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Abstract. We consider a kinetic model describing some mechanisms
of opinion formation in the framework of referendums, where the indi-
viduals, who can interact between themselves and modify their opinion
by means of spontaneous self-thinking, are moreover under the influence
of mass media. We study, at the numerical level, both the transient and
the asymptotic regimes. In particular, we point out that a plurality of
media, with different orientations, is a key ingredient to allow pluralism
and prevent consensus. The forecasts of the model are compared to
some surveys related to the Scottish independence referendum of 2014.

1. Introduction

The present work provides the study of some phenomena arising in social
sciences by means of a statistical mechanics approach. This strategy was
born in the eighties; the reader can check [14] and the references therein to
know more about the topic. In particular, one can find there some discus-
sions about the French referendum on the European constitution in 2005.

Forecasting the opinion evolution with respect to a binary question is
crucial in many situations. A typical example consists in the anticipation
of a referendum result or an electoral competition, by using poll data from
surveys held some time before the vote.

In this article, we give a contribution to this problem by studying a math-
ematical model based on a kinetic approach, and we provide both qualitative
and quantitative comparisons with real data, in the case of the 2014 Scottish
independence referendum.

Our model is based on the following hypotheses.

Assumption 1. The number of individuals in the population is constant.
Of course, this is only relevant for short-term forecasts, as during a referen-
dum campaign.
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Assumption 2. The community is fully interconnected and all the mem-
bers can somehow discuss with each other. By tuning the cross section
of the model, however, it is possible to generalize our model to situations
where the interaction probability between individuals depends on their own
convictions, as in bounded confidence models [10, 15].

Assumption 3. There are some mass media which can have an effect on
the individuals.

Let us focus on the mass media, whose involvement is the most significant
contribution of this work. Although the press freedom appears as a safe-
guard in a democracy [19], the media can also be used to influence the public
opinion, by taking advantage of their possibility of easily reaching a wide
audience and favour some interests, ideas or arguments inside a population
[9]. In order to influence the population, many different tactics have been
developed. Among them, we quote the distraction, in different forms (which
is based on the assumption that the public has a limited attention span),
the appeal to consensus and the fear mongering [13]. These techniques are
used either separately, or combined between them, and can be applied to
many different contexts. Mass media use diversified media technologies in
order to reach a large audience and transfer concepts, ideas, etc. Among
them, we can cite broadcast media (radio, television), print media (newspa-
pers, books), outdoor media (posters), digital media (Internet, mobile mass
communication).

Mass media can use two different kinds of strategy. They can act either
as observers, or as opinion carriers. In the latter case, they often simply
spread out the opinions which they support into the population, without
any other interest than the maximisation of their audience. Unfortunately,
these two strategies cannot be modelled in the same way. Manipulating
media can be described as entities with a given external opinion, which aim
to spread their own opinion inside the population. Wide audience media
should be described with a more intricate approach: the opinions they carry
can depend on the opinion distribution inside the population, and then the
influence of the population on the media opinion is a part of the model itself.
In this work, we only consider media with an a priori given opinion. This
case can in fact be seen as a first rough approximation of the wide audience
media, where the media opinion may not remain constant, but does not
depend on the opinion distribution.

We here use a kinetic approach to describe and forecast the evolution of a
system under the aforementioned effects. In this framework, a distribution
function holds the information on the system, and its time evolution is
governed by a partial differential equation with integral operators. This
strategy is based on sophisticated mathematical tools and its interest is
apparent when the number of individuals becomes very large, since it allows
to handle collective behaviours.
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Kinetic equations have been used to model social phenomena since the
early 90s, when Helbing studied behavioural changes by using Boltzmann-
like equations [17, 16, 18]. Subsequently, this approach has been the basis
of several works, see the review article [8] and the references therein. Note
that, in most part of the literature based on all the approaches, including
the kinetic one, the key phenomenon is compromise, see [1, 2, 20, 12, 4].

The model we here investigate also owns this binary interaction feature:
individuals follow the rule proposed by the authors in [7]. Taking into ac-
count the influence of mass media on the population, we are able to improve
our previous results from [7], and recover some realistic behaviours.

The opinion variable of our model runs in a continuous way between two
extreme values, from −1 to +1. The model describes the time evolution
of a distribution function f (depending on both opinion and time), which
represents the density of individuals with respect to the opinion about the
binary question. That kind of variable reflects the opinion formation process,
which does not lead necessarily to strong opinions, since doubt and partial
agreement are often predominant feelings.

The media action on the system is modelled by a kinetic operator which
has a structure similar to the media operator introduced in [6], but with a
different nonlinear effect in the post-interaction opinion. The structure of
this linear (with respect to f) term is well adapted to the coupling with the
self-thinking.

At the end of the opinion formation process, the opinions must be trans-
lated into a decision. This issue is not tackled here, since it is often the
result (at least in the case of reasonable and rational individuals) of a game-
theoretical approach, especially when those individuals have intermediate
opinions.

Since we work with a continuous opinion variable, it is difficult, in general,
to get comparisons with real data. Indeed, polls usually have a binary
(“yes”/“no”) or ternary (“yes”/“no”/“indifferent”) structure, since they are
interested in forecasting the result of the final choice with respect to the
binary question of the referendum. However, some more structured surveys
have been built on a more complete scale (usually from 1 to 10). These
polls can be a good tool for comparisons, which are essential to somehow
validate our model. The last part of our study is consequently devoted to the
qualitative comparison between the results of our model and three surveys
performed by the polling corporation ICM Unlimited1 about the Scottish
independence referendum, that took place in Scotland on September 18,
2014. Note that the data-supported profile of f seems stable with respect to
the opinion variable. The data allow to fit some mechanical parameters, but
they do not provide any information related to the time scales: an answer
to this question would require the knowledge of the same kind of data in a
wider range of time.

1See http://www.icmunlimited.com/media-centre/polls/
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The article is organized as follows. In the next section, we describe the
model and its structure. Numerical simulations are performed and com-
mented in Section 3. Eventually, Section 4 focuses on the Scottish indepen-
dence referendum: we relate our numerical results to some existing polls
obtained before the referendum itself. It provides some kind of validation
to our model, and already suggests possible improvements.

2. Kinetic model

In this section, we briefly describe the model we investigate here. As
already stated, it appears as an extension to the one previously introduced
in [7]. We refer to that article for a full description of the bilinear integral
operator defining the binary interaction between the agents.

In what remains, Ω denotes the open interval (−1, 1). The variables of
the model are opinion x, a continuous variable belonging to Ω̄ = [−1, 1],
and time t ∈ R

+. The opinion variable x describes the degree of agreement
with respect to a binary question, for example, a referendum. In partic-
ular, x = ±1 are the two extreme answers to the question, i.e. “yes” or
“no” without reserve, whereas any intermediate value between −1 and +1,
0 excluded, means that the corresponding agent partially agrees with the
opinion labelled with the same sign, with a degree of conviction which is
proportional to |x|. The value x = 0 means that the agent is undecided.

The community is described by means of the distribution function f :=
f(t, x), defined on R+ × Ω̄, whose time evolution is governed by a kinetic
equation. The main ingredients of the kinetic model act at two different lev-
els. The first one is the description of the microscopic active phenomena, in
this case, the self-thinking, the binary opinion exchange between the individ-
uals of the population and the effect of mass media on a single individual.
The second level governs the time evolution of the distribution function,
which is induced by the operators which take the microscopic phenomena
into account. Since the model is of kinetic type, we borrow the language of
kinetic theory. Hence, the term collision means an interaction with exchange
of opinions, that gives, as a result, a modification of the agents opinions.

Self-thinking. The self-thinking phenomenon is described by a diffusion
operator obeying to a non-uniform Fourier law, with Fourier term α = α(x).
This term quantifies the possibility that people may change their opinion
through personal reasoning. In particular, we assume that the Fourier term
α : Ω̄ → R is a nonnegative C1 function such that α(−1) = α(+1) = 0.
This last constraint ensures, from the modelling viewpoint, that the opinions
cannot go out the interval Ω̄.

Binary opinion exchanges. Let x, x∗ ∈ Ω̄ the opinions of two individu-
als of the population before interacting, and x′, x′∗ ∈ Ω̄ the corresponding
opinion after the binary exchange.
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We assume that the individuals of the population are of conciliatory type
[7, 5]: it means that they have a natural trend to reach a compromise with
each other. From a quantitative point of view, the opinions after interaction
are modified in order to get closer to the average opinion before the inter-
action and, at the same time, stronger opinions are less attracted towards
the average than weaker ones. More precisely, the collision rule adopted in
the article is the following:

(1) x′ =
x+ x∗

2
+ η(x)

x− x∗
2

, x′∗ =
x+ x∗

2
+ η(x∗)

x∗ − x

2
,

where the attraction function η : Ω̄ → R is C1, with 0 ≤ η(x) < 1 and
η′(x) > 0 for all x > 0. It ensures that stronger opinions are less influenced
than weaker ones through a binary interaction.

Remark 2.1. We assume that the Jacobian J(x, x∗) of the collision mech-

anism (1) satisfies J(x, x∗) ≥ J0 for any x, x∗ ∈ Ω, for a given J0 > 0.
Jacobian J(x, x∗) should indeed be lower-bounded by a positive constant J0
in order to allow the weak formulation of our problem which is discussed in

Appendix A.

Interaction with mass media. In the model, as it is suggested by As-
sumption 3, we take into account the existence of m mass media, m ≥ 1.
They can influence the population by sharing their opinion about the ref-
erendum. The effects of the media are modelled thanks to an interac-
tion with a given background. To define the characteristics of each media
Mj, 1 ≤ j ≤ m, we need three quantities: its time-depending strength
θj : R

+ → R
+, its time-depending opinion Xj : R

+ → Ω̄, and its attrac-
tiveness qj : Ω̄2 → R.

The individuals of the population are still considered as conciliatory re-
garding the media. The evolution of an individual’s opinion follows a rule,
similar to the binary collision mechanism defined in the previous subsec-
tion, but with the difference that the media opinion is not influenced by the
population opinion. The main idea of the collision mechanism consists in
supposing that the opinions after the interaction are modified in order to ap-
proach the average opinion before the interaction and, again, that stronger
opinions are less attracted towards the media opinion than weaker ones.
Hence, if we denote by x̄j the post-collisional opinion of an individual of
pre-collisional opinion x, for each mass media Mj , 1 ≤ j ≤ m, we write

(2) x̄j =
x+Xj(t)

2
+ qj(x,Xj(t))

x−Xj(t)

2
,

where, for any j, the media attractiveness qj is continuous on Ω̄2, and sat-
isfies 0 ≤ qj(x, y) ≤ 1 for any x, y ∈ Ω̄.

The nonnegativity of qj is crucial to ensure that the post-collisional opin-
ion x̄j lies in Ω̄. Moreover, it seems reasonable, from the modelling point
of view, to impose that the media attractiveness is close to 1 when |x| ≃ 1:
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it really means that individuals with a strong opinion are less influenced by
the media effects than agents with a weaker opinion.

Time evolution of f . The model governing the evolution of the system is
a partial differential integral equation, which is more naturally written in a
weak form. Indeed, the existence of a pre-collisional opinion pair generating
a post-collisional opinion pair (x, x∗) ∈ Ω̄× Ω̄ through the collision rule (1)
is not guaranteed, in general. The weak form ensures that such pathological
pairs do not enter into the formulation of the model.

The model hence reads as follows. Let T > 0 and f in ∈ L1(Ω) a nonneg-
ative function. The unknown f satisfies, for almost every t ∈ [0, T ], and in
a distributional sense in t,

(3)
d

dt

(∫

Ω
f ϕdx

)

=

∫

Ω
∂x (α(x)∂xϕ) f dx+ 〈Q(f, f), ϕ〉+

m
∑

j=1

〈Lj(f), ϕ〉

for any test-function ϕ ∈ C2(Ω̄), with initial condition

(4) f(0, x) = f in(x), x ∈ Ω̄.

Of course, (3) can be written under the classical form

∂tf = ∂x(α(x)∂xf) +Q(f, f) +

m
∑

j=1

Lj(f),

which must be understood in the distributional sense in both variables (t, x).

Operator Q translates the effects of the binary interactions between the
agents, and can be written in different forms. A key ingredient of this
bilinear (with respect to f) operator is the cross-section. This nonnegative
quantity, denoted by β, governs the probability that an exchange of opinions
can occur. We here assume that β is a positive constant: this is the simplest
possible assumption, and β is then the collision frequency. Note that β,
as a constant, does not depend on x − x∗. Consequently, Assumption 2 is
satisfied.

The weak form used in this work is

(5) 〈Q(f, f), ϕ〉 =
β

2

∫∫

Ω2

f(t, x)f(t, x∗)

[

ϕ(x′) + ϕ(x′∗)− ϕ(x)− ϕ(x∗)
]

dx∗ dx.

Note that the collision rule (1) only appears in the arguments of the test-
function, and the signs in front of each term involving the test-function is
in a clear agreement with the usual gain/loss structure of Boltzmann-type
operators.

Operators Lj , 1 ≤ j ≤ m, linearly depend on f , and describe the media
effect on the population, and they have the following form:

(6) 〈Ljf, ϕ〉 = θj(t)

∫

Ω
f(x) (ϕ(x̄j)− ϕ(x)) dx.
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Note that, in the same way as Q, the interaction rule (2) only appears in the
arguments of the test-function, and the signs in front of each term involving
the test-function again show a gain/loss structure.

We must emphasize that the weak formulation is required not only to
recover the conservation of the number of individuals in the population (by
setting ϕ ≡ 1), which was required by Assumption 1, but also to obtain an
existence result for (3), see Appendix A for more details.

3. Numerical tests

The architecture of the numerical method used in the simulations sepa-
rately treats the kinetic part and the diffusion term by means of a splitting
technique, which was already used in [7]. Both steps are performed by using
a regular subdivision (x0, . . . , xN ) of Ω̄, with N ≥ 1, and by computing f
at the centre xi+1/2 of each interval [xi, xi+1], 0 ≤ i ≤ N − 1. Let us also
set ∆x = 2/N .

In order to represent f in terms of macro-particles, we sample it at each
time step on the regular grid, and its evolution is obtained through a slightly
modified Bird method [3], which takes into account the collision rules (1).
The diffusion part is explicitly treated, and a stability condition is accord-
ingly taken into account. The mass media are a set of invariant particles
which carry the media opinion and interact with the distribution function
f , chosen by a sample over the whole set of macro-particles, by obeying to
the collision rules (2).

The scheme itself conserves the total agents number, i.e. ‖f(t)‖L1
x

=

‖f in‖L1 , and guarantees that the opinion bounds are not violated: indeed,
opinions x such that |x| > 1 are not possible in both kinetic and diffusive
steps of the splitting procedure.

The numerical code has been written in C.
In all the computations, the Fourier term is α(x) = 0.05(1 − x2)1/3, the

collision frequency β is set to 50, and the attraction function is given by
η(x) = 0.25(1 + x2). The choice of media attractivenesses qj is crucial. In
our tests, we consider two different types of media influence: a global media
influence function and a media influence which equals 1 outside an interval
[−δ, δ], 0 < δ < 1. This last choice translates the idea that strong opinions
are not affected by the influence of the media, whereas weaker opinions are
submitted to the effect of mass media.

In what follows, we investigate test cases to give an overview of the quan-
titative features of the model. First of all, we study the influence, on a
population, of a unique media with a fixed opinion, and two different initial
conditions: a balanced initial datum and an unbalanced one. Subsequently,
we discuss the interactions between two groups of balanced media, again
with fixed opinions. This last result is compared in Section 4 to the opinion
dynamics for the Scottish independence referendum.
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3.1. Effect of a unique media on the opinion formation. The first
example studies the behaviour of the initial value problem (3)–(4), with
m = 1. In all tests of this subsection, we suppose that θ1 is constant, equal
to 50. The media attractiveness is also constant: q1 = 0.5. In Figure 1,
we can check the asymptotic states of the system, where the media opinion
X1(t) is set to −0.9, and for both initial data f in1 = 0.5 and f in2 = 1[0,1].

We note that the asymptotic states are the same, and of course do not
depend on initial data. They are driven by the media opinion, even if the
population has an initial opinion with opposite sign with respect to the
media opinion. Moreover, both situations show that self-thinking prevents
the system from a complete adherence to the media opinion.
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Figure 1. Effect of a unique media for (a) f in1 = 0.5, (b)
f in2 = 1[0,1].

In Figure 2, we can see the sensitivity of the model with respect to the
media attractiveness q1. We here choose a regularized version of

q1(x,X1) = 1−
1

2
1[−0.5,0.5](x).

Note that, since we are working on a discrete grid, we can numerically
identify the discretization of q1 and the discretization of its regularized ver-
sion, if ∆x has a smaller order of magnitude than the regularization param-
eter.

This media attractiveness means that only individuals with a weak opin-
ion, in the range [−0.5, 0.5], are influenced by the media opinion.

In order to compare the results with the previous case, we choose the
same set of initial datum and media opinion as in the second example, i.e.
f in2 = 1[0,1] and X1(t) = −0.9.

After a transient period of time, the media has, again, enough strength
to drive the whole population towards opinions whose sign agrees with its
opinion, even if 50% of the population cannot initially be influenced by the
media opinion. This behaviour is due to the binary interactions between the
agents. Since the whole population is composed of conciliatory individuals,
the effect of the binary interactions leads to compromise. Hence, the fraction
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Figure 2. Effect of a unique media with finite influence range.

of the population which keeps an opinion outside (0.5, 1] decreases towards
0. On the other hand, since the agents with opinions inside the interval
[−1,−0.5) are not influenced by the media, the peak of the distribution is
not centred at the media opinion any more, and is closer to 0.

3.2. Interaction between two media with fixed opinions. We con-
clude by pointing out how a plurality of media is a factor that allows plural-
ism of opinions and the splitting of the population in two well-defined groups.
In order to recover this behaviour, we now choose m = 2, θ1 = θ2 = 50, and
X1(t) = −X2(t) = 0.9.

In Figure 3, we plot the asymptotic state of the distribution function, with
initial datum f in1 = 0.5 and both media attractivenesses given by qj = 1 if
|x−Xj | > 1 and qj = 0.5 otherwise, for j = 1, 2.

After a transient period, we note the formation of two peaks centred at
each media opinion ±0.9. The fraction of agents with a weak opinion is very
low. It is a straightforward consequence of the fact that all individuals of
the population are under the media influence.

In Figure 4, we plot the asymptotic state of the distribution function,
with the same initial datum as in Figure 3, namely f in1 = 1/2. The media
attractivenesses are given by qj = 1 if |x−Xj | > 0.5 and qj = 0.5 otherwise,
for j = 1, 2.

In this case, the individuals with opinion close to 0 are not influenced by
any media: they can change their opinions only through self-thinking and
binary interactions.

We observe the formation of two strong sub-groups with asserted opinions,
but also the emergence of a fraction of undecided persons (who may have a
higher propensity to abstention). This behaviour is typical of some referen-
dum campaigns, such as the case discussed in the next section. Note that
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Figure 3. Pluralism of media and pluralism of opinions:
global media influence
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Figure 4. Pluralism of media and pluralism of opinions:
local media influence.

the observed concentration phenomenon may be analysed with techniques
similar to those presented in [11].

4. Comparison with polls: the Scottish case

On September 18, 2014, Scotland was called to answer the independence
referendum question: “Should Scotland be an independent country?”. The
turnout of 84.6% was the highest one recorded for a referendum in the
United Kingdom since the introduction of universal suffrage. This datum is
enough, by itself, to prove the importance that Scotland attributed to the
referendum question. The official results, certified by the Chief Counting
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Officer, from the Electoral Management Board for Scotland (EMB), are the
following:

Yes 1,617,989 44.65%
No 2,001,926 55.25%
Valid votes 3,619,915 99.91%
Invalid or blank votes 3,429 0.09%
Total votes 3,623,344 100.00%

The referendum was preceded by hundreds of surveys, whose aim was the
prediction of the final result. Those surveys took into consideration many
different aspects related to the independence referendum question. Among
them, we have considered three surveys for the validation phase, which have
the advantage of offering multiple answers. They hence allow the comparison
with our model, based on a continuum of opinions. The precise data of these
polls are the following:

(1) July 11, 2014: ICM survey for Scotland on Sunday with 1002 re-
spondents, aged 16 and older;

(2) August 13, 2014: ICM survey for Scotland on Sunday with 1005
respondents, aged 16 and older;

(3) September 16, 2014: ICM survey for The Scotsman with 1175 re-
spondents, aged 16 and older.

The question was identical in the three polls: “Can you please say where

you are on this scale regarding Scotland becoming independent?”. The an-
swers were modulated on a scale, between 1 and 10, where

• 1 means “completely against an independent Scotland”,
• 5 means “neither for nor against” (positioned between 5 and 6),
• 10 means “completely for an independent Scotland”.

The results of the three surveys are all plotted in Figure 5.
As the referendum day approached, there was a clear bipolarization of the

population and the emergence of two opposite fields with approximately the
same magnitude. The number of undecided and agents with mild opinion
decreased, and the media widely spread the arguments of both opposite
parties.

The qualitative agreement between the surveys history and the results
in Figure 4 is quite good: both peaks are centred at the extreme values (or
very close to them). We recognize moreover the existence of some undecided
people, which have been reported in the polls (there is a local maximum
around the value 5).

The main differences between our simulations and the three surveys is
given by the behaviour of moderately decided individuals (located in states
2 to 4 and 7 to 9). Indeed, the polls report that a small, but not negligible,
fraction of polled people is located in these intermediary states, whereas, in
our numerical simulation, the fraction of the population far from the peaks
is very small. However, it is difficult to draw some conclusions from this
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Figure 5. Results of three ICM surveys.

consideration since the magnitude of the population in each of the interme-
diary states is often below 5%, and therefore it is quite close to the survey
error margin.

5. Conclusion

We presented a kinetic model to describe an interconnected population
which must choose an option in the framework of a binary question. The
agents can modify their opinion by means of spontaneous self-thinking, dis-
cussions with each other, and influence of mass media. After a numerical
study, we provided comparisons between the model and the results of three
surveys on the Scottish independence referendum of 2014 with a good quali-
tative agreement. We emphasize that the emergence of clusters is not related
to the bounded confidence in the population, as in [10], but occurs thanks to
the combined action of the media and the natural tendency to compromise
of the agents.

Appendix A. Mathematical properties

Weak formulations are a very convenient tool to deduce some basic math-
ematical properties, such as the conservation of the number of individuals
in the population.

Proposition A.1. Let f = f(t, x) be a nonnegative weak solution of (3)–
(4), with a nonnegative initial datum f in ∈ L1(Ω). Then we have

‖f(t, ·)‖L1(Ω) = ‖f in‖L1(Ω) for a.e. t ≥ 0.
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Proof. This is a straightforward consequence of (3)–(6), with test-function
ϕ ≡ 1. �

Some mathematical properties of the equation are a consequence of the
structure of the bilinear term. The following result holds, the proof of which
is given in [7].

Lemma A.2. Let Q(f, f) defined by (5) and

〈Q+(f, f), ϕ〉 =
β

2

∫∫

Ω2

f(t, x)f(t, x∗)
[

ϕ(x′) + ϕ(x′∗)
]

dx∗ dx.

If f(t, ·) ∈ L1(Ω), then both Q+(f, f)(t, ·) and Q(f, f)(t, ·) belong to L1(Ω),
and we have, for a.e. t > 0,

‖Q+(f, f)(t, ·)‖L1(Ω) ≤
2β

1−max η
‖f(t, ·)‖2L1(Ω),(7)

‖Q(f, f)(t, ·)‖L1(Ω) ≤

(

2

1−max η
+ 1

)

β ‖f(t, ·)‖2L1(Ω).(8)

Existence of a nonnegative solution to (3)–(4) can be deduced by con-
struction, starting from the following result, again proven in [7].

Proposition A.3. Consider the initial-boundary value problem for the un-

known v = v(t, x), x ∈ Ω and t ∈ [0, T ],

(9) vt − [α(x)vx]x + µv = g, µ ≥ 0,

with initial condition

(10) v(0, ·) = vin

and boundary conditions

(11) lim
x→±1

α(x)vx(t, x) = 0 a.e. t > 0,

where vin ∈ L1(Ω), g ∈ C([0, T ];L1(Ω)) are nonnegative functions. Then

(9)–(11) admits a unique solution v ∈ C0([0, T ];L1(Ω)), and v is nonnega-

tive.

The procedure to build a nonnegative weak solution is based on the mono-
tonicity properties of our problem.

Theorem A.4. Let f in a nonnegative function in L1(Ω). Then there exists

a nonnegative weak solution f ∈ L∞(0, T ;L1(Ω)) to (3)–(4).

Proof. Set

ρ =

∫

Ω
f in(x∗)dx∗.
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Consider the sequence (fn)n∈N of functions, defined as solutions to

(12)

∫

Ω
∂tf

n+1 ϕdx−

∫

Ω
∂x(α∂xϕ) f

n+1 dx

+



βρ+
∑

j

θj(t)





∫

Ω
fn+1 ϕdx = 〈Q+(fn, fn), ϕ〉+

∑

j

θj(t)

∫

Ω
fn ϕ(x̄j) dx,

with f0 ≡ 0, for all ϕ ∈ C2(Ω̄), satisfying the initial and boundary conditions

fn(0, ·) = f in, n ≥ 1, lim
x→±1

α(x)fnx (t, x) = 0 for a.e. t > 0, n ≥ 1.

Thanks to LemmaA.2, we can apply PropositionA.3 and deduce, by induc-
tion, that fn exists, belongs to C0([0, T ];L1(Ω)) and is nonnegative.

Then, choosing ϕ = 1 in (12), we obtain

d

dt

∫

Ω
fn+1 dx+



βρ+
∑

j

θj(t)





∫

Ω
fn+1 dx

= β

(
∫

Ω
fn dx

)2

+
∑

j

θj(t)

∫

Ω
fn dx.

Therefore, by finite induction, we immediately get
∫

Ω
fndx ≤ ρ, n ≥ 1.

Moreover, by applying the same strategy as in [7], we can prove that (fn)
is a non-decreasing sequence.

By monotone convergence, we finally deduce the existence of f as the
limit of (fn) in L∞(0, T ;L1(Ω)). In order to check that f satisfies (3), we
write

∫ T

0

∫

Ω
fn+1 ϕ(x) ψ(t) dxdt−

∫ T

0

∫

Ω

(

α(x) ϕ′(x)
)′
fn+1 ψ(t) dxdt

+



βρ+
∑

j

θj(t)





∫ T

0

∫

Ω
fn+1 ϕ(x) ψ(t) dxdt

= β

∫ T

0

∫∫

Ω2

fn(t, x)fn(t, x∗)ϕ(x
′)ψ(t) dxdx∗ dt

+
∑

j

∫ T

0

∫

Ω
θj(t) f

n ϕ(x̄j) ψ(t) dxdt.

The only small difficulty lies in the fourth integral. It also converges since
∫∫

Ω2

|fn(x)fn(x∗)−f(x)f(x∗)| |ϕ(x
′)|dxdx∗ ≤ 2ρ‖fn(t, ·)−f(t, ·)‖L1‖ϕ‖L∞ .

That ends the proof of TheoremA.4. �
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