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We study an approximate solution of the Boltzmann problem for Kac’s
caricature of a Maxwellian gas by using a truncated and modified expansion of
Wild type. We choose the coefficients in the Wild sum approximation using a
criterion based on exactly reproducing the behavior of the leading modes.
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1. INTRODUCTION

In recent years much attention has been devoted to the numerical resolu-
tion of the Boltzmann equation (see, for example, refs. 6, 11, and 12). In
this paper we deal with the Kac’s caricature of a one dimensional Maxwell
gas refs. 5 and 8. In Kac’s model, the equation governing the evolution of
the velocity density f(v, t), v ¥ R, is

“

“t
f(v, t)=F

R
F
p

−p
r(h)[f(vg, t) f(wg, t)−f(v, t) f(w, t)] dw dh, (1)

where the post-collisional velocities (v, w) are related to the initial velocities
(vg, wg) by:

vg=v cos h−w sin h, wg=v sin h+w cos h,



and r(h) is an even probability density on [−p, p]. A direct calculation
shows that the model preserves both the total mass and the energy, but not
the momentum.
In the rest of the section we suppose that the initial density

f(v, 0)=f0(v) is a non-negative function such that:

F
R
f0(v) dv=1 and F

R
v2f0(v) dv=1. (2)

It is a well known result that Boltzmann’sH-functional

H(f)=F
R
f(v, t) log f(v, t) dv

is a monotone non-increasing function of t if f(v, t) is a solution of (1)
with initial data f0. Moreover f tends to the Maxwellian equilibrium
distribution:

M(v)=
1

`2p
e−v

2/2

for tQ., provided that f0 satisfies (2).
The short-time behavior of solutions of (1) is also of interest. If a

splitting method is used to solve the spatially inhomogeneous version of (1),
then one needs good approximate solutions to (1) at the time t=Dt to
implement the collision step (see refs. 6 and 11 for more information). This
paper is focused on the problem of obtaining accurate and readily com-
putable approximations to solutions of (1) at a fixed time t, which can be
thought of as representing the time step in a splitting scheme.
It is a remarkable fact that there is a constructive method(13) for solving

the spatially homogeneous Boltzmann equation for a Maxwellian gas, and
this same method applies to Kac’s caricature as well. The solution of the
initial value problem (1), with initial datum f(v, 0)=f0(v) ¥ L1(R) 5 L.(R)
can be expressed in terms of this initial data using a so-called Wild sum, as
shown by Wild (13) in the case of a Maxwellian gas.
More explicitly, let us introduce the Wild convolution fp g(v) of two

probability densities f and g through

fp g(v)=F
R
F
p

−p
r(h) f(vg, t) g(wg, t) dw dh.
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Then the initial value problem for (1) can be written

“f
“t
=fp f−f f(v, 0)=f0(v),

and the Wild sum solution, given in this case by McKean, (10) is

f(v, t)=e−t C
.

n=0
(1−e−t)nfn(v), (3)

where

fn+1(v)=
1
n+1

C
n

k=0
fk p fn−k(v).

If we fix any positive integer N, we obtain an approximate solution of
(1) by setting f (N)(v, t)=e−t;N

n=0 (1−e
−t)nfn(v)+(1−e−t)N+1M(v), where

M(v) is the Maxwellian density specified above. Qualitatively sharp bounds
on how ||f−f (N)||L1 decreases to zero with N have been obtained in ref. 3.
A truncated Wild’s expansion has been used in ref. 6 for constructing

numerical schemes, by considering the first terms up to the order N in (3),
and then adding the Maxwellian, multiplied by a coefficient, such that to
satisfy the mass conservation.
This idea has given rise to the derivation of robust numerical schemes,

i.e., unconditionally stable methods preserving the asymptotics of the fluid
dynamic limit, called time relaxed schemes, which have the property, shown
in ref. 6, to be of order N in time.
For numerical purposes, it is unlikely to be feasible to take N> 1

because of the expense of computing Wild convolutions. It has been
observed by Pareschi and Russo (11) that, if one fixes N=1, one can get
better approximate solutions by using

f(v, t) % A0(t) f0(v)+A1(t) f0 p f0(v)+A2(t) M(v) (4)

for other choices of A0(t), A1(t), and A2(t) than those corresponding to the
approximation f(v, t) % f (1)(v, t).
In general, the problem as formulated by Pareschi and Russo is to

choose the coefficients Ak(t) in

f (N)(v, t)=C
N

k=0
Akfk(v)+AN+1(t) M(v) (5)

so that f (N)(v, t) gives a good approximation to the true solution at the
fixed time t.
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The weights Ak(t) are non-negative functions satisfying the following
properties:

(i) consistency:

lim
tQ 0
A1(t)/t=1,

lim
tQ 0
Ak(t)/t=0, k=2,..., N+1;

(6)

(ii) mass conservation:

C
N+1

k=0
Ak(t)=1, t ¥ [0,.); (7)

(iii) asymptotic relaxation:

lim
tQ.
Ak(t)=0, k=0,..., N.

There are several systems of weights Ak which satisfy properties (i),
(ii), (iii). In particular, the choice

Ak=e−t(1−e−t)k,

Ak+1=(1−e−t)N+1,
k=0,..., N

gives the Wild’s coefficients.
While Pareschi and Russo have shown that there exist sets of weights

Ak that give better approximations for fixed small N in numerical compu-
tations than do the Wild coefficients, they leave open the problem of how
to optimally determine these weights. Here we give a solution to such a
problem.
In this paper we limit our attention primarily to second-order schemes,

leaving to the reader the straightforward generalizations.
The starting point is to write the initial data f0 as

f0(v)=M(v)(1+h0(v)) (8)

where, on account of (2),

F
R
h0(v) M(v) dv=0 and F

R
v2h0(v) M(v) dv=0. (9)
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We then consider the spectral decomposition of h0(v) with respect to the
linearized collision operator

Lh(v)=
1
M(v)

(M p (Mh)(v)+(Mh pM)(v))−h(v). (10)

As shown by McKean, the eigenfunctions of L are the Hermite polyno-
mials Hk(v), and the corresponding eigenvalues lk are given by

lk=F
p

−p
r(h)(cosk(h)+sink(h)−1) dh. (11)

Then we can write h0 in terms of its spectral expansion:

h0(v)=C
.

k=1
akHk(v). (12)

Of course some modes in this expansion will be more important than
others, depending on how large ak is, and when t is not too small, on what
lk is. In particular, a2=0 by the conservation of mass and energy. Our
approach is to choose the coefficients in such a way that the most relevant
modes are treated exactly. In general though, which modes matter most will
depend on the type of problem under consideration.
For example, when spatially inhomogeneous kinetic equations are

used to study hydrodynamic evolution, one typically starts from local
Maxwellian initial data.
Even if the hydrodynamics of the inhomogeneous Kac’s model is not

clear, since the Gaussians are centered (and therefore the resulting macro-
scopic velocity is zero), it is nevertheless possible to consider data of the
form

r(x)
1

`2pT(x)
e−v

2/2T(x),

to study the approach to the equilibrium and find the leading modes.
One step of ‘‘streaming,’’ that is collisionless flow (x, v)Q (x+v Dt, v)

changes the phase space density to

r(x−v Dt)
1

`2pT(x−v Dt)
e−v

2/2T(x−v Dt)

=
r(x) e−v

2/2T(x)

`2pT(x)
51+11 ln T(x)

1/2

r(x)
2 − v− v3

2T(x)
(ln T(x))Œ 2 Dt+O(Dt2)6 .
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Thus, in this type of problems, we expect the coefficients a1 and a3 in (12)
to be of order Dt, while all others will be of order Dt2 or smaller. Moreover,
it is clear that this situation will persist in subsequent streaming and colli-
sion steps. This suggests that, in this case, particular attention should be
paid to the k=1 and k=3 modes. As we shall see, this is correct.
Once we have decided which modes are most significant in a given

problem, we proceed to determine the coefficients A0(t), A1(t) and A2(t) in
(4) by a moment matching method.
To do this, we use the fact that we can compute exactly the full non-

linear evolution of the moments

Qk(f)=F
R
vkf(v) dv, k ¥ N

using a method of Inkenberry and Truesdell. (7)We then require that

A0(t) Qk(f0)+A1(t) Qk(f0 p f0)+A2(t) Qk(M)=Qk(f( · , t)) (13)

for selected values of k. Though the right hand side is computed for the
exact non-linear evolution, as we shall see, the eigenvalues of the linearized
operator determine the behavior of the Qk(f( · , t)).
Since A0(t)+A1(t)+A2(t)=1, there are only two degrees of freedom,

and we can in general only hope to have this hold for two values of k, but
see Theorem 3.
We shall show here that no matter which two choices are made for these

values of k, the result is an explicit set of coefficients A0(t), A1(t) and A2(t)
that is independent of f0 and depends instead only on t and r(h). This uni-
versal property of the optimal coefficients is very favorable for application
since then the coefficients can be computed once and for all, in advance. It
is what selects the moment matching method as particularly adapted to the
problem at hand. If we had sought instead to choose A0(t), A1(t) and A2(t)
so as to minimize, say,

||f( · , t)−(A0(t) f0+A1(t) f0 p f0+A2(t) M)||1,

this would not be the case and, at each step, the choice of the coefficients
would depend on the solution of a difficult variational problem.
Not only is the universality of the coefficients very favorable for

computation, these coefficients yield very accurate results for appropriate
initial data. For example, in ‘‘hydrodynamic’’ problems of the type dis-
cussed above, it is natural to consider initial data f0 of the form

f0(v)=M(v)(1+av+b(v3−3v)+h(v)) (14)
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where a and b are of order t and h is a linear combination of Hermite
polynomials of fourth degree and higher, and is such that ||hM||1 is of
order t2. Let f̃0 be defined by

f̃0(v)=M(v)(1+av+b(v3−3v)). (15)

Notice that f̃0(v) is negative for some values of v, so it does not represent
physical initial data. However, the evolution under (1) is stable so that the
solution of (1) with initial data f̃0 remains close to the solution of (1) with
initial data f0 on [0, t]. The second good point is that (1) is exactly
solvable with the initial data f̃0. In fact, a more general result is true, and is
easily derived from the following theorem, special cases of which were
noted in ref. 4.

Theorem 1 (Exact Solutions of the Kac Equation). Let r(h) be
even, and let p(v) be any odd polynomial in v. Then

Mp pMp=0. (16)

In particular, if p(v, t) is an odd polynomial with coefficients depending on
t in such a way that M(v)(1+p(v, t)) is a solution of the linearized Kac
equation, thenM(v)(1+p(v, t)) is a solution of the full Kac equation.

Proof. It suffices to show that Mvm pMvn=0 when n is odd. By
direct computation,

Mvm pMvn=C
n

j=0
C
m

i=0

1n
j
21m
i
2M(v) vm−i+j I1(m, n, i, j) I2(m, n, i, j)

where

I1(m, n, i, j)=F
p

−p
r(h) cosm+n−i−jh sin i+jh dh

and

I2(m, n, i, j)=F
R
M(w) wn−j+i dw.

But the Gaussian integral vanishes unless n−j+i is even, and the trigo-
nometric integral vanishes unless i+j is even. If n is odd, these cannot both
be true, and therefore one factor or the other must vanish. The final
statement now follows immediately from the first part.
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For example, consider

f(v, t)=M(v)(1+a(t) v+b(t)(v3−3v)). (17)

One easily computes that

fp f(v, t)−f(v, t)=M(v)(a(t)(c1−1) v+b(t)(c3−1)(v3−3v))

where

ck=F
p

−p
r(h) coskh dh. (18)

Therefore, (17) defines an exact solution of (1) in case

a(t)=a0e (c1 −1) t and b(t)=b0e (c3 −1) t.

We now show that matching the k th moments as in (13) leads to exactly
this solution.

Theorem 2 (Optimal Coefficients Independent of f0). In order
that

A0(t) Qk(f0)+A1(t) Qk(f0 p f0)+A2(t) Qk(M)=Qk(f( · , t)) (19)

holds for k=1 and k=3, one must have, independently of f0,

A0(t)=
c1e (c3 −1) t−c3e (c1 −1) t

c1−c3
and A1(t)=

e (c3 −1) t−e (c1 −1) t

c3−c1
(20)

where ck is given by (18). When the initial datum f0 is given by (15),
then with the coefficients A0(t), A1(t) and A2(t) determined by (20),
A0(t) f0+A1(t) f0 p f0+A2(t) M is the exact solution.

We prove this theorem in Section 2, after having first obtained for-
mulae for the evolution of the moments. We will use these to prove an
analogous of Theorem 2, where other values of k are used in (13) to
determine the coefficients. We also examine in more detail the circum-
stances in which (20) leads to highly accurate approximate solutions. Sec-
tion 3 is devoted to a numerical investigation of some cases in which even
values of k play the dominant role. Finally, Section 4 contains some
concluding remarks.

268 Carlen and Salvarani



2. TIME EVOLUTION OF THE MOMENTS

Consider Eq. (1). Multiplying both sides of that equation by vk and
integrating with respect to v over R, we obtain:

d
dt

F
R
vkf(v, t) dv

=F
R×R

F
p

−p
r(h) vk[f(vg, t) f(wg, t)−f(v, t) f(w, t)] dv dw dh, (21)

which can be written as

d
dt
Qk(f)=Qk(fp f)−Qk(f).

A straightforward computation shows that the Jacobian of the trans-
formation (v, w)Q (vg, wg) is equal to 1, and for all k ¥ N we have:

Qk(fp f)=F
R×R

F
p

−p
r(h) vkf(vg) f(wg) dv dw dh

=F
R×R

F
p

−p
r(h)(v cos h+w sin h)kf(v) f(w) dv dw dh.

Therefore,

Qk(fp f)=C
k

i=0

5Qk−i(t) Qi(t) 1
k
i
2 Fp
−p
r(h) cosk−i h sin i h dh6 . (22)

Since by hypothesis r(h) is even,

F
p

−p
r(h) cosk−i h sin i h dh=0

for all odd values of i. Hence,

Qk(fp f)=1F
p

−p
r(h)(cosk h+sink h) dh2 Qk(f)

+ C
k−1

i=2, i even

5Qk−i(t) Qi(t) 1
k
i
2 Fp
−p
r(h) cosk−i h sin i h dh6 .
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Therefore,

d
dt
Qk(f)=lkQk(f)+ C

k−1

i=2, i even
Bk, iQk−i(f) Qi(f),

where

Bk, i=1
k
i
2 Fp
−p
r(h) cosk−i h sin i h dh.

Notice that the lk and the Bk, i depend only on r(h) and not on f(v).
The Qk(f) satisfy a system of differential equations whose coefficients are
independent of the initial data f0. Moreover, the coefficient of Qk(f) in
its time derivative is lk, the corresponding eigenvalue of the linearized
evolution.
Now let us apply this to find the optimal coefficients A0(t), A1(t) and

A2(t) when we choose k=1 and k=3. Then we have from the above
equations that

d
dt
Q1(f)=l1Q1(f)=(c1−1) Q1(f),

where ck is given by (18), so that

Q1(f( · , t))=e(c1 −1) tQ1(f0).

Similarly, the combination Q3(f)−3Q1(f) is found to satisfy

(Q3(f( · , t))−3Q1(f( · , t)))=e(c3 −1) t(Q3(f0)−3Q1(f0)).

This leads to the system of equations:

(A0(t)+c1A1(t)−e (c1 −1) t) Q1(f0)=0

(A0(t)+c3A1(t)−e (c3 −1) t)(Q3(f0)−3Q1(f0))=0.

Since the previous equations should be valid for every choice of the initial
data, this means that

(A0(t)+c1A1(t)−e (c1 −1) t)=0

(A0(t)+c3A1(t)−e (c3 −1) t)=0.
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Notice two things: when k is odd, A2(t) will not appear since all odd
moments of M vanish, and this system does not involve f0. It is easily
solved to yield

A0(t)=
c1e (c3 −1) t−c3e (c1 −1) t

c1−c3

and

A1(t)=
e (c3 −1) t−e (c1 −1) t

c3−c1
.

This proves Theorem 2.
For physical (non-negative) initial data f0 of the type given in (14), the

approximate solution given by (19) will in fact only be approximate.
But because of the L1 stability of the Kac equation, (1) if the difference
between the physical data f0(v)=M(v)(1+av+b(v3−3v)+h(v)) and f̃0(v)
=M(v)(1+av+b(v3−3v)) is of order t2 in L1, then the corresponding
solutions will satisfy ||f(t, · )− f̃(t, · )||1=O(t2). But since f̃(v, t) is given by
(19) with the coefficients given by (20), we see that in this case, which is of
special importance due to the connection with hydrodynamics, Theorem 2
provides particularly accurate approximations.
We now turn to the analogous of Theorem 2 in which we use other

values of k than k=1 and k=3. When we use even moments, the moments
of M will enter the system. Since the kth moment of the Maxwellian, for
even k \ 0, is given by

1

`2p
F

R
vke−v

2/2dv=(k−1)!!,

for even k we must solve

A0(t) Qk(f0)+A1(t) F
R
vk(f0 p f0) dv+A2(t)(k−1)!!=Qk(f( · , t)). (23)

By considering equation (22), it is possible to simplify this, obtaining
the equation representing the conservation of any even moment:

A0(t) Qk(f0)

+A1(t) C
k

i=0

5Qk−i(f0) Qi(f0) 1
k
i
2 Fp
−p
r(h) cosk−i h sin i h dh6

+A2(t)(k−1)!!

=Qk(f( · , t)). (24)
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A case in which it is required to use an even moment is considered in the
next section.

3. THE ISOTROPIC KAC’S MODEL

In this section we show a situation in which the choice of the moments
of order k=1 and k=3 is not allowed. This happens when r(h) is con-
stant, i.e., when we consider isotropic scattering with respect to h. Since
r(h) should be a probability density on [−p, p], this means r(h)=1/2p.
In this case, indeed, the odd moments of the Maxwellian in (13)

vanish, and, by Eq. (22), also Qk(fp f)=0. This means that every odd
moment is governed by the following linear ODE:

Qk(f(t))=Qk(f0) e−t, k=1, 3, 5, ... (25)

and hence, that (13) reduces to A0(t) Qk(f0)=e−tQk(f0), which simply
says A0(t)=e−t, independent of k. Thus, all odd moments impose the same
requirement on the coefficients.
Therefore, to determine the coefficients, we will take k=1 together

with an even moment. The inclusion of k=1 means that we exactly repro-
duce the behavior of all of the infinitely many odd moments. As for
the even moment, the fact that the 4th degree Hermite polynomial is the
mode of the linearized Kac equation, for r constant, with the slowest
relaxation argues for choosing k=4. An analogous of Theorem 2 can now
be stated:

Theorem 3 (Optimal Coefficients for the Uniform Kac Equation).

In order that

A0(t) Qk(f0)+A1(t) Qk(f0 p f0)+A2(t) Qk(M)=Qk(f( · , t)) (26)

holds for k=1 and k=4, one must have, independent of f0,

A0(t)=e−t, A1(t)=
4
3(e

−t/4−e−t), A2(t)=1+
1
3(e

−t−4e−t/4). (27)

Proof. By the conservation of the mass we have A0(t)+A1(t)+A2(t)
=1. Then we apply Eqs. (25) to (13) to obtain A0(t)=e−t. Finally, since
the solution of the equation governing the fourth moment:

d
dt
Q4(f)=−

1
4
Q4(f)+

3
4
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has the solution

Q4(f)=[Q4(f0)−3] e−t/4+3,

by inserting this result in (13) we obtain the thesis.
We point out that, as distinct from the situation explored in the pre-

vious section, here the resulting scheme is only first-order accurate, and this
is in agreement with the results of Gabetta, Pareschi and Toscani. (6)

On the other hand, the coefficients of the Wild-like expansion
obtained in this way give a better accuracy than the Wild coefficients, as we
will see in the numerical examples that follow. In all tests of this section we
compare the approximation obtained with the method described in the
paper with the following exact solution of the Kac equation: (2,9)

fE(v, t)=
1
2[
3
2(1−C(t))`C(t)+(3C(t)−1) C(t)

3/2v2] e−C(t) v
2
,

where

C(t)=
1

3−2e−`p t/16
.

Note that

F
R
fE(v, t) dv=

`p

2
and F

R
v2fE(v, t) dv=

3
4
`p ,

and therefore some of the formulae appearing in the paper have been here
adapted to such a situation.
Let’s denote by EM(t) the L1-norm of the difference between the exact

solution and the approximation provided by Theorem 3; i.e.,

EM(t)=||f( · , t)−(A0(t) f0+A1(t) f0 p f0+A2(t) M)||1,

where A0(t), A1(t) and A2(t) are given as in Theorem 3.
In Figs. 1 and 2 we show the behavior of EM(t) at various time steps.

It is clear from Fig. 1 that the approximation possesses the correct asymp-
totics, while in intermediate times gives a less accurate result.
Figure 3 is devoted to the comparison, for t=1, between the exact

solution fE(v, t=1) and its approximation of order 1 with the method of
moments

f (1)E (v, t=1)=A0(1) f0+A1(1) f0 p f0+A2(1) M,

that is we have chosen a time instant in the region of bad accuracy.
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Fig. 1. Behavior of EM(t) with respect to the time for 0 [ t [ 20.
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Fig. 2. Detail of Fig. 1 for small times.
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Fig. 3. Comparison between the exact solution fE (dashed line) and its approximation f
(1)
E

(continuous line) with the method of moments for t=1.
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Fig. 4. Behavior of the ratio EM(t)/EW(t) with respect to the time for 0 < t [ 1.

On the Optimal Choice of Coefficients 275



Finally, in Fig. 4 we show the behavior of the ratio between EM(t) and
EW(t) for t [ 1.
The quantity EW(t) is the L1-norm of the difference between the exact

solution and the corresponding Wild’s expansion up to the order 1, and it
is given by

EW(t)=||f( · , t)−(A0(t) f0+A1(t) f0 p f0+A2(t) M)||1,

where A0(t), A1(t) and A2(t) are the Wild’s coefficients.
Since the ratio EM(t)/EW(t) < 1, we note that the accuracy of the

methods of moments, in this case, is better than the Wild’s sum. The
improvement of accuracy depends on the time, and is more apparent for
small times. Since the interest in practical applications is mainly in the
behavior for small time steps, this feature is another advantage of the
method when compared with a truncated Wild’s sum.

4. CONCLUDING REMARKS

We have seen that moment matching criteria lead to the selection of
coefficients in a truncated Wild sum that under certain physically interest-
ing circumstances provide second order accuracy at first order cost. More-
over, the coefficients are universal, independent of the initial data, and can
be computed once and for all in advance. This would not have been the
case had we used, say, optimal fit in the L1-norm to choose the coefficients.
We finally remark that similar results will hold for the full Boltzmann
equation for Maxwellian molecules.
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