X
A is sparse but U is completely dense.

@ But if we re-order rows and columns from last to first:
X X X X
X X X X
A= X X = U= X X
X X X X
X X X X X X

In this case, there is no fill-in.

L Ty

Appendix on pivoting for the LU algorithm

Plvohwﬁ e GEM otwd LD factoritatiou
Py a Twu*afh‘w wochu t‘F t has ou_@d YOI
afy 1 on ode ww wd el wlunn, auwd

o ouby ¢
& producu WMWHW o-F v wlaw M,uﬂTt’p&’u.? ow The
Gt owd of o lums whae MA,LLOJ‘T‘PQL\\L% o T
v‘%ur_ For e_)coJ.u(aLL

o oy B s,

P=| Looo 5 = 7T, = (e,
O DD fts
c ©0 | Iy

¢.| o

y

L iy s D)

Sucuz&h‘\te/ Vow {)aw_wfm{ﬁ oW

o o <Ll)

) v PP B

Januarn y 18, 2022

41/50

GEM w (PMEQL) Im'\reh‘fug, dooks bke

A(\') _ A
A(z\ _ L(O PCI') A(")
A(g: S Pu} Am

A_(n\ : / Cn-\)P (n-1) A (n-1)

Pl cuitde rew ko wie
Lt Wkl pRing
L tmele e woﬂuw’a&t}owd ot ues
W et pRyrug Faewn e G fT

pw >k w o
L(k')—

January 18, 2022 42 /50

P o o PM“‘”’“”TUTW o

{10600

o4 o

ro\y

L5 s callied

an - afome
maadnx

e Frguden
LCM *

ﬁrsm(’wk We do not house Pq’voﬁf’u?q N
A““ _ LCVI—!) L(z) Zcr) f
([_ f'))_, ,.,(L(n—fDJﬁ () _ (A_

w e ﬂcm I'¢ W]Luam/-;yﬂ% - U

L(O " L(‘M ’{: KDwaf #’u‘aw; - L
%AJ zw&ﬂ(tl"} QMM.FLJ('% /

A
L; (‘(2;,1~“«“©
b €

L iy s LS

[;u](’ PI\/G'ﬂng /VL/L{;(Q)JO.?/HA(‘M?;
ﬁ' () _

_ Ll‘\]D(\\ me

H(B) _ L“/)]P () H(z)

il (n) ~ L(rl—l) P (n-;)ﬁ (m-r)

=

%W\S\‘Um \

U - p_(n): L(”—,)PCW—I)‘ o L[:)P(J A
Lo 0 et 0

L Ty

We ¢ avmot o mwmwde He et es / ’H,uu%,s
AL Maoe (’,o\wp&'ct«j'ca fud oue Lll/)&ol om Hee

%\Lowm%, . l‘\f-
P(Dl_(k); T_(k) [9(‘))
w o P(:ﬂ Switde T wite C>,3"
T, = k

,\,7:0&) = o ko v Pmu [*) étj

: | A (%)
switdiwy L L))

L iy s L)

Hut obrevehiow allows uwe te Bamavfe
‘{“&d'om

U_. p9_ (_Cﬂ-") PCn—D L (n—z)PCn—Qm p
- (n-1) [() F(n—n){;cﬂﬂ A
ouncl) on ..

L (n-1) E (Y\—z')i(n—ﬂw ”E(Q_ P Cﬂel?mf;(s g

-
o be rmverled
bt bk Gwer Tp cwd adowic

P

L iy s L5

ovd frually -

()" ey - e

LU - ?A
\l\J\AkC\’\ (e V\CMM.eol ‘ Doﬂl\‘H‘CQ, O(—LCOU»fo &J’fou v

{E « cqg«j’f‘o c,olu(wj't, ar ve L= [L"’)"...,, (L(ﬂ-l)>~l
L owduies we The fowe of L but /wmaujmol

[fact T beU\U)U('fGP e e F@d, e — >

L iy e D)

1 function [L,U,P]=LU_pivot(A)
{l‘ V] UVQ M?Q(‘[+&M —_— 2 % LU factorization with partial (row) pivoting
3 % K. Ming Leung, 02/05/03
LU = PA fadorisuy :
P@f‘ U - /:}- ‘FA or MO"A 5 [n,nl=size(A);
6 L=eye(n); P=L; U=A;
7 for k=1:n
8 [pivot m]=max(abs(U(k:n,k)));
9 m=m+k-1;
10 if m~=k
11 % interchange rows m and k in U
12 temp=U(k,:);
13
14
15 % interchange rows m and k in P
16 temp=P(k,:);
17 P(k,:)=P(m,:);
18 P(m, :)=temp;
s is Ha ueeded " e
20 temp=L(k,1:k-1);
Mompugiug it fle o 2 LUK, 1ik=1)=L(m, 1:k-1);
22 L(m,1:k-1)=temp;
0 23 end
L wetux ” “nd
25 for j=k+l:n
26 L(3,k)=U(3,k)/U(k, k);
27 U(3,:)=U(F,)-L(3,k)*U(k,:);
28 end

29 end

