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Abstract. We analyze a model of agent based vaccination campaign against influenza
with imperfect vaccine efficacy and durability of protection. We prove the existence of
a Nash equilibrium by Kakutani’s fixed point theorem in the context of non-persistent
immunity. Subsequently, we propose and test a novel numerical method to find the
equilibrium. Various issues of the model are then discussed, such as the dependence of
the optimal policy with respect to the imperfections of the vaccine, as well as the best
vaccination timing. The numerical results show that, under specific circumstances,
some counter-intuitive behaviors are optimal, such as, for example, an increase of the
fraction of vaccinated individuals when the efficacy of the vaccine is decreasing up to
a threshold. The possibility of finding optimal strategies at the individual level can
help public health decision makers in designing efficient vaccination campaigns and
policies.

1. Introduction

Vaccination is a widely used epidemic control tool which may (and should) be analyzed
from several perspectives, such as the design of fabrication techniques, the study of its
action mechanisms, the analysis – at the individual level – of the medical issues of the
vaccine, including its side effects, and the global impact on the epidemic spread of some
carefully designed vaccination protocols.

Obviously, these different viewpoints are strictly interconnected: for example, the
action mechanism of a vaccine determines its features and its protection effect against
the target illness, and the public health strategies are a consequence of the former two
aspects.

When looking at vaccination policies, two approaches are possible.
The first one supposes that a health authority can decide of a vaccination plan, which

is then implemented. The plan optimizes the vaccination strategy as a function of
the severity of the epidemic, its medical risks and the (economic and medical) costs
associated to the vaccine.

This framework, that is suitable for compulsory vaccination or when the individuals
fully adhere to the recommendations of the health authority, has been the first one
considered in the literature (see [39, 1, 52, 59, 23, 4, 46]).

However, this kind of studies is oriented to the best possible strategy for the popu-
lation as a whole, and it does not take into account the individual viewpoints. Indeed,
when the vaccination is a choice – on a voluntary basis – or when there are debates on
the risks or costs of the vaccine, the previous approach is not valid anymore and the
situation is better described by models that take into account the individual decision
level.

Key words and phrases. Mean Field Games, SIR model, vaccination persistence, durability of pro-
tection, limited immunity, vaccine effectiveness, influenza.
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In this second group of models, the agents decide for themselves whether the vaccina-
tion is suitable or not, but they cannot individually influence the epidemic propagation,
which is given by the collective choice of the population as a whole.

The study of the collective behavior of large populations of non-cooperative interact-
ing individuals – such as the problem considered in the present article – is a complicated
problem, but it recently received a firm mathematical ground thanks to the Mean Field
Game (MFG) theory, introduced in the literature by the pioneering works of Lasry and
Lions [49, 48, 50] and of Huang, Malhamé and Caines [41, 40]. From the point of view of
modeling, mean field game theory combines mean field theories, which are widely used
in Physics and Mechanics, together with the notion of Nash equilibria in game theory.

One of the main goals of MFG is the study of the existence of equilibria for the whole
population, namely a stable collection of individual strategies such that nobody has any
incentive to change his own strategy.

Before the development of the MFG theory, some earlier works were already looking
into this direction. We quote, for example, [30, 12, 35] which study the question of disease
eradication, market equilibrium and externalities regarding vaccination. More recent
contributions (see [7, 6, 60, 31, 58, 47]) study the question of Nash equilibria for a large
number of individuals dealing with an epidemic. They investigated many aspects, such
as the impact of the subjective perceptions and individual behaviors on the equilibrium
(see, for example, [19, 18, 57]), the presence of several groups having distinct epidemic
characteristics (see [34, 20, 16]), particular vaccination strategies or specific models about
the available information at the individual level (see [13, 8, 27, 25, 26, 33, 69, 11, 24]).

In this article, we introduce and analyze a model for a non-compulsory vaccination
campaign against influenza viruses, with imperfect vaccine efficacy and limited dura-
bility of protection (sometimes also called persistence as a shorthand for persistence of
antibodies). Our main purpose is the computation of the optimal individual strategy
(which allows to deduce the fraction of the population which chooses to be vaccinated in
absence of a specific obligation), with the purpose of helping decision makers in design-
ing efficient public health policies. Since compulsory vaccination is the source of some
ethical issues on informed consent and individual freedom, knowledge of the optimal
individual strategy is an essential step before deciding that a given vaccine is manda-
tory. On the other hand, advertisement campaigns for non-compulsory vaccination are
effective only if their goal is compatible with the optimal individual strategy.

As the features of the target infectious disease heavily influence the dynamics of
the epidemic spread, our model cannot be immediately generalized to the vaccination
against other diseases. However, the global strategy can be easily modified, mutatis
mutandis, for obtaining models adapted to other situations with a similar behavior (i.e.
the vaccine is imperfect and the immunity is not permanent).

We focus our attention on countries with temperate climates, which experience a
marked seasonal influenza peak during the winter months [66]. Hence our time horizon
will be annual.

Since influenza is a contagious disease, the major available tool against the spread of
the illness is given by vaccination.

However, vaccination has no permanent effect. Indeed, as pointed out in [21], the
protection against a virus, provided by the corresponding vaccine to an individual,
persists after some years and it is still effective in case of slight genetic mutations.
But, because of the antigenic drift [15], sufficient changes can accumulate in the virus
to allow influenza to reinfect the same host. The protection given by a previous vaccine
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can hence become useless. In order to overcome this phenomenon, the influenza vaccine
formula is annually reviewed. Note that vaccine mismatch is not taken into account
in our study, because it would lead to introduce different questions, oriented to the
modeling of the vaccine itself, rather than to the vaccination policies (which suppose, of
course, that the annual release of the vaccine has a good efficacy).

We moreover suppose that the immunity provided by the vaccine is time-dependent.
Indeed, as pointed out in several studies, the estimated protection against infection,
based on hemagglutination-inhibiting (HAI) antibody titers has a maximum 2-4 weeks
after the vaccination, and it subsequently strictly decreases afterwards [71, 54]. In
particular, [54] estimates that there is a marked decline of the immunity some months
after the vaccination. This behavior is taken into account in our analysis because it can
be practically observed before reaching the time horizon of the problem.

The aforementioned features of the illness will be considered, in this article, as given
data. Two main attributes of the vaccine are considered:

- the durability of protection, that can span from several months up to several
years – see [21, 17, 5] and the literature therein;

- the vaccine efficacy (noted VE, an input in our model), which is the theoretical
success rate (to be distinguished from the vaccine efficiency, which is the practical
observed success and is the output of the model – see [70] for a presentation of the
differences between the two). The VE can range from several percents to almost
perfect efficacy – see the meta-analysis in [56] and also [55]; other references
include [51] and [67]. The VE can have effects on susceptibility, infectiousness,
disease progression, and so on; we only consider here the impact on susceptibility,
thus our VE is more specifically, with notations in [38, Section 2.2], of V ES kind.

Hence, our model is suitable for studying imperfect vaccines and takes into account
not only the individual decision about the vaccination, but also the best timing of the
vaccination if the individual decides to be vaccinated.

Since the choice of the best timing problem of a vaccination campaign is very actual
and it is carefully studied by the health authorities, we hope that our model can give a
contribution to a better understanding of the vaccination dynamics in order to suggest
efficient policies. In particular, our model forecasts that, in the non-cooperative set-
ting, when the protection given by the vaccine is not optimal, the individual behaviors
are only partially in agreement with the suggestions of the World Health Organiza-
tion (WHO), which encourages vaccination as soon as the vaccine of the corresponding
seasonal influenza is available [22]: the agents could tend to delay the vaccination in
order to arrive at the peak of the epidemic with the best possible protection (see [62,
Section ”Vaccination Before October”] and also [3, 29, 44, 9, 61] for recent references
to intra-season waning of the vaccine-induced immunity and its impact on vaccination
timing).

Because of the relatively short time horizon of the model, we do not consider any
population dynamics, or any reinfection, since we suppose that antigenic drift is not
very important on such small time scales [15].

From the mathematical point of view, in this article we work in a discrete setting
and our model is described in terms of Markov chains. As far as the time horizon of
seasonal influenza has the order of magnitude of one year, this choice allows us to model
the coarse graining of the real situation and makes this model more suitable for the
applications.
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Firstly, we prove that the individual vaccine model proposed here admits an equi-
librium. However, up to our knowledge, the equilibrium is not explicitly known. Far
from being a disadvantage, this situation prompted us into proposing a general numerical
method to find the equilibrium; this is a second contribution of this work (see also [65] for
some alternatives coming from the physics community for general Mean Field Games).
The numerical method is adapted from general works in game theory (see Section 3)
and is expected to give accurate results in any situation when an individual chooses the
right timing to perform some action (here vaccination) with time-dependent costs. This
procedure has been extensively tested in our model and performs in a satisfactory way.

The structure of the paper is the following: the model is presented in Section 2
and the theoretical result guaranteeing the existence of an equilibrium in Section 2.3.
The numerical algorithm for finding the equilibrium is presented in Section 3 and the
numerical results in Section 4.

First of all, the numerical simulations describe a standard situation for seasonal in-
fluenza dynamics. Subsequently, we test our model on two extreme cases (the duration
of the immunity is of one or six months only, see also [29]), which show some striking
behaviors of the population and which may help to understand the strategic policies of
the population.

Section 5 collects some considerations on the pertinence and validity of our approach.

2. The model

The model studies the dynamics of an epidemic in a population. In what follows we
will suppose that

- the infection does not cause the death of the patient (as it is well known, the
mortality associated to influenza does not induce significant modifications in the
population structure [28]); moreover, by considering a time horizon of twelve
months, we suppose that births and deaths, as well as age shifts, are non relevant;

- after the disease, the individuals who have been infected acquire permanent
immunity (throughout the time horizon of our model): this means that we will
suppose the existence of a predominant virus strain, instead of considering a
mixing of viruses and therefore reinfection is a rare phenomenon;

- the incubation period is short when compared to the time scale of the model;
- the individuals can be vaccinated. If the vaccine is successful, the protection of

the vaccine is maximal (but possibly not total) after a time delay, it remains
high during some period and then it decreases (see [54]);

- the vaccine is imperfect and the imperfections can be of two kinds (see [63, 38, 64]
for further discussions): i) a all-or-none effect, where a fixed fraction f of the
vaccinated individuals is not at all protected (vaccination failure) and the re-
mainder fraction 1− f is effectively immunized, and ii) a leaky (or incomplete)
protection – which means that a vaccinated individual with effective immuniza-
tion can still be infected (but not as much as a non-vaccinated individual or a
failed-vaccinated invidual). This leaky protection evolves in time;

- the evolution of the epidemic can be influenced by seasonal effects, as is it the
case of influenza in temperate regions.

In what follows, we describe the model in pure mathematical terms, the quantification
of the different parameters will be then discussed in Section 4.
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We suppose that the time horizon T is finite, and that it can be discretized in (N +1)
(N ∈ N) time instants t0 = 0, t1 = ∆T , t2 = 2∆T, . . . , tn = n∆T, . . . , tN = T . The
population is composed of

- susceptible individuals: Sn is the proportion of individuals in this class at time
tn;

- infected individuals: Iωn is the proportion of individuals in this class at time tn,
who have been infected at time tn−ω; moreover we denote by In the sum of all
Iωn ;

- recovered individuals, is the proportion of individuals once they recover from
illness (after leaving the class of infected individuals);

- vaccinated individuals: V θ
n is the proportion of individuals who have vaccinated

at time tn−θ and have not been infected yet;
- failed vaccinated individuals: Fn is the proportion of individuals that vaccinated

at t ≤ tn, whose vaccination failed and have not been infected yet.

The quantities ω and θ are counters. The first one measures the time interval between
the infection instant and the current instant, ω = 0, 1, . . . , Ω ∈ N, whereas the second
one measures the time lapse between the vaccination and the current instant, θ =
0, 1, . . . , Θ ∈ N.

The upper bound Θ indicates the maximal duration of the (possibly partial) immunity
given by the vaccine. In the case of seasonal influenza Θ is, in principle, greater than
the time horizon of the problem. However, in order to make our model applicable also
to other situations, we decide to take into account the theoretical possibility to manage
vaccines with very short persistency. For this reason, we consider also the class V Θ,
which describes the vaccinated individuals that lost the immunity given by the vaccine.
Since we suppose that they do not vaccinate twice, we need a specific class for describing
them.

Similarly, Ω is the maximum time before recovery, and it depends on the properties
of the illness itself.

The equations of the model, which conserves the total number of individuals, have
the following form:

Sn+1 = (Sn − Un)− βn∆T In(Sn − Un) (2.1)

I0
n+1 = βn∆T

[
Fn + Sn +

N−1∑
θ=0

αθV
θ
n

]
In (2.2)

Iω+1
n+1 = (1− γω∆T )Iωn ω = 0, . . . ,Ω− 1 (2.3)

V 0
n+1 = (1− f) (1− βn∆T In)Un (2.4)

V θ+1
n+1 = (1− βn∆TαθIn)V θ

n , θ = 0, . . . ,Θ− 2 (2.5)

V Θ
n+1 = (1− βn∆TαΘ−1In)V Θ−1

n + (1− βn∆T In)V Θ
n (2.6)

Fn+1 = f (1− βn∆T In)Un + Fn (1− βn∆T In) (2.7)

with initial conditions

S0 = S0− , Iω0 = Iω0− , V θ
0 = 0, ∀θ ≥ 0, F0 = 0, (2.8)

where



6 F. SALVARANI AND G. TURINICI

- U describes the vaccination: Un = unSn, where un is the proportion of individu-
als vaccinated after time tn and before tn+1; the admissible strategies correspond
to un ∈ [0, 1];

- the vector γ = (γ0, . . . , γΩ) ∈ (R+)Ω+1 describes how fast an infected individual
recovers and depends on the duration of the illness itself. In particular, when
γω = 0, the individual will not recover in the next time instant; on the contrary,
when γω = 1, the individual will recover with certainty in the next time instant.

- The function β(t) quantifies how infectious is a contact between an infected
individual and susceptible one at time t. To take into account the length of the
time interval ∆T , we work with βn∆T := β(tn)∆T and γω∆T := γω∆T . In order
to take into account the possible seasonality β(·) is taken time-dependent, see
Section 4 for an exemple.

- The vector αθ describes the time instants of a function A(·) (αθ = A(θ∆T ))
with values in [0, 1]. This vector quantifies the protection given by the vaccine
in terms of the probability of infection if an individual is vaccinated. It is known
that this protection is not instantaneous, the immunity conferred by the vaccine
being maximal after a latency period. As explained in the introduction, in the
case of influenza vaccine, the protection is not complete, and the effects of the
vaccine decrease with time.

In what follows, we suppose that there exists a maximal time Θ > 0 of the
vaccine protection (which can be, however, greater than the time horizon of the
model). In particular αΘ = 1. Some possible candidates for the function A are
shown in Figure 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized time t

0

0.2

0.4

0.6

0.8

1

1.2

A

Figure 1. Two possible forms for the function A.

2.1. The societal cost and individual cost. Let rI and rV be the individual cost for
the illness and the vaccination respectively. These costs are intended to be global costs.
For example, they can be the monetary cost of the illness and of the vaccine, but they
can also express the medical side-effects of the vaccine and the possible side-effects of
the illness (see, for example, [53]).
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We work under the meaningful assumption that rI > rV (although the alternative
rI ≤ rV may also give non-trivial problems in particular situations, see [46]).

The total societal cost associated to the vaccination strategy U is:

J(S0, I0, U) = rI

N∑
n=0

In + rV

N−1∑
n=0

Un, (2.9)

which has to be minimized (see [39, 1, 52, 59, 23, 46]) within the set of all admissible
vaccination strategies U .

However this is not the strategy followed by individuals. They rather optimize an in-
dividual cost function. In order to define it, we have to consider the individual dynamics
(see Figure 2 for an illustration). It takes the form of a controlled Markov chain with
several states, susceptible (S), failed vaccination (F), recovered (R), infected (indexed
by the time counter ω: I0, . . . , IΩ), and, finally, vaccinated states (indexed by the time
counter θ: V 0, . . . , V Θ).

The Markov chain of the individual, denoted Mn, is described in terms of passage
probabilities:

P(Mn+1 = S|Mn = S) = (1− λn) (1− βn∆T In)

P(Mn+1 = I0|Mn = S) = βn∆T In

P(Mn+1 = V 0|Mn = S) = (1− f)λn (1− βn∆T In)

P(Mn+1 = F |Mn = S) = fλn (1− βn∆T In)

P(Mn+1 = R|Mn = IΩ) = 1

P(Mn+1 = R|Mn = Iω) = γω∆T , ω = 0, . . . ,Ω− 1

P(Mn+1 = Iω+1|Mn = Iω) = 1− γω∆T , ω = 0, . . . ,Ω− 1

P(Mn+1 = I0|Mn = V θ) = αθβ
n
∆T In, θ = 0, . . . ,Θ− 1

P(Mn+1 = V θ+1|Mn = V θ) = 1− αθβn∆T In, θ = 0, . . . ,Θ− 1

P(Mn+1 = I0|Mn = V Θ) = βn∆T In

P(Mn+1 = V Θ|Mn = V Θ) = 1− βn∆T In,

P(Mn+1 = I0|Mn = F ) = βn∆T In,

P(Mn+1 = F |Mn = F ) = 1− βn∆T In.

(2.10)

The conditions βn∆T ≤ 1, γω∆T ≤ 1, λn ≥ 0, λn ≤ 1 ensure the well-posedness of this
definition.

The conditional rates λn are derived from a probability density ξ defined on {t0, . . . , tN−1}∪
{∞}; the value ξn is the probability that the individual vaccinates at time tn (if it was
not infected before tn). In practice, the agent chooses the probability distribution ξ
before the dynamics starts. Then, he selects a random number n distributed with the
aforementioned probability ξ, which means that before the beginning of the epidemic
he knows the time tn at which he will vaccinate (unless he is already infected by that
time).
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There is a mapping between λ = (λn)N−1
n=0 and ξ defined by:

ξ∞ =

N−1∏
n=0

(1− λn), ξn = λn

n−1∏
k=0

(1− λk), n ≤ N − 1 (2.11)

∀n ≤ N − 1 : λn =


ξn

ξn + · · ·+ ξ∞
, if ξn + · · ·+ ξ∞ > 0

0, otherwise.

(2.12)

Susceptible

(S)

Failed Vaccination

(F )

Infected

(I0)

Infected

(I1)
. . .

Vaccinated

(not infected) (V 0)

Partially

Immunized

(V 1)

. . .

Partially

Immunized

(V θ)

. . .

Recovered

(R)

f λn
(
1− βn∆T In

) β n
∆
T I
n

(1− f)λn
(
1− βn∆T In

)

α
0
β
n

∆
T
I n

α
1
β
n ∆
T
I n

α
θ β n

∆
T I
n

βn∆T In 1− γ0
∆T

γ 0
∆T

γ 1
∆
T

1− γ1
∆T

Figure 2. Individual model.

The cost of a vaccination strategy depends on ξ (see [47] for a similar situation). The
individual bears the cost rI when he enters class I0 and then he bears the cost rV when
he enters class V 0. The cost for an individual will have three components:

- the cost rI of being infected before vaccination;

- the cost rV of vaccination plus a possible cost of being infected while immunity
is still building or after the end of the protection period;

- the cost rV of failed vaccination plus a possible cost of being infected.
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Note that an individual may incur both costs if he vaccinates and, moreover, if he is
infected. For an individual starting at M0 = S, the total cost is:

Jindi(ξ;U) = rV P
(
∪n<N{Mn+1 = V 0,Mn 6= V 0}

∣∣∣M0 = S
)

+rV P
(
∪n<N{Mn+1 = F,Mn 6= F}

∣∣∣M0 = S
)

+rIP
(
∪n<N{Mn+1 = I0,Mn 6= I0}

∣∣∣M0 = S
)
. (2.13)

This form for Jindi(ξ;U) is impractical and has to be made more explicit. One possibility
is to sum over the first passages from S to I0, V 0 of F . The following quantities are
useful for general n:

- the probability ψV,In of infection (at time tn+1 or later) of an individual that
vaccinated in the interval [tn, tn+1], given by the formula:

ψV,In = 1−
Θ∏
k=n

(
1− βk∆Tαk−n−1Ik

)
, (2.14)

where we introduce the coefficient α−1 = 1;

- the conditional probability of being infected (strictly) before tn+1 (of a person
that did not vaccinate)

ϕIn = P
[
∪nk=0{Mk = I}|M0 = S,Mk 6= V 0,Mk 6= F, k ≤ n

]
,

given by the formula:

ϕIn = 1−
n∏
k=0

(
1− βk∆T Ik

)
, ∀n < N − 1. (2.15)

Note that the probability of being infected after the time n < N − 1 is

1− 1− ϕI∞
1− ϕIn

=
ϕI∞ − ϕIn
1− ϕIn

,

where

ϕI∞ = 1−
N−1∏
k=0

(
1− βk∆T Ik

)
.

Then, after elementary computations:

Jindi(ξ;U) = rIϕ
I
∞ξ∞ +

N−1∑
n=0

[
rIϕ

I
n + (1− ϕIn)(rV + (1− f)rIψ

V,I
n ) + rIf(ϕI∞ − ϕIn)

]
ξn.

(2.16)
The individual cannot change Un neither Sn, Iωn nor V θ

n . He can only choose his
vaccination strategy ξ. Denote

gUn =


rIϕ

I
n + (1− ϕIn)(rV + (1− f)rIψ

V,I
n ) + rIf(ϕI∞ − ϕIn), for n ≤ N − 1

rIϕ
I
∞ for n = N.

(2.17)



10 F. SALVARANI AND G. TURINICI

If we denote the Euclidean scalar product between two vectors X,Y ∈ RN+1 by

〈X,Y 〉 :=
N+1∑
k=1

XkYk, (2.18)

then Jindi(ξ;U) = 〈ξ, gU 〉, where gU and ξ are seen as vectors in RN+1. It has to
be minimized under the constraint ξ0 + · · · + ξN−1 + ξ∞ = 1. Then any probability
distribution ξ with support in {n | gUn ≤ gUk , k = 0, . . . , N} attains the minimum.

Now, for a given individual policy ξ one can ask whether the equations (2.1)-(2.8) are
obtained when all individuals follow this vaccination policy, and in this case what is the
compatibility relationship between ξ and U . Supposing identical initial conditions S0−

and I0− , the compatibility relation between the two dynamics is:

Un = λnSn, (2.19)

i.e. λn = un, see the discussion after formula (2.8).

2.2. Failed vaccination. A simplified model can be proposed to tackle the possibility
of vaccination failure. Note that, for n ≤ N − 1,

gUn = rIfϕ
I
∞ + (1− f)[rIϕ

I
n + (1− ϕIn)(rV /(1− f) + rIψ

V,I
n )].

Therefore, since the term rIfϕ
I
∞ does not depend on n and (1− f) is an overall factor,

the cost has exactly the same minimum as the one of a model without the class F when
we replace rV by rV /(1 − f). Therefore, when the efficacy 1 − f of the vaccine is not
100%, this can be treated by considering that the cost of the vaccine is multiplied by
(1− f)−1. See Section 4 for some numerical illustrations.

Note however that this is a first order approximation as, in practice, the quantities

ψV,In depend on the precise values of Iωn and a different model with different classes will
change those values.

2.3. Equilibrium. Consider now the following mapping: for any given probability law η
on {t0, . . . , tN−1}∪{∞} define λ by (2.12) (using ηn instead of ξn), Un, Sn, In recursively
by the relations (2.1)-(2.5) and (2.19). Denote Cη = gU .

Let J (η) be the ensemble containing all optimal individual strategies ξ that minimize
the cost 〈ξ,Cη〉.

The goal of this subsection is to deduce the existence of an equilibrium of the system,
i.e. a common strategy which is a Nash equilibrium when it is used by all agents of the
population. The following result holds.

Theorem 2.1. There exists at least one law η such that η ∈J (η) (i.e., an equilibrium).

Proof. We use Kakutani’s fixed point theorem (see [43, page 457]) for the function J (·)
defined on the simplex

ΣN+1 = {(x0, . . . , xN ) ∈ RN+1|xk ≥ 0, x0 + · · ·+ xN = 1}. (2.20)

Recall that the assumptions of the theorem are the following:

(1) for any η ∈ ΣN+1, the set J (η) is non-void, closed and convex; this property is
trivially verified in our setting.

(2) the mapping J (·) is upper semi-continuous, or, stated otherwise, it has the
closed graph property.
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The only hypothesis to check is the closed graph property of J (·). Let η` be a
sequence of points in ΣN+1 (i.e., probability laws on {t0, . . . , tN−1} ∪ {∞}) converging
to η and ξ` ∈J (η`) converging to ξ. We have to prove that ξ ∈J (η).

We denote by S`, U `, I`, gU
`

(respectively S, U , I, gU ) the dynamics corresponding
to η` (respectively η).

Let Z be the first index such that ηZ + · · ·+η∞ = 0. We consider the non-trivial case
when Z > 1.

Consider λ` (respectively λ) the rates associated to η` (respectively η) by the for-
mula (2.12). In particular ηZ−1 > 0 and λ`Z−1 = 1.

Although η` → η as ` → ∞ we do not have that λ` → λ, but we have instead that
λ`n → λn for all n < Z. In particular λ`nS

`
n → λnSn for all n < Z. On the other hand,

since λZ−1 = 1 we have SZ = SZ−1(1− λZ−1)(1− βn∆T IZ−1) = 0 and λ`Z−1 → 1 implies

S`Z → 0; furthermore, S` being monotonically decreasing we also have S`n → 0 for any
n ≥ Z.

Since all rates λ` are bounded by 1 we obtain thus that λ`nS
`
n → 0 = λnSn for all

n ≥ Z and thus ultimately λ`nS
`
n → λnSn for all n ≤ N . This, combined with the

formulas (2.1)-(2.8) and (2.19) show that U ` → U , S` → S, I` → I as `→∞. Thus we
also have Cη` → Cη; therefore the limit of any converging sequence of minimas of Cη`
is also a minima of Cη which, given its definition, proves the closed graph property of
J (·). �

Remark 2.2. The theorem reduces the existence of the equilibrium to the study of
the mapping η 7→ Cη. This mapping has a well-defined meaning for a large class of
vaccination games because the variable ξ is nothing else than the (mixed) individual
strategy and the vector Cξ collects the cost of pure strategies of the individual (given
the overall epidemic propagation dynamics). We expect that this methodology can be
generalized to other situations.

Remark 2.3. The result does not give any information about the uniqueness of the fixed
point. In the Mean Field Game framework, uniqueness results usually from convexity
considerations (see e.g., [49, 48, 41]) and it is not guaranteed, see [45] for a situation
where there is no uniqueness. Although this setting is not convex, in all numerical
simulations we pursued, a unique solution has always been found.

3. Finding the equilibrium

The result of the Section 2.3 guarantees the existence of at least one equilibrium. But,
it does not prescribe a constructive method to find it.

For arbitrary strategy ξ, introduce the quantity E(ξ) defined as follows: consider a
situation when all individuals use the strategy ξ. If the individual follows himself the
strategy ξ the expected cost is the average, with respect to the probability distribution
ξ, of costs Cξ. By using the Euclidian scalar product (2.18) the cost can be written as
〈ξ,Cξ〉. But the individual can also choose some other strategies to minimize his cost. For
instance if Cξ reaches its minimum at the k-th component, the best cost is obtained with
a strategy that vaccinates at time tk with certainty. When the minimum is not unique,
the general value of the lowest cost that the individual can reach is minη∈ΣN+1

〈η,Cξ〉
where ΣN+1 is the space of all possible strategies. The mismatch between the cost of
“following the others” and the “lowest possible cost” is denoted with E(ξ). It represents
the maximum gain obtained by an individual if he changes unilaterally his strategy (and
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everybody else remaining with the strategy ξ). In mathematical terms:

E(ξ) = 〈ξ,Cξ〉 − min
η∈ΣN+1

〈η,Cξ〉. (3.1)

Note that E(·) ≥ 0 and that an equilibrium corresponds to a ξ such that 〈ξ,Cξ〉 ≤
〈η,Cξ〉 for any other strategy η ∈ ΣN+1, which means E(ξ) = 0. The equilibrium can
be rephrased as finding a strategy ξ such that the mapping ξ 7→ E(ξ) is minimized.

A natural idea is then to try to minimize E(·) over ΣN+1. But, this intuitive approach
is not always the best one because, in order to be efficient, the minimization of E(·)
requires to compute, for instance, some gradient of Cξ with respect to ξ, which could
make the computations complicated.

Another idea is simpler and intuitively more appealing: the equilibrium will be found
by successive approximations in a way that mimics a real-life repeated game (see also [32]
for additional considerations). Consider a strategy candidate ξk obtained at the iteration
k and construct the cost Cξk obtained if everybody uses the strategy ξk. An individual
of this population will test whether ξk is optimal, i.e. if it is a minimum of E(·). If this is
the case then the equilibrium is ξk; otherwise the individual will adjust its strategy ξk by
exploring a strategy ξk+1, which is not too far from ξk but that goes towards the lowest
possible cost minη∈ΣN+1

〈η,Cξk〉. In practice (with ideas close to the general framework
of gradient flows, see [42] for an entry point to this literature), one can choose ξk+1 to
be a minimizer of a weighted sum containing both desiderata, which can be expressed
in mathematical terms:

ξk+1 is a minimizer over ΣN+1 of η 7→ dist(η, ξk)
2

2τ
+ 〈η,Cξk〉, (3.2)

where dist(·, ·) is some suitable distance in ΣN+1. Then the procedure is iterated till
convergence. This idea is similar to the paradigms of ”Best Reply” (see [10]), ”fictitious
play” (see [14]) or ”equilibrium flows” for which some proofs of convergence exist under
specific hypotheses. In particular the results in (see [68, Theorem 2, item 2]) show that
convergence is attained when the mapping η 7→ Cη in Remark 2.2 is continuous, which
is proved in Theorem 2.1.

The term 1/2τ weights the relative importance of staying close to ξk with respect to
optimizing the cost. In particular τ can be interpreted as a pseudo-time counting the
number of infinitesimal adjustments required to converge to the equilibrium. Note also
that, when τ → 0, the distance dist is the Euclidian distance and ΣN+1 is the whole
RN+1, the strategy ξ can be seen as the time-indexed solution of the differential equation

d

dτ
ξ(τ) = Cξ(τ).

In order to keep the presentation as simple as possible, we used as distance in (3.2)
the standard euclidian distance on RN+1 although in principle other distances (such as
the 2-Wasserstein distance) may give better performances.

In practice, the algorithm applied is the following:

Step 1 Choose a step τ > 0 and a starting distribution ξ1.

Set iteration count k = 1.

Step 2 Compute ξk+1 as in formula (3.2).

Step 3 If E(ξk+1) is smaller than a given tolerance then stop and exit,

otherwise set k → k + 1 and go back to Step 1.
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In practice Step 2 is computed with a quadratic programming routine (quadprog in
Matlab/Gnu Octave) that can accommodate linear constraints.

Remark 3.1. The procedure proposed above can be extended in a straightforward man-
ner to any ’rational individual’ vaccination model, by replacing the vector Cξ by a time-
dependent function c( · ), where c(t) is the cost of the pure strategy consisting in vacci-
nating at the time t under the assumption that everybody follows the strategy ξ.

4. Numerical results

In order to test the model, we simulated the situation of an epidemic with several
sets of parameters, such as long or short durability of protection, as indicated below.

4.1. Preliminary tests. We first tested the procedure for a situation when the analytic
result is known (see [31, 47]): we used the parameters in [47, Figure 5] and obtained
that the optimum individual strategy is a mixed strategy with ξ0 = 33% probability
of vaccination at t = 0 and ξ∞ = 67% probability of no vaccination; its cost is 0.5067;
this result is in a good agreement with the analytic result, i.e. a mixed strategy with
ξ0 = 34%, ξ∞ = 66% and a cost 0.5.

4.2. Equilibrium with decreasing immunity and imperfect efficacy. The nu-
merical values used in this simulations are the following: total simulation time T = 1
(one year), number of time instants: N = 365 × 3 (three times a day); recovery rate
γω = γ = 365/3.2 (mean recovery time 3.2 days, Ω = 20), high season basic repro-
duction number R0 = 1.35, thus β = γR0; recall that the basic reproduction number
is the average number of secondary infections generated by an infected individual in a
susceptible population and in absence of any vaccination, for details see [2, Section 2.2
and beyond] and also [36, Section 3]. The initial proportion of susceptibles is S0 = 0.94
and the initial proportion of infected individuals is I0 = 2.0×10−6; the relative costs are
rI = 1 and rV = 0.005. To take into account the seasonality of β(t), we set βmin = γ/S0

and β(t) = β for t ≤ tβ2 := 1/2 (6 months) and then β(t) = βmin for t > tβ2 = 1/2; these
parameters model an epidemic lasting 6 months.

We set the vaccine efficacy to f = 50%; the durability of protection of the vaccine
is related to the decrease of the immunity. Although very few studies on decreasing
immunity dynamics are available, it is generally accepted that the immunity is rising
and reaches a peak after some weeks (here we took 3 weeks). Then it slowly declines
in a timescale of the order of months (see also [17, 29, 44, 9]). For instance, the study
in [54] found a significant decay (20% to 50%) over a period of 9 months. As we will
see, even if the immunity is not completely lost by the end of the season, this decay
influences the equilibrium. The main ingredient of the time-dependence t 7→ A(t) is an
exponential decay term (see e.g., [37, page 458]); however in the exponential model the
immunity is acquired instantaneously upon vaccination. In order to take into account
the gradual gain in immunity, we included a multiplicative polynomial term, which
becomes negligible for large times; see also section 4.3.1 for a different choice of A(t).
With our notations, the function A(t) is

A(t) = 1− c1t
c2e−c3t, (4.1)

with constants c1, c2, c3 set such that the minimum value (zero) is reached in t = 3/52
while 9 months after, i.e., at t = 3/52 + 9/12 the value is either M1 = 1/10 (which
corresponds to 9/10 immunity still active 9 months after the peak) or M2 = 1/3 (which
corresponds to 2/3 immunity still active 9 months after the peak).
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We considered first the ’ideal’ case of instantaneous and non-decaying immunity. The
corresponding equilibrium is a policy when people vaccinate at t = 0 (10% of them).
Intuitively, it means that, when the persistence is greater than the time horizon of the
problem, individuals choose to be vaccinated as soon as possible.

Then the equilibrium for M1 was computed. The results are shown in Figure 3. Note
that the vaccination peak is delayed by one month, even if the decay in the immunity
is relatively moderate (immunity is still at 90% after 9 months).

Finally, a different situation when immunity falls to 66% is presented in Figure 4;
here the vaccination is delayed with approximately two months.

The differences between these three situations, both in the vaccination timing and
in the fraction of vaccinated individuals, are a consequence of the optimal criterion of
the agents, of the durability of protection of the vaccine and of the nonlinearity of the
contagion process. Due to the partial loss of immunity before the end of the season, the
agents tend to delay the vaccination in order to have the best possible protection during
the peak of epidemics. On the other hand, the reduction of the efficiency of the vaccine
motivates more individuals to be vaccinated in order to increase group immunity and
hence to reduce the contagion.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 3. The optimal converged strategy ξMFG at times {t0, ..., tN−1}
for subsection 4.2, case M1. The weight of the non-vaccinating pure
strategy (i.e., corresponding to time t =∞) is 88%; this means that 12%
of the population vaccinates.

4.3. Relationships between freedom of choice, durability of protection and
efficacy of the vaccine. We investigate in this subsection the robustness of the nu-
merical results with respect to various choices of parameters, in particular the durability
of protection and efficacy, as detailed below. The results of these tests show that the
freedom of choice to obtain the best individual result could lead to more expensive indi-
vidual costs than those obtained in a regulated setting, where public health authorities
prescribe individual policies (this phenomenon is the so-called cost of anarchy, see Sub-
section 4.3.1). On the other hand, we show that imperfect vaccines (i.e., with short
durability of protection and limited efficacy) may be also acceptable, for a fraction of
the population, as a tool for reducing the contagion process, even if the vaccination is
not compulsory.
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Figure 4. The optimal converged strategy ξMFG at times {t0, ..., tN−1}
for subsection 4.2, case M2. Here 15% of the population vaccinates.

4.3.1. Short durability of protection, large efficacy. To define the durability of protection
of the vaccine we set t1 = 5/365, t2 = 1/12 (one month, Θ = 93) and A(t) = 1− 1[t1,t2].
The vaccine efficacy is set to 100%, i.e., we suppose a failure rate f = 0. The step is
τ = 0.1 and we performed 1000 iterations.

The results are displayed in Figures 5, 6 and 7. A good quality equilibrium is found,
that is, the incentive to change the strategy E(ξ) is smaller than 10−3 (two orders of
magnitude lower at the solution than at the initial guess). The cost of the solution
〈ξMFG,CξMFG〉 is 0.0237.

The solution is a strategy ξMFG supported at several time instants between 0.25 and
0.43 and also having 68% of the mass at the non-vaccinating time t = ∞. Note that
the cost is adapted accordingly, reaching its minimum at all points in the support of the
solution ξMFG. Generally the vaccination occurs when In has large values, except at the
end of the epidemic (time 0.5) when people expect the epidemic to end and estimate that
their infection probability is low; the individuals have a strategic behavior, in coherence
with the model. This can be compared with the model in [8] where the vaccination rate
is supposed proportional with the number of people infected. The two models agree
in a majority of time instants except the end of the epidemic. This behavior has been
observed across a wide range of protection periods and initial conditions (the results are
not shown here). It is remarkably to see that a simple model such as in [8] has such a
considerable applicability.

It should be mentioned that the solution ξMFG, with cost 0.0237, is not the solution
that minimizes the average cost across individuals (see also equation (2.9)) which is
M(ξ) = 〈ξ,Cξ〉: for instance the strategy ξmin that vaccinates with certainty at time
t = 0.0 (unless infected by that time) has M(ξmin) = 0.005. This result is not surprising
and often appears in such contexts (see [47]). When M(ξMFG) > M(ξmin) the game is
said to have a positive cost of anarchy. It can be intuitively explained as follows: suppose
that everybody uses the strategy ξmin. The cost of an individual with strategy η will be
〈η,Cξmin〉 and it turns out that there exists some η1 with 〈η1,Cξmin〉 < 〈ξmin,Cξmin〉. For

instance here η1 can be a pure non-vaccinator strategy whose cost is very low 8.0×10−6.
Therefore any individual with current strategy ξmin has an incentive to change his
strategy (and use η1) by hoping that everybody else remains with the strategy ξmin. This
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Figure 5. Results for Subsection 4.3.1. Top: the optimal converged
strategy ξMFG at times {t0, ..., tN−1}. The weight of the non-vaccinating
pure strategy (i.e., corresponding to time t = ∞) is 68%. Bottom: the
corresponding cost CξMFG . The red line corresponds to the cost of the
non-vaccinating pure strategy (CξMFG)N+1.

does not happen and everybody slides towards η1 and so on until the Nash equilibrium
ξMFG is found. In the process the cost of everybody will increase and this is the price
to pay for equilibrium.

4.3.2. Long durability of protection, 100% efficacy. The parameters are identical as in
Subsection 4.3.1, except the durability of protection of the vaccine time t2 which is set
now to 6 months t2 = 1/2 (Θ = 549). The convergence is quickly attained (100 itera-
tions) and the results are displayed in Figure 8. Although fewer people vaccinate (only
9% here, to compare with 32% in Subsection 4.3.1), the higher durability of protection
of the vaccine improves the outcome. The equilibrium cost becomes 5.18×10−3, almost
one order of magnitude lower than in the previous test.

4.3.3. Long durability of protection, smaller efficacy. In this Subsection, we test a situ-
ation when the vaccine efficacy is only 50%. All other inputs are as in Subsection 4.3.2.
The result, not shown here because very similar to those described in the previous tests,
has however several differences:
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Figure 6. Results of Subsection 4.3.1. Top: the evolution of the sus-
ceptible class Sn; bottom: the (total) infected class In.

0 10 20 30 40 50 60 70 80 90 100

flowtime

10 -4

10 -3

10 -2

10 -1

E
(9

)

Figure 7. The decrease of the incentive to change strategy E(ξk). Note
that E(ξk) does not decrease monotonically. In fact, there is no reason to
expect such a behavior, since we are not minimizing E(·) in a monotonic
fashion.
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Figure 8. Results of Subsection 4.3.2. Top: the optimal converged
strategy ξMFG. The weight of the non-vaccinating pure strategy (i.e.,
corresponding to time t = ∞) is 91%. Bottom: the corresponding cost
CξMFG . The thin horizontal line corresponds to the cost of the non-
vaccinating pure strategy (CξMFG)N+1.

- the probability of the non-vaccinating strategy is now 86% (i.e. 14% of people
vaccinate);

- the cost of the optimal strategy is 0.0101.

Therefore the equilibrium shifts towards a bigger fraction of the population that
vaccinate (in order to compensate lower vaccine efficacy). However, the overall number
of protected people is lower (50% of 14% being smaller than 100% of 9%) which results
in a larger overall equilibrium cost (about twice larger). We tested other settings and
these conclusions were consistently obtained: the introduction of imperfect vaccines
(here lower efficacy) generates overall lower coverage rates and larger costs.

We also compared the previous result with the output of the model obtained by
setting the cost rV → rV /(1− f) = 0.01, f → 0. In this case the cost is 0.0103 and the
fraction of vaccinated individuals is 6.6%. This result confirms the qualitative analysis
of Subsection 2.2.

4.4. Effects of the failed vaccination rate on the vaccination strategy. We ana-
lyze in this subsection the effects of the failed vaccination rate on the overall vaccination



OPTIMAL STRATEGIES FOR IMPERFECT INFLUENZA VACCINES 19

policy. The numerical value of the vaccination cost is rV = 0.025, whereas the other
parameters are the same as in Subsection 4.3.3. The results are presented in Table 1.

Failed vaccination rate f Vaccination rate 1− ξ∞
0.00 5.04%
0.25 5.94%
0.50 7.02%
0.55 7.20%
0.60 7.29%
0.65 7.23%
0.75 5.74%
0.80 2.93%
0.85 0.00%

Table 1. Results for the Subsection 4.4. Individual vaccination policy
with respect to the failed vaccination rate of the vaccine.

When the failure rate f is small, the vaccination rate (1 − ξ∞) is increasing with
f . However, when the failure rate f is larger than a given value (in our numerical
simulations, when f ≥ 0.60), the vaccination rate decreases as f increases.

When the failure rate is small, individuals tend to vaccinate more to compensate the
decrease in efficacy and therefore to contribute to the group protection and to profit
from it. However, after a given threshold, the construction of a group protection is too
expensive, and consequently the individuals are reluctant to vaccination (if f = 0.85,
the vaccination rate (1 − ξ∞) is zero; in this case, the probability of being infected is
14.38%).

5. Discussion

We analyzed in this work the vaccination equilibrium in a context of rational individ-
ual vaccination choices; the situation is modeled as a Nash equilibrium with an infinity
of players. In our work, a special attention is given to the presence of imperfect vaccines.
We presented a theoretical approach (existence of an equilibrium via the Kakutani fixed
point theorem) and a numerical algorithm (similar to a gradient flow). Both approaches
have the advantage to use rather weak assumptions on the structure of the model. For
this reason, we hope that our study will be useful even in more general situations, as
those listed later on in this section, which take into account more complicated individual
and collective behaviors.

In the simulations dealing with an influenza epidemic, we remark that the long-term
behavior of the vaccine-induced immunity influences the best timing for the individuals
to vaccinate. Indeed, when the protection of the vaccine against influenza does not
decrease within the time horizon of the problem, the individuals vaccinate as soon as
possible (in agreement with the recommendation given by WHO [22]). However, if
the vaccine efficacy decreases, the behavior of the population changes and delays the
vaccination for optimizing the vaccine protection around the peak of the epidemic.

In addition, the previous simulations show that the imperfections of the vaccine in-
crease the overall cost. But the obtained equilibrium is such that the increased vaccina-
tion rate does not compensate for the lower efficacy (or durability of protection) of the
vaccine.
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When the failure rate is below a given threshold, the cost for building a group protec-
tion is advantageous with respect to the infection cost. In this case, a higher vaccination
rate can be optimal to compensate for an increase in the failure rate. However, this in-
dividual policy is far from the societal level optimal strategy, which would consist in a
global optimization of the vaccination policy.

Several assumptions in this work may motivate further studies:

- a general question is whether the individuals choose their vaccination strategies
beforehand; for instance, Fine and Clarkson (see [30]) argue that the individuals
will rather respond to the prevalence; see also [8] where the vaccination rate
is dependent on the number of people infected. However the “learning” of an
equilibrium is a topic in itself in game theory (we refer to the monograph [32]
for general considerations). In our specific setting, an encouraging factor is that
the “game” is played several times (once each season, although with possible
different vaccine efficacies), in such a way that a learning mechanism could be
recognized. Moreover, individuals have appropriate feedbacks (through general
news for instance) on both the history of the epidemic and the vaccination dy-
namics, as well as – more importantly – projections for the upcoming season
(for example, data on the potential severity of the epidemic and the expected
dynamics of vaccination). Other factors can also influence the decision, such
as the number of reported cases and public health campaigns. But, of course,
the setting presented here remains ideal and the interpretability of the results
is dependent on our hypotheses. A model that can detect to which extent the
individuals adhere to this assumption would be more versatile.

- the individuals are supposed perfectly aware of the past, present and future
epidemic dynamics: a model with limited information may be more realistic.
Such models can be at the mid-way between the MFG and the feedback (also
known as information-based) vaccination models, see [26, 25, 13];

- the individuals are identical. In particular the cost of the illness is exactly the
same, irrespective of age: considering several age groups may give interesting
results, especially if their strategies are different;

- the geographical heterogeneity in the propagation of the epidemic is neglected:
travels and intra/inter-community contacts may be important for the epidemic
propagation.

Some of the previous limitations can be overcome. For example, the geographical
heterogeneity in the propagation of the epidemic can be taken into account by converting
our model to a PDE-based description, and then by coupling it with a population
dynamics model. On the other hand, the stratification by age could be handled by
writing a more general model with a supplementary age variable. We aim to take into
account some of these perspectives in future studies.
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[27] Paulo Doutor, Paula Rodrigues, Maria do Céu Soares, and Fabio A. C. C. Chalub. Optimal vac-
cination strategies and rational behaviour in seasonal epidemics. Journal of Mathematical Biology,
pages 1–29, 2016.

[28] Jonathan Dushoff, Joshua B Plotkin, Cecile Viboud, David JD Earn, and Lone Simonsen. Mor-
tality due to influenza in the united statesan annualized regression approach using multiple-cause
mortality data. American journal of epidemiology, 163(2):181–187, 2006.

[29] Jill M. Ferdinands, Alicia M. Fry, Sue Reynolds, Joshua G. Petrie, Brendan Flannery, Michael L.
Jackson, and Edward A. Belongia. Intraseason waning of influenza vaccine protection: Evidence
from the us influenza vaccine effectiveness network, 2011-2012 through 2014-2015. Clinical Infectious
Diseases, 64(5):544, 2017.

[30] Paul E. M Fine and Jacqueline A Clarkson. Individual versus public priorities in the determination
of optimal vaccination policies. American Journal of Epidemiology, 124(6):1012–1020, 1986.

[31] Peter J. Francis. Optimal tax/subsidy combinations for the flu season. Journal of Economic Dy-
namics and Control, 28(10):2037 – 2054, 2004.

[32] Drew Fudenberg and David K. Levine. The theory of learning in games, volume 2 of MIT Press
Series on Economic Learning and Social Evolution. MIT Press, Cambridge, MA, 1998.
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[40] Minyi Huang, Roland P. Malhamé, and Peter E. Caines. Nash equilibria for large-population linear
stochastic systems of weakly coupled agents. In Elkébir Boukas and Roland P. Malhamé, editors,
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[49] Jean-Michel Lasry and Pierre-Louis Lions. Jeux à champ moyen. II: Horizon fini et contrôle optimal.
C. R., Math., Acad. Sci. Paris, 343(10):679–684, 2006.

[50] Jean-Michel Lasry and Pierre-Louis Lions. Mean field games. Japanese Journal of Mathematics,
2(1):229–260, 2007.

[51] Arnold S. Monto, Suzanne E. Ohmit, Joshua G. Petrie, Emileigh Johnson, Rachel Truscon, Esther
Teich, Judy Rotthoff, Matthew Boulton, and John C. Victor. Comparative efficacy of inactivated
and live attenuated influenza vaccines. New England Journal of Medicine, 361(13):1260–1267, 2009.
PMID: 19776407.

[52] R. Morton and K. H. Wickwire. On the optimal control of a deterministic epidemic. Advances in
Appl. Probability, 6:622–635, 1974.

[53] Johannes Müller. Optimal vaccination strategiesfor whom? Mathematical biosciences, 139(2):133–
154, 1997.

[54] Sophia Ng, Vicky J. Fang, Dennis K. M. Ip, Kwok-Hung Chan, Gabriel M. Leung, J. S. Malik Peiris,
and Benjamin J. Cowling. Estimation of the association between antibody titers and protection
against confirmed influenza virus infection in children. Journal of Infectious Diseases, 208(8):1320–
1324, 2013.

[55] Kristin L. Nichol, April Lind, Karen L. Margolis, Maureen Murdoch, Rodney McFadden, Meri
Hauge, Sanne Magnan, and Mari Drake. The effectiveness of vaccination against influenza in healthy,
working adults. New England Journal of Medicine, 333(14):889–893, 1995. PMID: 7666874.

[56] Michael T Osterholm, Nicholas S Kelley, Alfred Sommer, and Edward A Belongia. Efficacy and
effectiveness of influenza vaccines: a systematic review and meta-analysis. The Lancet Infectious
Diseases, 12(1):36 – 44, 2012.

[57] Timothy C. Reluga, Chris T. Bauch, and Alison P. Galvani. Evolving public perceptions and sta-
bility in vaccine uptake. Math. Biosci., 204(2):185–198, 2006.

[58] Timothy C. Reluga and Alison P. Galvani. A general approach for population games with application
to vaccination. Mathematical Biosciences, 230(2):67 – 78, 2011.

[59] Suresh P. Sethi and Preston W. Staats. Optimal control of some simple deterministic epidemic
models. J. Oper. Res. Soc., 29(2):129–136, 1978.

[60] Eunha Shim, Gretchen B. Chapman, Jeffrey P. Townsend, and Alison P. Galvani. The influence
of altruism on influenza vaccination decisions. Journal of The Royal Society Interface, 9(74):2234–
2243, September 2012.

[61] Danuta M. Skowronski, S. Aleina Tweed, S. Aleina Tweed, and Gaston De Serres. Rapid decline
of influenza vaccine-induced antibody in the elderly: Is it real, or is it relevant? The Journal of
Infectious Diseases, 197(4):490, 2008.

[62] NM Smith, JS Bresee, DK Shay, TM Uyeki, NJ Cox, and RA Strikas. Pre-
vention and control of influenza: recommendations of the advisory commit-
tee on immunization practices (acip). MMWRRecomm Rep, 55(RR-10):1–42, 2006.
https://www.cdc.gov/mmwr/preview/mmwrhtml/rr5510a1.htm.

[63] P.G. Smith, L.C. Rodrigues, and P.E.M. Fine. Assessment of the protective efficacy of vaccines
against common diseases using case-control and cohort studies. International Journal of Epidemi-
ology, 13(1):87, 1984.

[64] Claudio J Struchiner, Mary Elizabeth Halloran, James M Robins, and Andrew Spielman. The
behaviour of common measures of association used to assess a vaccination programme under complex
disease transmission patternsa computer simulation study of malaria vaccines. International Journal
of Epidemiology, 19(1):187, 1990.

[65] Igor Swiecicki, Thierry Gobron, and Denis Ullmo. Schrödinger approach to mean field games. Phys.
Rev. Lett., 116:128701, Mar 2016.

[66] James D Tamerius, Jeffrey Shaman, Wladmir J Alonso, Kimberly Bloom-Feshbach, Christopher K
Uejio, Andrew Comrie, and Cécile Viboud. Environmental predictors of seasonal influenza epidemics
across temperate and tropical climates. PLoS Pathog, 9(3):e1003194, 2013.

[67] John J. Treanor, H. Keipp Talbot, Suzanne E. Ohmit, Laura A. Coleman, Mark G. Thompson, Po-
Yung Cheng, Joshua G. Petrie, Geraldine Lofthus, Jennifer K. Meece, John V. Williams, LaShondra



24 F. SALVARANI AND G. TURINICI

Berman, Caroline Breese Hall, Arnold S. Monto, Marie R. Griffin, Edward Belongia, David K. Shay,
and for the US Flu-VE Network. Effectiveness of seasonal influenza vaccines in the United States
during a season with circulation of all three vaccine strains. Clinical Infectious Diseases, 55(7):951–
959, 2012.

[68] Gabriel Turinici. Metric gradient flows with state dependent functionals: the Nash-MFG equilib-
rium flows and their numerical schemes. submitted, May 2017. https://hal.archives-ouvertes.fr/hal-
01528480.

[69] Raffaele Vardavas, Romulus Breban, and Sally Blower. Can influenza epidemics be prevented by
voluntary vaccination? PLoS Comput Biol, 3(5):e85, 05 2007.

[70] Geoffrey A. Weinberg and Peter G. Szilagyi. Vaccine epidemiology: Efficacy, effectiveness, and the
translational research roadmap. Journal of Infectious Diseases, 201(11):1607–1610, 2010.

[71] Xiahong Zhao, Vicky J Fang, Suzanne E Ohmit, Arnold S Monto, Alex R Cook, and Benjamin J
Cowling. Quantifying protection against influenza virus infection measured by hemagglutination-
inhibition assays in vaccine trials. Epidemiology, 27(1):143, 2016.
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