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T-splines are an important tool in IGA since they allow local refinement. In this paper we
define analysis-suitable T-splines of arbitrary degree and prove fundamental properties:
linear independence of the blending functions and optimal approximation properties
of the associated T-spline space. These are corollaries of our main result: a T-mesh is
analysis-suitable if and only if it is dual-compatible, a concept already defined and used
in [5].
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1. Introduction

IsoGeometric Analysis (IGA) is a numerical method for solving partial differen-
tial equations (PDEs), introduced by Hughes et al. in [17]. In IGA, B-splines or
Non-Uniform Rational B-Splines (NURBS), that typically represent the domain
geometry in a Computer Aided Design (CAD) parametrization, become the basis
for the solution space of variational formulations of PDEs. IGA methodologies have
been studied and applied in many areas such as fluid dynamics, structural mechan-
ics, and electromagnetics (see the book [11] and references therein). During the
last years, it has been demonstrated that the use of regular shape functions allow
for the writing of new methods enjoying properties which would be hard to obtain
with standard finite elements. On the other hand, flexibility in the mesh generation
and refinement need to be enhanced by breaking the tensor product structure of
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B-splines and NURBS.
Local refinement strategies in IGA are possible thanks to the non-tensor product

extensions of B-splines, such as T-splines23,24. A T-spline space is spanned by a set
of B-spline functions, named T-spline blending functions, that are constructed from
a T-mesh. The blending functions are tensor-product of univariate splines, but the
T-mesh breaks the global tensor-product structure by allowing so called T-junctions.

T-splines have been recognized as a promising tool for IGA in [3] and have been
the object of recent interest in literature (see, e.g., [4, 8, 14, 18, 19, 22, 25]). In
particular, in the context of IGA, analysis-suitable (AS) T-splines have emerged:
introduced in [19] in the bi-cubic case, they are a sub-class of T-splines for which
we have fundamental mathematical properties needed in a PDE solver. Linear in-
dependence of AS T-splines blending functions has been first shown in [19]. In [5] it
is shown that the condition of being AS, which is mainly a condition on the connec-
tivity of the T-mesh, implies that the bi-cubic T-spline basis functions admit a dual
basis that can be constructed as in the tensor-product setting. The latter property
led to the definition of dual-compatible (DC) T-splines on which stable projection
operators can be defined. The main consequences of this fact is that DC T-splines
(and then also AS T-splines) blending functions are linearly independent and the
space enjoys the optimal approximation properties of standard (tensor-product)
B-Splines spaces.

It should also be noted that the result in [5] creates an important link between
the connectivity property of the T-mesh and the functional property of the T-spline
space which was not known before. The present paper generalizes the results of 5

in a fundamental way.
While T-splines are defined for any polinomial degree in [3, 16], everything

known in literature about AS T-splines is restricted to the bi-cubic case. The main
goal of this paper is to define and study AS T-splines of arbitrary degree, that is,
p-degree in one direction and q-degree in the other) for any p, q ∈ N. This opens the
possibility of k-refinement6,12,15, compatible elements9,10 and other tools beyond
tensor-product based IGA, and allows for more general geometries21,25.

We give the definition of the class of AS T-splines of p, q-degree, denoted ASp,q,
and recall the definition of the class of DC T-splines of p, q-degree, denoted DCp,q

(actually, the concept behind DC T-splines extends with no changes to any degree).
Then, we prove that analysis-suitable and dual-compatible are equivalent concepts,
that is ASp,q = DCp,q. This is the second important achievement of the present
paper, since DC T-splines enjoy the mathematical structure mentioned before and
therefore are “good” spaces for IGA.

The proof that ASp,q ⊂ DCp,q is based on a completely new induction argument
with respect to the degrees p and q. It is indeed quicker than the one in [5], and uses
the structure of AS T-meshes in a sound way. The proof of ASp,q ⊃ DCp,q is new
also for the bi-cubic case and completes the framework by giving a solid theoretical
ground for further studies of T-spline spaces.

Moreover, the property characterizing DC T-splines can immediately be ex-
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tended in multiple space dimension and this paves the way to the definition and
the study of T-splines in three space dimensions. Clearly this is the main research
challenge in the near future (see also the recent paper [26]).

A T-mesh is typically described in term of the active knots, that is, on the
so called parametric domain. Instead, our approach to T-splines is based on the
previous one from [5], and on the concept of T-mesh in the index domain (referred
as index T-mesh in the present paper). Indeed, since we restrict our study to a
single-patch bi-variate framework, we can also associate to each knot a pair of
integer indices. However, knots and indices are not in a one-to-one correspondence.
Indeed, with T-splines, as is usual with B-splines, we allow knot repetition, which
is a way to allow variable regularity of the blending functions. Then, it is preferable
to represent the T-mesh in the index domain, that is, with respect to the knot
indices instead of the knots themselves. In fact, the T-mesh connectivity is given
on the indices and both definitions of AS and DC T-mesh are also given at this
level. Indeed, we recall that a T-mesh is DC if each couple of associated blending
functions shares a common knot vector, at least in one direction (horizontal or
vertical). In order to allow knot repetition, the definition and properties are given
in terms of local index vectors and blending functions are associated to anchors
which are either vertices, edges or elements of the index T-mesh depending on the
degree p and q.

The situation above motivates the setting of our paper. We define the index
T-mesh, and the classes ASp,q and DCp,q of AS and DC T-meshes in Section 2.
These concepts depend on the degrees p and q, even though at this stage we have
anchors and index vectors but still do not have knots and T-spline functions. Our
main result, at this abstract level, is exposed in Sections 3–4, where we investigate
the relations between the T-mesh connectivity and the structure of the anchors
local indices, coming to ASp,q = DCp,q. The result is then independent of the global
knot vectors that are associated to the indices. In Section 5, we finally introduce
knots and T-spline blending functions and show how the abstract theory results
in properties of the T-spline space: existence of a dual basis, first of all, and then
linear independence of the blending functions and existence of a projector operator
with optimal approximation properties.

2. Index T-mesh: definitions and assumptions

An index T-mesh (also denoted in literature as T-mesh in the index domain, or
simply T-mesh) M is a rectangular partition of the index domain [m,m] × [n, n],
with m, m, n, n ∈ Z, such that all element corners, i.e., the vertices of M, have
integer coordinates. Precisely, M is the collection of all elements of the partition
above, where the elements are taken as open sets. We also denote by V the collection
of all the vertices of M, considered as singletons (subset of Z2). An edge of M is a
segment between vertices of M that does not intersect any element in M. We further
assume that edges do not contain vertices, and in particular that they are open at
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their endpoints. We denote by hE (resp., vE) the collection of all horizontal (resp.,
vertical) edges, and by E = hE∪ vE the collection of all edges. The boundary of an
element Q ∈ M is denoted by ∂Q, and the union of the two vertices V 1, V 2 ∈ V that
are endpoints of an edge e ∈ E is denoted by ∂e. The valence of a vertex V ∈ V is
the number of edges e ∈ E such that V ⊂ ∂e. Since elements are rectangular, only
valence three or four is allowed for all vertices V ⊂]m,m[×]n, n[, that is, so called
T-junctions are allowed but L-junctions or I-junctions19 are not. The horizontal
(resp., vertical) skeleton of the mesh is denoted by hS (resp., vS), and is the union
of all horizontal (resp., vertical) edges and all vertices. Finally, we denote skeleton
the union S = hS ∪ vS.

We split the index domain [m,m] × [n, n] into an active region ARp,q and a
frame region FRp,q, such that

ARp,q = [m + b(p + 1)/2c,m− b(p + 1)/2c]× [n + b(q + 1)/2c, n− b(q + 1)/2c],

and

FRp,q =
(
[m,m + b(p + 1)/2c] ∪ [m− b(p + 1)/2c,m]

)
× [n, n]

∪ [m,m]×
(
[n, n,+b(q + 1)/2c] ∪ [n− b(q + 1)/2c, n]

)
.

Note that both ARp,q and FRp,q are closed regions. The width of the frame for
several choices of p and q is shown in Figure 1.

Definition 2.1. An index T-mesh M belongs to ADp,q, that is, it is admissible for
degrees p and q, if S ∩ FRp,q contains the vertical segments

{`} × [n, n] for ` = m, . . . ,m + b(p + 1)/2c
and ` = m− b(p + 1)/2c, . . . ,m,

and the horizontal segments

[m,m]× {`} for ` = n, . . . , n + b(q + 1)/2c
and ` = n− b(q + 1)/2c, . . . , n,

and all vertices V ⊂]m,m[×]n, n[∩FRp,q have valence four.

Definition 2.1 prevents the mesh from having T-junctions in the frame (see
Figure 1).

We remark that, in the literature19, the index T-mesh is sometimes considered
as the set {Q ∈ M : Q ⊂ ARp,q} ⊂ M, which is instead denoted as active index
T-mesh in the present paper. As we will see below, the active index T-mesh carries
the anchors, that will be associated in Section 5 to the spline basis functions, while
the extra indices of FRp,q will be needed for the definition of the function when the
anchor is close to the boundary.

Definition 2.2. An index T-mesh M ∈ ADp,q is said to belong to AD+
p,q if, for each

couple of vertices V 1 = {(i1, j1)}, V 2 = {(i2, j2)} in V, such that V 1, V 2 ⊂ ∂Q for
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some Q ∈ M, and with i1 = i2 (resp. j1 = j2), the open segment {i1}×]j1, j2[ (resp.,
]i1, i2[×{j1}) is contained in S.

The condition stated in Definition 2.2 prevents the existence of two facing T-
junctions as those in Figure 8.

We are now ready to introduce the anchors. For T-splines of arbitrary degree,
anchors were associated in [3, 16] to vertices, center of the edges, or center of the
elements, depending on p and q. Instead, in the following Definition 2.3, we define
anchors as the vertices, edges or elements themselves, for consistency with the next
Definition 2.4.

Definition 2.3. Given a T-mesh M ∈ ADp,q, we define the set of anchors Ap,q(M)
as follows:

• if p, q are odd, Ap,q(M) = {A ∈ V : A ⊂ ARp,q},
• if p is even and q is odd, Ap,q(M) = {A ∈ hE : A ⊂ ARp,q},
• if p is odd and q is even Ap,q(M) = {A ∈ vE : A ⊂ ARp,q},
• if p , q are even Ap,q(M) = {A ∈ M : A ⊂ ARp,q}.

The set of anchors for different values of p and q is represented in Figure 1. We
note that the anchors are always contained in the active region.

Anchors A ∈ Ap,q are of type a × b, where a and b are either singletons subset
of Z or open intervals with integer endpoints.

Let a be either a singleton of Z or an interval with integer endpoints; we define

hI(a) := {i ∈ Z : {i} × a ⊂ vS},
vI(a) := {j ∈ Z : a× {j} ⊂ hS},

(2.1)

and we assume that these two sets are ordered.

Definition 2.4. Given an anchor A = a × b ∈ Ap,q(M), we define its horizontal
(vertical) index vector hvp,q(A) (vvp,q(A), resp.) as a subset of hI(b) (vI(a), resp.)
given by:

• if p is odd, hvp,q(A) = (i1, . . . , ip+2) ∈ Zp+2 is made of the unique p + 2
consecutive indices in hI(b) with {i(p+1)/2} = a.

• if p is even, hvp,q(A) = (i1, . . . , ip+2) ∈ Zp+2 is made of the unique p + 2
consecutive indices in hI(b) such that ]ip/2, ip/2+1[= a.

The vertical index vector, denoted by vvp,q(A) = (j1, . . . , jq+2) ∈ Zq+2, is con-
structed in an analogous way.

We also define the tiled floor and the skeleton of the anchor A as

tfp,q(A) =
⋃

κ=1,...p+1
`=1,...q+1

]iκ, iκ+1[×]j`, j`+1[, (2.2)

skp,q(A) = ([i1, ip+2]× [j1, jq+2]) \ tfp,q(A). (2.3)
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(c) (p, q) = (2, 3)
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(d) (p, q) = (3, 2)

Fig. 1. Admissible meshes and anchors for different values of p and q. The frame region is colored
in grey.

The tiled floor contains the elements of a local tensor product mesh given by the
index vectors, which is not necessarily a submesh of M. The skeleton contains all
the edges and vertices of this local mesh. In the following, and when no confusion
occurs, the subindices p and q will be removed from the previous notations for the
sake of clarity.

Some examples of index vectors, for different values of p and q, are given in
Figure 2. For example, in Figure 2(a) (p = q = 2), the index vectors for the anchor
A1 =]1, 3[×]7, 8[ are hv(A1) = (0, 1, 3, 4) and vv(A1) = (6, 7, 8, 9), and for the
anchor A2 =]5, 6[×]2, 4[ they are hv(A2) = (2, 5, 6, 7) and vv(A2) = (0, 2, 4, 5).
Notice that, since the vertical segments {3}×]2, 4[ and {4}×]2, 4[ do not belong to
the vertical skeleton of the mesh, the values 3 and 4 do not appear in vI(]2, 4[) (see
(2.1)), and are skipped in hv(A2).

Remark 2.1. In [3] the authors consider the horizontal and the vertical line pass-
ing through the center of the anchor, and the index vectors are constructed from
the intersections with the orthogonal lines of the mesh. This definition of the index
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(b) (p, q) = (3, 2)

Fig. 2. Construction of the horizontal and vertical index vector (light magenta), for some values
of p and q, and for the anchors marked in light blue.

vectors differs from the one that we give here. For instance, following the construc-
tion in [3], the values 3 and 4 would not be skipped by the horizontal index vectors
in the examples of Figure 2. However, as we will see in Remark 3.1, both definitions
coincide in the classes of T-meshes that we study in this paper.

We are now in the position to define two relevant subclasses of ADp,q.

2.1. Analysis-suitable T-meshes

We define T as the set of all vertices of valence three in ARp,q, denoted T-junctions.
Following the literature5,19, we adopt the notation ⊥, >, `, a to indicate the four
possible orientations of the T-junctions.

We give now a definition of analysis-suitable index T-mesh that extends to any
p, q the definition given in [19] for p = q = 3. As in [19], we need the notion of
T-junction extension. T-junctions of type ` and a ( ⊥, >, respectively) and their
extensions are called horizontal (vertical, resp.). For the sake of simplicity, let us
consider a T-junction T = {(̄ı, ̄)} ∈ T of type a. Clearly, ı̄ is one of the entries of
hI({̄}). We extract from hI({̄}) the p + 1 consecutive indices i1, i2, . . . , ip+1 such
that

ı̄ = iκ, with κ = d(p + 1)/2e.

We denote:

extep,q(T ) = [i1, ı̄]× {̄} , extfp,q(T ) =]̄ı, ip+1]× {̄} ,

extp,q(T ) = extfp,q(T ) ∪ extep,q(T ),

where extep,q(T ) is denoted edge-extension, extfp,q(T ) is denoted face-extension and
extp,q(T ) is just the extension of the T-junction T . This T-junction extension spans
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p+1 index intervals, referred to as bays in the literature. The edge-extension spans
d(p − 1)/2e bays, where [iκ−1, iκ] × {̄} is the first-bay edge-extension. The face-
extension spans b(p + 1)/2c bays, with ]iκ, iκ+1] × {̄} the first-bay face-extension.
More precisely, if p is odd, edge and face-extensions span (p − 1)/2 and (p + 1)/2
bays, respectively; if p is even, both edge and face-extensions span p/2 bays. For
the other type of T-junctions, the extensions are defined in a similar way, with the
number of bays for vertical extensions depending on the value of q. An example
with the length of the extensions is given in Figure 3.

Fig. 3. Extensions for degree p = 2 (horizontal) and q = 3 (vertical). The dashed lines represent
the face extensions.

The union of all extensions is denoted by

extp,q(M) =
⋃

T∈T

extp,q(T ).

Definition 2.5. A T-mesh M ∈ ADp,q is analysis-suitable if horizontal T-junction
extensions do not intersect vertical T-junction extensions. For given p and q, the
class of analysis-suitable T-meshes will be denoted by ASp,q.

Due to the length of the extensions, it is immediate to see that ASp,q ⊂ ASp′,q′ ,
when 0 ≤ p′ ≤ p, 0 ≤ q′ ≤ q.

Remark 2.2. As it was already noticed in [19], T-meshes with L-junctions or
I-junctions automatically violate the conditions of Definition 2.5, for any p, q. How-
ever, there is a type of valence two vertices, represented as |•, —• in [5], that could
be allowed in AS T-meshes. This situation is not allowed in our present framework.
Indeed, while having no practical interest in view of local refinement, these valence
two vertices do not play any role in the definition of even degree T-splines and make
the theory more involute for odd degree T-splines.

2.2. Dual-compatible T-meshes

In the present section we introduce the concept of dual-compatible T-meshes, that
is a generalization of the definition found in [5] for the p = q = 3 case.
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Let (i1, i2, . . . , i`) be a vector with ordered entries. By abuse of notation, we write
i ∈ (i1, i2, . . . , i`) when i ∈ {i1, i2, . . . , i`}. We also use the statement (i1, i2, . . . , i`)
skips i, when i1 < i < i` and i 6∈ (i1, i2, . . . , i`).

Definition 2.6. Let M ∈ ADp,q and let A1, A2 ∈ Ap,q(M) be two anchors, with
hvp,q(A1) = (i11, i

1
2, . . . , i

1
p+2) and hvp,q(A2) = (i21, i

2
2, . . . , i

2
p+2). We say that A1 and

A2 overlap horizontally, and use the notation hvp,q(A1) � hvp,q(A2), if

∀k ∈ hvp,q(A1), i21 ≤ k ≤ i2p+2 ⇒ k ∈ hvp,q(A2),

∀k ∈ hvp,q(A2), i11 ≤ k ≤ i1p+2 ⇒ k ∈ hvp,q(A1).
(2.4)

Similarly, let vvp,q(A1) = (j1
1 , j1

2 , . . . , j1
q+2) and vvp,q(A2) = (j2

1 , j2
2 , . . . , j2

q+2);
we say that A1 and A2 overlap vertically, denoted vvp,q(A1) � vvp,q(A2), if

∀k ∈ vvp,q(A1), j2
1 ≤ k ≤ j2

q+2 ⇒ k ∈ vvp,q(A2),

∀k ∈ vvp,q(A2), j1
1 ≤ k ≤ j1

q+2 ⇒ k ∈ vvp,q(A1).
(2.5)

Finally, we say that A1 and A2 partially overlap, and we denote it by A1 � A2, if
they overlap either vertically or horizontally.

In other words, we say that two anchors overlap in one direction (horizontal or
vertical) if their corresponding index vectors can be extracted as consecutive indices
from a common global index vector. We remark that if two anchors A1 and A2 do
not partially overlap, only two situations can occur (up to an exchange of A1 and
A2):

(i) hv(A1) skips an index of hv(A2), and vv(A1) skips an index of vv(A2),
(ii) hv(A1) skips an index of hv(A2), and vv(A2) skips an index of vv(A1).

Definition 2.7. A T-mesh M ∈ ADp,q is dual-compatible, and it is denoted by
M ∈ DCp,q, if all the couples of anchors A1, A2 ∈ Ap,q(M) partially overlap.

3. ASp,q ⊆ DCp,q

In this section we prove that any analysis-suitable T-mesh is also dual-compatible,
thus generalizing the result of [5] to arbitrary degree. The results are proved for T-
meshes in ADp,q, but they also hold for T-meshes of class AD+

p,q (see Definition 2.2),
since AD+

p,q ⊂ ADp,q. The proofs in this section are based on the following induction
argument.

Lemma 3.1. Let ℘p,q be a proposition such that

℘0,0 (holds true), (3.1)

and, for all p, q ∈ N,

∀p′ ∈ N | 0 ≤ p′ < p, ℘p′,q ⇒ ℘p,q, (3.2)

∀q′ ∈ N | 0 ≤ q′ < q, ℘p,q′ ⇒ ℘p,q. (3.3)
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Then for all p, q ∈ N, ℘p,q holds.

Proof. It follows from the complete induction principle.

Lemma 3.2. For all p, q ∈ N the following statement holds.
Let M ∈ ASp,q and A ∈ Ap,q(M). Then

(a) ∀V ∈ V, V ∩ tfp,q(A) = ∅, that is, there are no vertices of M in tfp,q(A);
(b) S ∩ tfp,q(A) ⊂ extp,q(M), that is, any portion of the edges of M that intersect

tfp,q(A) is contained in some T-junctions extension of M.
(c) skp,q(A) ⊂ (S ∪ extp,q(M)).

Proof. Let ℘(p, q) the statement of the lemma, that we want prove for all p, q ∈ N
by induction (Lemma 3.1). Observe that (3.1) is trivial, because tf0,0(A) is one
element of the mesh M.

Then, we prove (3.2) for p odd and q ∈ N. Let M ∈ ASp,q and A ∈ Ap,q(M)
be given; from Definition 2.3, A is either a vertex or a vertical edge of M, when
q is odd or even, respectively. Let γ be the vertical line of skp,q(A) that contains
A (see Figure 4). Consider the T-junctions of kind ` or a on γ, and let M̄ be the
T-mesh which is obtained refining M by adding the first-bay face-extension of the
T-junctions above, as depicted in Figure 5. Clearly S ⊆ S̄, where S̄ denotes the
skeleton of M̄.

From Definition 2.1, and observing that FRp−1,q ( FRp,q for an odd p, it
is immediate to see that the added extensions will not affect the frame, thus
M̄ ∈ ADp−1,q. Moreover, from Definition 2.5, M̄ ∈ ASp−1,q: indeed when adding
a horizontal edge as above, either the new edge connects two T-junctions of M,
that become vertices of valence four in M̄, or the corresponding T-junction T of
M is replaced by a new T-junction T̄ of M̄ (see Figure 5). In the latter case, it is
immediate to see that extp−1,q(T̄ ) ⊂ extp,q(T ), and new intersections of extensions
cannot appear.

Let Ā1, Ā2 be the two (left, right) anchors in Ap−1,q(M̄) such that A ⊆
∂Ā1 ∩ ∂Ā2, as depicted in Figure 5. We denote by hvp−1,q(Āi) and vvp−1,q(Āi)
the horizontal and vertical index vectors of Āi with respect to the T-mesh M̄. By
construction, there are no T-junctions of kind ` or a on γ∩M̄ . Moreover, by the in-
duction hypothesis ℘(p−1, q) point (a), each horizontal line of M̄ crossing γ cannot
terminate in tfp−1,q(Āi), whence vvp−1,q(Āi) = vvp,q(A). Furthermore, hvp−1,q(Ā1)
(resp., hvp−1,q(Ā2)) gets the leftmost (resp., rightmost) p + 1 entries of hvp,q(A).
As a consequence, we have

tfp,q(A) = tfp−1,q(Ā1) ∪ tfp−1,q(Ā2), (3.4)

skp,q(A) = skp−1,q(Ā1) ∪ skp−1,q(Ā2). (3.5)

Point (a) of ℘(p, q) follows using (3.4) and point (a) of ℘(p−1, q) for M̄, because
the vertices of M are also vertices of M̄.
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A

γ A

γ

Fig. 4. Examples of A ∈ Ap,q(M), with p odd and q = 3 (left) and q = 2 (right). The anchor A is
represented in blue, while the vertical line γ selected in the proof of Lemma 3.2 is highlighted in
red.

Ā
1

Ā
2

Ā
1

Ā
2

Fig. 5. From Figure 4, the first-bay horizontal face-extensions are added in order to obtain M̄.
The added lines either replace T-junctions with new ones, or they connect two T-junctions. The
anchors Ā1, Ā2 ∈ Ap−1,q(M̄) in the proof of Lemma 3.2 are represented in light green.

Point (b) of ℘(p, q) follows, first using S ⊆ S̄ and (3.4), then point (b) of ℘(p−1, q)
for M̄, and then extp−1,q(M̄) ⊂ extp,q(M):

S ∩ tfp,q(A) ⊆ S̄ ∩ (tfp−1,q(Ā1) ∪ tfp−1,q(Ā2)) ⊂ extp−1,q(M̄) ⊂ extp,q(M).

Point (c) of ℘(p, q) follows from (3.5), then point (c) of ℘(p − 1, q) for M̄, and
then (S̄ ∪ extp−1,q(M̄)) ⊂ (S ∪ extp,q(M)):

skp,q(A) = skp−1,q(Ā1) ∪ skp−1,q(Ā2) ⊂ (S̄ ∪ extp−1,q(M̄)) ⊂ (S ∪ extp,q(M)).

The proof of (3.2) for p even, p ≥ 2, and q ∈ N, is similar and we only give
an outline pointing out the differences. Take M ∈ ASp,q and A ∈ Ap,q(M) (see
Figure 6). Since M ∈ AS0,q and A ∈ A0,q(M) as well, the induction hypothesis
℘(0, q) point (a) guarantees that there are no T-junctions in tf0,q(A):

{T ∈ T : T ⊂ tf0,q(A)} = ∅. (3.6)
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Let γ1 (resp., γ2) the left (resp., right) vertical line of sk0,q(A) (see Figure 6). We
now construct a coarser T-mesh M̄ by the following procedure: consider any T-
junctions T = {(̄ı, ̄)} of kind a contained in γ1 (resp., of kind ` contained in γ2).
Observe that, since M ∈ ADp,q, ı̄ ≥ m + p

2 + 1 and ı̄ ≤ m− p
2 − 1 . Then,

• if ı̄ > m + p
2 + 1 (resp., ı̄ < m− p

2 − 1 ), remove the first-bay edge-extension of
T ,

• if ı̄ = m + p
2 + 1 (resp., ı̄ = m − p

2 − 1), remove the line ]m,m + p
2 + 1[×{̄}

(resp., ]m− p
2 − 1,m[×{̄}).

That is, in general we remove the first-bay edge-extension (see Figure 7), and if this
first-bay edge-extension arrives up to the frame, we also remove the horizontal line
in the frame to maintain the valence condition in Definition 2.1.

The construction above leads to and admissible T-mesh M̄ ∈ ADp−1,q: indeed,
a horizontal edge-extension of M does not intersect any vertical T-junction (⊥ or
>) by the condition M ∈ ASp,q, then by removing edges as above we only produce
valence three or four vertices in M̄. Moreover, we have M̄ ∈ ASp−1,q, and each
vertex of M̄ on γ1 is now connected by a horizontal edge to a vertex on γ2, and
viceversa (use (S̄ ∩ tf0,q(A)) = (S ∩ tf0,q(A)) and (3.6)).

Let us consider Ā1, Ā2 ∈ Ap−1,q(M̄) such that Āi ⊆ ∂A (see Figure 7). By con-
struction, tfp,q(A) = tfp−1,q(Ā1)∪ tfp−1,q(Ā2), skp,q(A) = skp−1,q(Ā1)∪skp−1,q(Ā2)
and extp−1,q(M̄) ⊂ extp,q(M); moreover S∩ tfp,q(A) is the union of S̄∩ tfp,q(A) and
the edge-extensions of M that have been removed. Reasoning as before, we get the
three points of ℘(p, q).

Aγ1 γ2

A

γ1 γ2

Fig. 6. Examples of A ∈ Ap,q(M), with p even, q = 2 (left) and q = 3 (right). The anchor A is
represented in blue, while the regions γ1 and γ2 selected in the proof of Lemma 3.2 are highlighted
in red.

Eventually, (3.3) is proved analogously to (3.2), and not detailed.
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Ā
1

Ā
2

Ā
1

Ā
2

Fig. 7. From Figure 6, the first-bay edge-extensions (dotted lines) are removed in order to obtain
M̄. The anchors Ā1, Ā2 ∈ Ap−1,q(M̄) are represented in light green.

Remark 3.1. As observed in Remark 2.1, our index vector definition (Definition
2.4) differs from the one given in [3] for a generic T-mesh. However, it is easy
to check that the two definitions coincide when property (a) of Lemma 3.2 holds.
Indeed, the property implies that, given an anchor A ∈ Ap,q(M), there are no lines
of the skeleton S that terminate in a T-junction which lies in a rectangle of the tiled
floor tfp,q(A).

The major consequence of Lemma 3.2 is the following theorem.

Theorem 3.1. If M ∈ ASp,q then M ∈ DCp,q.

Proof. The proof is given by contradiction, assuming M ∈ ASp,q and M 6∈ DCp,q.
Since M 6∈ DCp,q, from Definition 2.7 there exist A1, A2 ∈ Ap,q(M) such that
A1 6� A2, and, as we have already mentioned, one of these two cases may occur:

(i) hv(A1) skips a value of hv(A2), and vv(A1) skips a value of vv(A2),
(ii) hv(A1) skips a value of hv(A2), and vv(A2) skips a value of vv(A1).

In the first case there exists a vertical line and a horizontal line of skp,q(A2), that
intersect in tfp,q(A1). In the second case, there exists a vertical line of skp,q(A2) that
passes through tfp,q(A1), and a horizontal line of skp,q(A1) that passes through
tfp,q(A2), and the two lines intersect. Both cases are in contradiction with M ∈
ASp,q. Indeed, from points (b) and (c) in Lemma 3.2, the skeleton of an anchor
contained in the tiled floor of another anchor is part of an extension of some T-
junction. Therefore, in the two cases there are vertical and horizontal extensions
that intersect.

4. DCp,q ⊆ ASp,q

In this section, we want to prove that any dual-compatible mesh is also analysis-
suitable, thus showing that the two concepts are equivalent. Here we restrict our-
selves to the class of T-meshes AD+

p,q as provided in Definition 2.2. This is not a
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technical issue, but rather a needed assumption as it is clear from the mesh M

in Figure 8: M is a tensor product mesh to which two edges have been removed.
Let p, q ≥ 2. If both p and q are odd, the anchors and the index vectors are ex-
actly the ones of the corresponding tensor product mesh. As a consequence, M is
dual-compatible, i.e., M ∈ DCp,q but clearly we have M 6∈ ASp,q since extensions
intersect. It should also be mentioned that if p and q are even M 6∈ DCp,q, because
the two anchors associated with the rectangular elements do not partially overlap.

Fig. 8. A mesh M which does not belong to the class AD+
p,q

We first state and prove the main result of this section for odd degrees p and q.

Theorem 4.1. Let M ∈ AD+
p,q with p and q odd. If M ∈ DCp,q then M ∈ ASp,q.

Proof. We are given with a T-mesh M ∈ AD+
p,q such that M 6∈ ASp,q and we prove

that M 6∈ DCp,q, that is, we find two anchors that do not overlap. If M 6∈ ASp,q, there
is a horizontal T-junction T 1 = {(i1, j1)} and a vertical T-junction T 2 = {(i2, j2)}
such that extp,q(T 1) ∩ extp,q(T 2) 6= ∅. We assume, without loss of generality, that
T1 is of type a while T 2 is of type >. Let κ = (p+1)/2 and ` = (q +1)/2. Following
the definition of the face and edge extension, we extract from hI(j1) the p + 1
consecutive indices i11, . . . , i

1
p+1 such that i1κ = i1 and analogously, we extract from

vI(i2) the q + 1 consecutive indices j2
1 , . . . , j2

q+1 such that j2
` = j2. We recall that

extep,q(T
1) = [i11, i

1
κ]× {j1}, extfp,q(T

1) =]i1κ, i1p+1]× {j1},
extep,q(T

2) = {i2} × [j2
1 , j2

` ], extfp,q(T
2) = {i2}×]j2

` , j2
q+1].

(4.1)

Since p and q are odd we define A1 = T 1 and A2 = T 2 and have A1, A2 ∈ Ap,q(M).
The extensions above are related with the index vectors hv(A1) and vv(A2). Indeed,
by definition, there exist two indices i10 < i11 and j2

0 < j2
1 such that:

hv(A1) = (i10, i
1
1, . . . , i

1
p+1) , vv(A2) = (j2

0 , j2
1 , . . . , j2

q+1). (4.2)

We remark first that {(i1κ+1, j
1)} 6∈ hS but it belongs to a vertical edge e1,

and {(i2, j2
`+1)} 6∈ vS but it belongs to a horizontal edge e2. This follows from the
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definition of hI(j1) and vI(i2), considering that the two points cannot be associated
to vertices of the mesh thanks to the assumption M ∈ AD+

p,q. The boundary of both
e1 and e2 is made of two vertices, i.e., B1

− ∪ B1
+ = ∂e1 and B2

− ∪ B2
+ = ∂e2, see

Figure 9(a).
By construction, vv(A1) 6� vv(B1

−), and vv(A1) 6� vv(B1
+), since vv(B1

−) and
vv(B1

+) skip j1; analogously, hv(A2) 6� hv(B2
−), and hv(A2) 6� hv(B2

+), since
hv(B2

−) and hv(B2
+) skip i2. If hv(A1) 6� hv(B1

−) then A1 and B1
− do not par-

tially overlap; if hv(A1) 6� hv(B1
+) then A1 and B1

+ do not partially overlap; if
vv(A2) 6� vv(B2

−) then B2
− and A2 do not partially overlap; and if vv(A2) 6� vv(B2

+)
then B2

+ and A2 do not partially overlap. In these four cases the proof is finished.
From now on, let B1 = B1

+, B2 = B2
+, we suppose that

hv(A1) � hv(B1) , vv(A2) � vv(B2). (4.3)

We consider now all possible cases.

Case 1) We consider the case when extp,q(T 1)∩extp,q(T 2) 6⊂ S. Here it is immediate
to check that A1 = T 1 and A2 = T 2 do not overlap. In fact, hv(A1) skips i2 while
vv(A2) skips j1.

Case 2) We consider the case when extp,q(T 1)∩extp,q(T 2) = V ∈ V. We can assume
without loss of generality that edge extensions intersect, i.e. (see Figure 9(a))

extep,q(T
1) ∩ extep,q(T

2) = V ∈ V. (4.4)

If this is not the case, it is easy to see that we can select another couple of T-
junctions T̃ 1 ⊂ extp,q(T 1) and T̃ 2 ⊂ extp,q(T 2), with T̃ 1 of kind ` or a and T̃ 2

of kind ⊥ or >, such that extep,q(T̃
1) ∩ extep,q(T̃

2) = V ; then select A1 = T̃ 1 and
A2 = T̃ 2, and repeat a construction similar to case 1) above. Since (4.4),

B1
−

B1
+

B2
− B2

+

A1

A2

(a)

B2
− B2

+

A1

A2

(b)

Fig. 9. T-junctions T 1 and T 2 for p and q odd. (a) extep,q(T 1) ∩ extep,q(T 2) is a vertex of the

T-mesh. (b) extfp,q(T 1) ∩ extep,q(T 2) belongs to a vertical edge of the mesh.
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∃n 1 ≤ n ≤ κ : i2 = i1n , ∃m 1 ≤ m ≤ ` : j1 = j2
m. (4.5)

Recalling (4.3) (hv(A1) � hv(B1)), (4.2) and (4.5), we have that hv(B1) contains
i2. By construction, we have that hv(B2) skips i2. Thus,

hv(B1) 6� hv(B2).

Using (4.3) (vv(A2) � vv(B2)), (4.2) and (4.5), we have that vv(B2) contains j1.
By construction vv(B1) skips j1. Thus

vv(B1) 6� vv(B2).

Hence B1 and B2 do not partially overlap.
Case 3) We consider the case when extp,q(T 1)∩ extp,q(T 2) is contained in a vertical
edge e ∈ vE. Without loss of generality (arguing as in Case 2) we can further assume
that

extp,q(T 1) ∩ extp,q(T 2) = extfp,q(T
1) ∩ extep,q(T

2) ⊂ e, e ∈ vE; (4.6)

see Figure 9(b).
From (4.6), hv(A1) contains i2, and, by construction, hv(B2) skips i2. Thus

hv(A1) 6� hv(B2).

From (4.1)–(4.3) we have that the first (p + 1)/2 entries of vv(B2) correspond to
the indices of extep,q(T

2). Therefore, due to (4.6), vv(B2) skips j1. Whence

vv(A1) 6� vv(B2).

We conclude that A1 and B2 do not overlap.
Case 4) We consider the case when extp,q(T 1)∩extp,q(T 2) is contained in a horizontal
edge. Arguing as before we can assume extp,q(T 1) ∩ extp,q(T 2) = extep,q(T

1) ∩
extfp,q(T

2) ⊂ e, e ∈ hE, and the proof is analogous to that of Case 3.

Now, we want to consider the case of even or mixed degrees p and q. We start
proving the next Lemma which shows that the Property (a) of Lemma 3.2 holds
also for dual-compatible meshes.

Lemma 4.1. Let M ∈ DCp,q and A ∈ Ap,q(M). Then tfp,q(A) does not contain
vertices, i.e., for all V ∈ V, it holds: V ∩ tfp,q(A) = ∅.

Proof. Let us suppose that there exists an anchor A ∈ Ap,q(M) and a vertex
V ∈ V, V = {(i, j)}, such that V ⊂ tfp,q(A). By definition, V is either a T-junction
or a vertex of valence 4. We will choose an anchor A′ ∈ Ap,q(M) such that A′ 6� A.
This choice depends on p and q:

• if p and q are odd, it is trivial and it is enough to choose A′ = V ;
• if p is odd and q is even (p is even and q is odd) we can choose A′ as a vertical

(horizontal) edge e such that V ⊂ ∂e.
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• if q and p are even, we choose A′ as any of the elements Q ∈ M such that V is
one of the four corners of Q.

In all cases hv(A′) contains i while hv(A) skips it, and vv(A′) contains j while
vv(A) skips it. Thus, A 6� A′.

We are now ready to extend Theorem 4.1 also to the cases when p and q are not
odd. We first prove the result when p and q are both even, and then for the mixed
odd/even and even/odd cases.

Theorem 4.2. Let M ∈ AD+
p,q with p and q even. If M ∈ DCp,q then M ∈ ASp,q.

Proof. The proof follows the same steps as for Theorem 4.1 and will be therefore
presented more briefly.

Let T 1 and T 2 be two T-junctions as in the proof of Theorem 4.1, with the
notation (4.1). Let Q` ⊂ M, ` = 1, 2 be the only element of the mesh whose closure
contains the first-bay face extension of the T-junction T `.

We associate anchors A` and B`, ` = 1, 2 to the T-junctions as follows (see
Figure 10(a)):

i) A` is one of the two anchors in Ap,q(M) such that the first-bay edge extension
of T ` belongs to ∂A`.

ii) B` = Q`, B` ∈ Ap,q(M).

As in Theorem 4.1, it is easy to see that vv(B1) 6� vv(A1) and hv(B2) 6� hv(A2).
We are then left with the case:

hv(B1) � hv(A1) and vv(B2) � vv(A2). (4.7)

As in Theorem 4.1, the proof splits in the next four cases, and all the other pos-
sibilities can be recast in these cases up to possible alternate choice of T-junctions.

Case 1) Let extp,q(T 1) ∩ extp,q(T 2) 6⊂ S. It is immediate to check that A1 6� A2.
Case 2) Let extep,q(T

1) ∩ extep,q(T
2) = V ∈ V. In view of (4.7), with the same argu-

ment as in Theorem 4.1, the index vector hv(B2) skips i2 while hv(B1) contains i2,
and vv(B1) skips j1 while vv(B2) contains j1. Whence B1 6� B2, see Figure 10(a).

Case 3) Let extfp,q(T
1) ∩ extep,q(T

2) ⊂ e, e ∈ vE. In view of (4.7), with the same
arguments as in the proof of Theorem 4.1, hv(B2) skips i2 and vv(B2) skips j1 while
hv(A1) contains i2 and vv(A1) contains j1. Whence A1 6� B2, see Figure 10(b).

Case 4) The case extep,q(T
1) ∩ extfp,q(T

2) ⊂ e, e ∈ hE is analogous to Case 3.

Finally, we propose the same Theorem in the case of mixed degrees, i.e., p being
even and q odd or viceversa.

Theorem 4.3. Let M ∈ AD+
p,q with p odd and q even or viceversa. If M ∈ DCp,q

then M ∈ ASp,q.
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B1

B2

A1

A2

(a)

B2

A1

A2

(b)

Fig. 10. T-junctions T 1 and T 2 for p and q even. (a) extep,q(T 1) ∩ extep,q(T 2) is a vertex of the

T-mesh. (b) extfp,q(T 1) ∩ extep,q(T 2) belongs to a vertical edge of the mesh.

Proof. The proof of this result uses the same argument as in Theorems 4.1 and 4.2
and we just sketch it briefly. Let T 1 and T 2 be two T-junctions as in Theorem 4.1,
and let Q`, ` = 1, 2, be the elements defined as in Theorem 4.2.

We concentrate on the case p odd and q even, the other one being analogous.
We associate the anchors A` and B` to T `, ` = 1, 2 as follows (see Figure 11):

i) A` ∈ Ap,q(M) is one anchor (possibly unique) such that T ` ⊂ ∂A`.
ii) B1 is the only anchor that intersects the first-bay face-extension of T 1. It is

unique due to M ∈ AD+
p,q.

iii) B2 is one anchor such that B2 ⊂ ∂Q2.

As before, the proof splits in four cases:

Case 1) Let extp,q(T 1) ∩ extp,q(T 2) 6⊂ S. It holds A1 6� A2.
Case 2) Let extep,q(T

1) ∩ extep,q(T
2) = V ∈ V. It holds B1 6� B2, see Figure 11(a).

Case 3) Let extfp,q(T
1)∩ extep,q(T

2) ⊂ e, e ∈ vE. It holds A1 6� B2, see Figure 11(b).
Case 4) Let extep,q(T

1)∩ extfp,q(T
2) ⊂ e, e ∈ hE. It holds A2 6� B1, see Figure 11(c).

The case p even and q odd is proved in a similar way, reminding that the anchors
are the horizontal edges, and exchanging the way to choose B1 and B2.

5. Properties of DC T-splines

In this section we finally define T-splines blending functions over T-meshes in the
classes ASp,q ≡ DCp,q, and we analyze how the structure of dual-compatible T-
meshes has an impact on the mathematical properties of the T-spline blending
function and the space they span. We start by introducing T-spline spaces of gen-
eral polynomial degree (p, q), that is a space of real valued functions living on the
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B1

B2

A1

A2

(a)

B2

A1

A2

(b)

B1

A1

A2

(c)

Fig. 11. T-junctions T 1 and T 2 for p odd and q even. (a) extep,q(T 1) ∩ extep,q(T 2) = V ∈ V, (b)

extfp,q(T 1) ∩ extep,q(T 2) ⊂ e, e ∈ vE, (c) extep,q(T 1) ∩ extfp,q(T 2) ⊂ e, e ∈ hE.

parametric domain [0, 1] × [0, 1]. Let M ∈ DCp,q be a given T-mesh as defined in
Section 2. Let moreover Ξs = (sm, . . . , sm) be an open (p−)knot vector on the
interval [0, 1], that is,

0 = sm = sm+1 = . . . = sm+p < sm+p+1 ≤ . . . ≤ sm−p−1 < sm−p = . . . = sm = 1.

with all internal knots having multiplicity less than or equal to p + 1. Analogously,
let Ξt = (tn, . . . , tn) be an open (q−)knot vector on [0, 1], that is

0 = tn = tn+1 = . . . = tn+q < tn+q+1 ≤ . . . ≤ tn−q−1 < tn−q = . . . = tn = 1.

with all internal knots having multiplicity less than or equal to q + 1.
We define Mext as the T-mesh obtained by adding to M all the T-junction

extensions, that is, Sext = S ∪ extp,q(M), where Sext is the skeleton of Mext. We
call this mesh the extended T-mesh in the index domain. Notice that in general
Mext 6∈ ADp,q. Finally, we denote by Mext the (extended) mesh in the parametric
space, which is defined as the collection of non empty elements of the form

Q =]si1 , si2 [×]tj1 , tj2 [6= ∅, with Q =]i1, i2[×]j1, j2[∈ Mext.

Given a polynomial degree p′ and a local knot vector (c1, c2, . . . , cp′+2), let in the
following Np′(c1, c2, . . . , cp′+2; ·) denote the associated standard univariate B-spline
of degree p′, see for instance [20, 13]. We associate to each anchor A = a × b ∈
Ap,q(M) a bivariate B-spline function of degree p in the first coordinate s and of
degree q in the second coordinate t. Such function is referred to as T-spline blending
function, and is defined as follows:

BA
p,q(s, t) := Np(si1 , si2 , . . . , sip+2 ; s)Nq(tj1 , tj2 , . . . , tjq+2 ; t) ∀(s, t) ∈ [0, 1]2, (5.1)

where hv(A) = (i1, . . . , ip+2) and vv(A) = (j1, . . . , jq+2) denote the horizontal and
vertical index vectors associated to the anchor A, see Definition 2.4.
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The T-spline space Bp,q = Bp,q(M,Ξs,Ξt) is finally given as the span

Bp,q(M,Ξs,Ξt) := span{BA
p,q : A ∈ Ap,q(M)}. (5.2)

The functions in Bp,q(M,Ξs,Ξt) are real valued, live in [0, 1]2, and, thanks to Lemma
3.2-point (c), their restrictions to any Q ∈ Mext are bivariate polynomials of degree
(p, q). The regularity across the edges of the mesh Mext depends on the multiplicity
of the knots in Ξs or Ξt associated to the edge, as in standard B-splines.

To each A = a× b ∈ Ap,q(M) we also associate the functional λA
p,q defined as:

λA
p,q = λp(si1 , si2 , . . . , sip+2)⊗ λq(tj1 , tj2 , . . . , tjq+2), (5.3)

where the two one-dimensional functionals λp(s11 , si2 , . . . , sip+2) and
λq(tj1 , tj2 , . . . , tjq+2) are those defined in Theorem 4.41 of [20]. Finally, for every
anchor A ∈ Ap,q(M) we represent with the symbol QA the open support of BA

p,q or,
equivalently, of λA

p,q.
The following fundamental result holds.

Proposition 5.1. Let M ∈ DCp,q. Then the set of functionals

{λA
p,q : A ∈ Ap,q(M)} (5.4)

is a set of dual functionals for the set

{BA
p,q : A ∈ Ap,q(M)}. (5.5)

Proof. Let any two anchors A1 = a1 × b1 and A2 = a2 × b2 in Ap,q(M). We then
need to show

λA1

p,q (BA2

p,q) =

{
1 if a1 = a2, b1 = b2 ,

0 otherwise.
(5.6)

Since the mesh M ∈ DCp,q, the two anchors A1 and A2 overlap either in the horizon-
tal or vertical direction. Without loss of generality, we assume the anchors overlap
in the horizontal direction. As a consequence, since (as observed in Section 2.2)
their corresponding horizontal index vectors can be extracted as consecutive in-
dices from a common global index vector, following Definition 2.4 and using the
obvious notation for hv(A1), hv(A2), it is immediate to check that

λ(si11
, . . . , si1p+2

)
(
N(si21

, . . . , si2p+2
; ·)

)
= δ(a1,a2)

where the (generalized) Kronecker symbol δ(a1,a2) = 1 if a1 = a2, and vanishes
otherwise.

Therefore by definition (5.3) we have

λA1

p,q (BA2

p,q) = δ(a1,a2) λ(tj1
1
, . . . , ti1q+2

)
(
N(tj2

1
, . . . , tj2

q+2
; ·)

)
.

The above identity immediately proves (5.6) in the case a1 6= a2. If, on the contrary,
a1 = a2, then by definition (2.1) it holds vI(a1) = vI(a2), and then A1 and A2 also
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overlap in the vertical direction. Therefore the result follows since in such case,
again by the same argument above,

λ(tj1
1
, . . . , ti1q+2

)
(
N(tj2

1
, . . . , tj2

q+2
; ·)

)
= δ(b1,b2).

Since in the previous sections we proved that ASp,q ⊂ DCp,q, the result of Propo-
sition 5.1 applies also to analysis-suitable T-meshes. Therefore, the existence of dual
functionals immediately implies a set of important properties for AS T-spline spaces,
i.e. spaces of T-splines (5.2) generated by a T-mesh M ∈ ASp,q. We list such prop-
erties in the following propositions and remarks. The derivations below follow with
the same identical arguments used in [5] for the bi-cubic case. Therefore we do not
include the (simple) proofs of the following propositions and refer the reader to [5].

The first result is the linear independence of set of functions appearing in (5.2),
therefore forming a basis.

Proposition 5.2. Given any T-mesh M ∈ ASp,q and knots Ξs,Ξt, the blending
functions {BA}A∈Ap,q(M) are linearly independent. Therefore (5.5) constitutes a
basis for Bp,q(M,Ξs,Ξt) and (5.4) is a corresponding dual basis.

An important consequence of Proposition 5.1 is that we can build a projection
operator Π : L2(]0, 1[2) → Bp,q(M,Ξs,Ξt), defined by

Π(f)(s, t) =
∑

A∈Ap,q(M)

λA
p,q(f)BA

p,q(s, t) ∀f ∈ L2(]0, 1[2), ∀(s, t) ∈ [0, 1]2. (5.7)

Due to Proposition 5.1 it is immediate to check that Π is a projection operator.
Such operator allows, for instance, to prove straightforwardly the partition of unity
property under a very mild additional assumption on the T-spline space.

Lemma 5.1. Let M ∈ ASp,q and let Ξs,Ξt be two given knot vectors. Assume
that the constant function is in the space Bp,q(M,Ξs,Ξt). Then the basis functions
{BA}A∈Ap,q(M) are a partition of unity.

In addition, the existence of a dual basis grants a very powerful tool to prove
approximation properties for AS T-spline spaces. Approximation properties are a
fundamental condition for any discrete space to be used in the analysis of PDE prob-
lems; while the approximation properties of tensor product splines and NURBS is
at a more advanced stage20,2,6,7, there is almost no result for T-splines4,5. We here
below limit ourselves to showing why the tool provided by Proposition 5.1 is so
promising. We postpone to future publications a deeper analysis of the approxima-
tion properties of T-splines of arbitrary degree.

The following result will make use of the notion of extended patch Q̃ associated
to a generic element Q, reminding that QA denotes the open support of BA

p,q:

Q̃ =
⋃

A∈Tp,q(Q)

QA, Tp,q(Q) = {A ∈ Ap,q(M) such that QA ∩ Q 6= ∅}.

Furthermore, we will denote by ReQ the smallest rectangle in [0, 1]2 containing Q̃.
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The following result holds.

Proposition 5.3. Let M ∈ ASp,q and let Ξs,Ξt be two given knot vectors. Assume
that the constant function belongs to the space Bp,q(M,Ξs,Ξt). Then the projection
operator Π is (locally) h−uniformly continuous in the L2 norm. More precisely, it
exists a constant C independent of M,Ξs,Ξt such that

||Π(f)||L2(Q) ≤ C||f ||L2(eQ) ∀Q ∈ Mext, ∀f ∈ L2(]0, 1[2).

Note that the constant C may depend on p and q.

The above continuity property implies for instance the following approximation
result in the L2 norm.

Proposition 5.4. Let M ∈ ASp,q and let Ξs,Ξt be two given knot vectors. Assume
that the space of global polynomials of degree min{p, q} living on [0, 1]2 are included
in the T-spline space Bp,q(M,Ξs,Ξt). Then it exists a constant C ′ independent of
M,Ξs,Ξt such that for r ∈ [0,min{p, q}+ 1]

||f −Π(f)||L2(Q) ≤ C ′(hReQ)r|f |Hr(ReQ) ∀Q ∈ Mext, ∀f ∈ Hr(]0, 1[2).

where Hr(]0, 1[2) indicates the Sobolev space of order r and hReQ represents the di-
ameter of ReQ. The constant C ′ may depend on p and q.

Note that the inclusion property for Bp,q(M,Ξs,Ξt) in Proposition 5.4 is the
minimal one required in order to obtain an O(hmin{p,q}+1) convergence rate in the
mesh size.

We conclude the present section with a final observation. For given degrees
p and q, to each T-spline basis function BA

p,q, with knot vectors (si1 , si2 , . . . , sip+2)
and (tj1 , tj2 , . . . , tjq+2), one can associate the Greville site gA in [0, 1]2 of coordinates
(sA, tA)

sA =
∑p+1

k=2 sik

p
, tA =

∑q+1
k=2 tjk

q
.

The interest in Greville sites is mainly related to interpolation with splines and to
collocation methods. We defer the interested reader to e.g., [13, 1] and references
therein. Clearly, a key condition for the well posedness of interpolation or collo-
cation at Greville sites is that all points {gA}A∈Ap,q(M) are distinct. Such result,
that is obvious in the tensor product case, is not guaranteed for general T-spline
spaces. Nevertheless, again due to the dual-compatibility property, we can derive
the following proposition.

Proposition 5.5. Let M ∈ ASp,q and let Ξs,Ξt be two given knot vectors with
knot multiplicity equal or less than p and q, respectively. Then, all Greville sites
{gA}A∈Ap,q(M) are distinct.

Proof. First, we remind that in one space dimension, Greville sites for a given
degree p′ and constructed from a common knot vector, are distinct as soon as
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knots have multiplicity at most p′ times. Given two anchors A1 and A2 in Ap,q(M)
such that QA1 ∩ QA2 6= ∅, then A1 � A2 since M ∈ DCp,q. If A1 and A2 overlap
vertically then the ordinates of the corresponding Greville sites are different. If A1

and A2 overlap horizontally, then the abscissae of the corresponding Greville sites
are different.
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