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Abstract. We give a counterexample which shows that the asymptotic
rate of convergence to the equilibrium state for the transport equation,
with a degenerate cross section and in the periodic setting, cannot be
better than t−1/2 in the general case. We suggest moreover that the
geometrical properties of the cross section are the key feature of the
problem and impose, through the distribution of the forward exit time,
the speed of convergence to the stationary state.

1. Introduction

The long-time behaviour of kinetic transport equations – on periodic do-
mains or on bounded domains with specular reflection on the boundary –
is well known when the cross sections are bounded from below by a strictly
positive constant.

In this case, the exponential decay in time of the solutions to the unique
equilibrium state of the system can be obtained, with explicit rates, by the
method of hypocoercivity as in [7, 12].

This result has, however, no obvious extension in the case of cross sections
vanishing in a portion of the domain. Such a transport problem is said to
be degenerate, and the characterization of the long-time asymptotics in the
general case is still an open problem.

Indeed, in the regions where the cross section is zero, the problem is
reduced to the free transport equation, which has no equilibrium state in a
periodic setting or when the problem is defined on a bounded domain with
specular reflection.

A partial answer to this question has been obtained by Desvillettes and
Salvarani in [3] in a special situation, namely when the cross section vanishes
at a finite number of points.

The key point of the proof in [3] is the use of the Desvillettes-Villani
lemma (Theorem 6.2 in [4]), based on a pair of differential inequalities that
allows them to prove a polynomial (in time) speed of convergence towards
equilibrium for the solution of the transport problem.

We note that there exist other phenomena that can lead to the conver-
gence to equilibrium of the solutions of free transport equations: we cite,
for example, the interaction with the boundary of the domain in the case of
diffuse reflection [1, 10] or the presence of a dissipating obstacle (see [9] and
the references therein).
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In this note, we consider a situation when the cross section vanishes on
a set of non zero measure, and give a counterexample which shows that the
L2 distance to equilibrium cannot decay faster than t−1/2 (see Theorem 3.3
below).

2. The problem

The problem considered here is the long-time asymptotics of the non-
homogeneous (in space) transport equation

(2.1)
∂f

∂t
+ v · ∇xf = σ(x) (f̄ − f),

where f := f(t, x, v) represents the density of particles which at time t ∈ R+

and point x ∈ Td (d ∈ N, d ≥ 2) move at speed 1 in the direction v ∈ Sd−1.
Here Sd−1 denotes the unit sphere in Rd and

f̄(t, x) =
1

|Sd−1|

∫
Sd−1

f(t, x, v) dv,

where dv is the Euclidean surface element on Sd−1 and |Sd−1| is the total
(d− 1)-dimensional measure of Sd−1.

The equation is set in a periodic box, that is x ∈ Td := Rd/Zd, and is
supplemented with the initial condition

(2.2) f(0, x, v) = f in(x, v).

We assume that f in ∈ L∞(Td × Sd−1) and that f in ≥ 0 for a.e. (x, v) ∈
Td × Sd−1.

The nonnegative function σ(x) designates the absorption/scattering cross
section. We assume that

(1) σ ∈ L∞(Td) and σ(x) ≥ 0 for a.e. x ∈ Td;
(2) ∥σ∥L1(Td) > 0.

Since the problem (2.1)-(2.2) is a Lipschitz continuous perturbation of the
free transport equation, there exists a unique mild solution f of the problem
(see, for example, [8]).

It is also straightforward to prove that constants are steady solutions of
Equation (2.1), and that

f∞ =
1

|Sd−1|

∫
Td×Sd−1

f in(x, v) dxdv

is the unique constant solution with the same total mass (i.e. particle num-
ber) as the initial data.

Problem: Under the assumptions above, does one have

∥f(t, · , · )− f∞∥L2(Td×Sd−1) = O(e−γt) as t → +∞
for some γ > 0?

We recall the following result obtained by Ukai, Point and Ghidouche [11]:

Theorem 2.1. (Ukai, Point, Ghidouche). Under the assumptions above,
if σ(x) ≥ σm > 0 for a.e. x ∈ Td, there exist C, γ > 0 such that

∥f(t, · , · )− f∞∥L2(Td×Sd−1) ≤ Ce−γt∥f in∥L2(Td×Sd−1).
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In the next section, we answer the question above in the negative and
show that the Ukai-Point-Ghidouche theorem cannot be extended to the
case of degenerate cross sections.

3. A counterexample

We consider here a case of degenerate transport where convergence to
equilibrium cannot be faster than algebraic. This possibility excludes the
exponential convergence under the assumptions above and without addi-
tional requirements.

Following [5], for all r ∈ (0, 1/2) we consider the periodic open set

Zr = {x ∈ Rd : dist(x,Zd) > r}

together with the associated fundamental domain Yr = Zr/Zd.
A crucial tool in studying Equation (2.1) is the forward exit time for a

particle starting from x ∈ Zr in the direction v ∈ Sd−1, defined as

τr(x, v) = inf{t > 0 : x+ tv ∈ ∂Zr}.

The forward exit time can be defined on the quotient space Yr × Sd−1 by
periodicity since

τr(x+ k, v) = τr(x, v) for all (x, v) ∈ Zr × Sd−1 and k ∈ Zd.

On the measurable space Yr × Sd−1, equipped with its Borel σ-algebra, we
define µr as the probability measure proportional to the Lebesgue measure
on Yr × Sd−1, that is

dµr(y, v) =
dydv

|Yr| |Sd−1|
.

We finally define the distribution of τr under µr by

Φr(t) := µr

(
{(x, v) ∈ Yr × Sd−1 : τr(y, v) > t}

)
.

The distribution of forward exit time satisfies, in the periodic case, both
a lower and an upper bound. This property, proved by Bourgain, Golse and
Wennberg [2, 6] is recalled in the following theorem:

Theorem 3.1. (Bourgain, Golse, Wennberg). Let d ≥ 2. Then there
exist two positive constants C1 and C2 such that, for all r ∈ (0, 1/2) and
each t > 1/rd−1

C1

rd−1
t−1 ≤ Φr(t) ≤

C2

rd−1
t−1.

Our counterexample uses only the lower bound in Theorem 3.1. We recall
that this lower bound is based on the fact that some particles never meet
the scattering region, i.e. {x ∈ Td : σ(x) > 0}, because of the presence of
infinite channels [2].

Choose

σ(x) = 1Td\Yr
,

and

f in(x, v) = f in(x) = 1Yr

in (2.1)-(2.2).
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It is easy to prove that the only steady solution of Equation (2.1) with
the same mass as the initial condition f in is the constant function f∞ = |Yr|.
This property is a consequence of the following result:

Proposition 3.2. Let f ∈ L2(Td × Sd−1) satisfy

(3.1) v · ∇xf − σ(x) (f̄ − f) = 0.

Then

f(x, v) =
1

|Sd−1|

∫
Td×Sd−1

f(x, v) dxdv

for a.e. (x, v) ∈ Td × Sd−1.

Proof. Multiply Equation (3.1) by f and integrate with respect to (x, v) ∈
Td × Sd−1. We deduce the energy estimate∫

Td×Sd−1

σ(x)(f̄ − f)2dxdv = 0.

Since σ(x) ≥ 0 a.e., the previous equation implies that σ(x) (f̄ − f) = 0 for
a.e. (x, v) ∈ Td × Sd−1.

Hence f satisfies the equation v · ∇xf = 0. Therefore, by applying
the Fourier transform with respect to the space variable, we obtain that
v · kf̂(k, v) = 0, that is f̂(k, v) = 0 for all k and for a.e. v ∈ Sd−1.

Thus, supp(f̂) ⊂ {0} × Sd−1 which means that f = f(v). Again by the
energy estimate, σ(x)f(v) = σ(x)f̄ and hence, in the region {x ∈ Td :
σ(x) > 0}, f(v) = f̄ .

Since this region is of positive measure the announced result follows. �

Since the solution of the Cauchy problem (2.1)-(2.2) satisfies∫
Td×Sd−1

f(t, x, v) dxdv =

∫
Td×Sd−1

f in(x, v) dxdv,

the only equilibrium solution to which f can converge in L2(Td × Sd−1) as
t → +∞ is

f∞ =
1

|Sd−1|

∫
Td×Sd−1

f in(x, v) dxdv = |Yr|.

Thus

(3.2)

∫
Td×Sd−1

(f − f∞)2 dxdv ≥
∫
Yr×Sd−1

(f − f∞)2 dxdv

=

∫
Yr×Sd−1

1τr(x,−v)>t(f − f∞)2 dxdv

+

∫
Yr×Sd−1

1τr(x,−v)≤t(f − f∞)2 dxdv

= I + J.
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By Duhamel’s formula

f(t, x, v) = f in(x− tv, v) exp

(
−
∫ t

0
σ(x− sv) ds

)
+

∫ t

0
exp

(
−
∫ s

0
σ(x− τv) dτ

)
σ(x− sv)f̄(s, x− sv) ds

≥ f in(x− tv, v) exp

(
−
∫ t

0
σ(x− sv) ds

)
since f ≥ 0 by the maximum principle for (2.1)-(2.2).

Thus
f(t, x, v)1τr(x,−v)>t ≥ f in(x− tv, v)1τr(x,−v)>t

since
τr(x,−v) > t =⇒ σ(x− sv) = 0 for all s ∈ [0, t],

and therefore
f(t, x, v)1τr(x,−v)>t ≥ 1τr(x,−v)>t

since
τr(x,−v) > t =⇒ x− tv ∈ Yr =⇒ f in(x− tv, v) = 1.

Hence

I =

∫
Yr×Sd−1

1τr(x,−v)>t(f − f∞)2 dxdv

=

∫
Yr×Sd−1

(1τr(x,−v)>tf − 1τr(x,−v)>tf∞)2 dxdv

≥
∫
Yr×Sd−1

1τr(x,−v)>t(1− f∞)2 dxdv

= (1− |Yr|)2
∫
Yr×Sd−1

1τr(x,−v)>t dxdv

= (1− |Yr|)2|Yr| |Sd−1|Φr(t),

where the inequality above follows from the fact that f∞ < 1, so that

1τr(x,−v)>tf∞ ≤ 1τr(x,−v)>t ≤ 1τr(x,−v)>tf(t, x, v).

Therefore

I ≥ (1− |Yr|)2|Yr| |Sd−1| C1

rd−1
t−1

for all t > r1−d.
Since

J =

∫
Yr×Sd−1

1τr(x,−v)≤t(f − f∞)2 dxdv ≥ 0,

(3.2) implies∫
Td×Sd−1

(f − f∞)2 dxdv ≥ C1

rd−1
(1− |Yr|)2|Yr| |Sd−1| t−1

or, equivalently,

∥f − f∞∥L2(Td×Sd−1) ≥
C√
t
.

This particular example shows that the convergence cannot be better than
polynomial in the general case. Here the L2-norm of the difference between
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the time-dependent solution and the corresponding stationary state decays
at best like t−1/2.

Our result can be summarized in the following theorem:

Theorem 3.3. For all r ∈ (0, 1/2), there exists an initial condition f in ∈
L∞(Td × Sd−1) satisfying f in(x, v) ≥ 0 for a.e. (x, v) ∈ Td × Sd−1 and
such that, for each cross section σ ∈ L∞(Td) satisfying σ(x) ≥ 0 for a.e.
x ∈ Td and σ(x) = 0 for a.e. x ∈ Yr, the solution f of the Cauchy problem
(2.1)-(2.2) satisfies

∥f − f∞∥L2(Td×Sd−1) ≥
C√
t

for each t > r1−d, where

f∞ =
1

|Sd−1|

∫
Td×Sd−1

f in(x, v) dxdv

and C is a positive constant.

Remark 3.4. The initial data f in chosen in the proof of Theorem 3.3 is
independent of the velocity variable v. Therefore, regularity in v cannot help
in obtaining exponential convergence.

Remark 3.5. The same argument shows that one can choose f in ∈ C∞(Td)
provided that f in = 0 on Td \ Yr. Thus regularity in x cannot help either in
obtaining exponential decay.

Remark 3.6. The same result holds if the isotropic scattering model con-
sidered here is replaced with a transport equation of the form

∂f

∂t
+ v · ∇xf + σ(x)

[
f − 1

|Sd−1|

∫
Sd−1

p(v, v′)f(t, x, v′) dv′
]
= 0,

where p(v, v′) ∈ L2(Sd−1 × Sd−1) is a scattering kernel such that

p(v, v′) = p(v′, v) ≥ 0 and
1

|Sd−1|

∫
Sd−1

p(v, v′) dv′ = 1.

Remark 3.7. The distribution of the forward exit time, induced by the
geometrical properties of the scattering region, is the key ingredient in the
computations.

Hence, further hypotheses on the geometry of the scattering region are
necessary in order to improve the convergence rate.
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