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Abstract. A mathematical model is proposed where the classical Maxwell-Stefan diffusion model
for gas mixtures is coupled to an advection-type equation for the temperature of the physical
system. This coupled system is derived from first principles in the sense that the starting point of
our analysis is a system of Boltzmann equations for gaseous mixtures. We perform an asymptotic
analysis on the Boltzmann model under diffuse scaling to arrive at the proposed coupled system.

1. Introduction

The Maxwell-Stefan theory [23, 27] has been the most successful approach for describing diffusive
phenomena in gaseous mixtures, and it is now the reference model for studying multicomponent
diffusion. The Maxwell-Stefan system is a coupled system of cross-diffusion equations and it is
commonly used in many scientific fields, for e.g., in engineering [22] and in medical sciences [7, 28].

Despite its current utility, the mathematical studies on the subject are however quite recent
(see [17, 15, 16, 18]). In particular, existence and uniqueness issues, as well as the long-time
behaviour, have been considered in [6, 10, 21, 13], whereas [24] deals with the numerical study of
the Maxwell-Stefan equations.

In [11], the authors provide the formal derivation of the Maxwell-Stefan diffusion equations
starting from the non-reactive elastic Boltzmann system for monatomic gaseous mixtures [12, 14, 9].
They show that the zeroth and first order moments of appropriate solutions of the Boltzmann
system, in the diffusive scaling and for vanishing Mach and Knudsen numbers limit, formally
converge to the solution of the Maxwell-Stefan equations. This result, which lies in the research
line introduced by Bardos, Golse and Levermore in [1, 2, 3], has been obtained in the framework of
Maxwellian cross sections. Subsequently, the approach of [11] has been generalized in [8], where the
Maxwell-Stefan diffusion coefficients have been written in terms of explicit formulas with respect to
the cross-sections, and in [20] where the explicit dependence of the Maxwell-Stefan binary diffusion
coefficients with respect to the temperature of the mixture has been obtained for general analytical
cross sections satisfying Grad’s cutoff assumption [19].

All the previous results have been obtained in the isothermal case. However, as pointed out by
Krishna and Wesselingh, “perfectly isothermal systems are rare in chemical engineering practice
and many processes such as distillation, absorption, condensation, evaporation and drying involve
the simultaneous transfer of mass and energy across phase interfaces” [22, p.876].

For this reason, it is natural to extend the strategy of [11] to the non-isothermal case, and this
is the purpose of the present article: we provide here the asymptotics of the Boltzmann system for
monatomic mixtures that leads to a non-isothermal form of the Maxwell-Stefan equations, and thus
we can take into account the thermal diffusion contribution to the molar fluxes (thermophoresis).
We postulate that the solution of the Boltzmann system keeps the structure of a local Maxwellian
and then we deduce, in the standard diffusive limit, the coupled relationships satisfied by the
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densities, the fluxes and the temperature at the macroscopic level which guarantee that the local
Maxwellian structure is preserved by the time evolution of the system.

A major question is posed by the closure relationship. Indeed, as in the case of the Maxwell-
Stefan system, the resulting equations for the densities, the fluxes and the temperature are, in the
diffusive limit, linearly dependent and an additional equation between the unknowns is necessary
in order to close it. As it is well known, in the isothermal Maxwell-Stefan system, the closure
relationship consists in supposing that the sum of all molar fluxes J

i

is locally identically zero.
This supplementary equation could be incompatible with some experimental behaviours in the non-
isothermal setting: as pointed out in [22], indeed, in chemical vapour deposition (CVD) processes,
thermal diffusion causes large, heavy gas molecules (for e.g., WF

6

) to concentrate in cold regions
whereas small, light molecules (such as H

2

) to concentrate in hot regions. Hence, non-isothermal
systems could require new closure relationships which, of course, relax to the isothermal one when
the temperature is uniform in time and constant in space.

The closure relation that we suggest is the following: sum of the molar fluxes J

i

is locally
proportional to the gradient of the total molar concentration, i.e.,

nX

i=1

J

i

= �↵rc

tot

.

With respect to the above mentioned closure relation, we characterize the total molar concentration
c

tot

and the temperature field T (t, x) as solutions to a coupled system of evolution equations.
Furthermore, the temperature-dependent flux-gradient relations derived in this paper – see second
line of (24) – implies that the product c

tot

T is space-independent. Hence the above mentioned
closure relation postulated in this paper recovers the standard closure relation – sum of the molar
fluxes J

i

being locally identically zero – in the isothermal case.
The outline of the paper is as follows: In subsection 2.1, we introduce the kinetic model – system

of Boltzmann equations for gas mixtures – and present the assumptions made on the Boltzmann
collision kernels (Maxwellian molecules). Subsection 2.2 deals with the scaling considered in this
work and the main assumption made on the solutions to the scaled mesoscopic kinetic model.
In subsection 2.3 we derive the balance laws (mass, momentum and energy) – see Proposition 1.
Emphasis is given on computing the coefficients in the balance laws – given in terms of the velocity
averages of certain statistical quantities. A formal asymptotic analysis (in the mean free path going
to zero limit) is performed in subsection 2.4 which culminates in Theorem 2. Subsection 2.5 deals
with the closure relation. Finally, in subsection 2.6, we derive some qualitative properties on the
total concentration c

tot

(t, x) and the temperature field T (t, x).

2. Kinetic model and asymptotics

2.1. Kinetic model. The starting point of our analysis is a system of Boltzmann-type equations
that models the evolution of a mixture of ideal monatomic inert gases A

i

, i = 1, . . . , n with
n � 2, subject to elastic mechanical collisions between each other. More precisely, for the unknown
probability density functions f

i

(t, x, v) � 0, we consider the Cauchy problem

@

t

f

i

+ v ·r
x

f

i

=

nX

j=1

Q

ij

(f

i

, f

j

) for (t, x, v) 2 (0,1)⇥ R3 ⇥ R3

,(1)

f

i

(0, x, v) = f

in

i

(x, v) for (x, v) 2 R3 ⇥ R3

,(2)



MAXWELL-STEFAN MODEL IN NON-ISOTHERMAL SETTING 3

for each i = 1, . . . , n where Q

ij

(·, ·) denotes the bilinear integral operator describing the collisions
of molecules of species A

i

with molecules of species A
j

. In the above model, we have supposed that
there are no external forces acting on the gas mixture. Hence any given particle travels in a straight
line (ballistic motion) until it encounters another particle resulting in a mechanical collision which
is assumed here to be elastic. To facilitate the definition of the collision operator Q

ij

(·, ·), consider
two particles belonging to the species A

i

and A
j

, 1  i, j  n, with masses m

i

, m

j

, and pre-
collisional velocities v0, v0⇤. A microscopic collision is an instantaneous phenomenon which modifies
the velocities of the particles, which become v and v⇤, obtained by imposing the conservation of
both momentum and kinetic energy:

(3) m

i

v

0
+m

j

v

0
⇤ = m

i

v +m

j

v⇤,
1

2

m

i

|v0|2 + 1

2

m

j

|v0⇤|2 =
1

2

m

i

|v|2 + 1

2

m

j

|v⇤|2.

The previous equations allow us to write v

0 and v

0
⇤ in terms of v and v⇤:

(4) v

0
=

1

m

i

+m

j

(m

i

v +m

j

v⇤ +m

j

|v � v⇤|�), v

0
⇤ =

1

m

i

+m

j

(m

i

v +m

j

v⇤ �m

i

|v � v⇤|�),

where � 2 S2 describes the two degrees of freedom in (3).
If f and g are nonnegative functions, the operator describing the collisions between molecules of

species A
i

and molecules of species A
j

is defined by

(5) Q

ij

(f, g)(v) :=

ZZ

R3⇥S2

B

ij

(v, v⇤,�)
h
f(v

0
)g(v

0
⇤)� f(v)g(v⇤)

i
d� dv⇤

where v0 and v

0
⇤, are given by the relation (4), and the cross sections B

ij

satisfy the microreversibility
assumptions: B

ij

(v, v⇤,�) = B

ji

(v⇤, v,�) and B

ij

(v, v⇤,�) = B

ij

(v

0
, v

0
⇤,�).

The operators Q

ij

can be written in weak form. For example, by using the changes of variables
(v, v⇤) 7! (v⇤, v) and (v, v⇤) 7! (v

0
, v

0
⇤), we have

(6)
Z

R3

Q

ij

(f, g)(v) (v) dv

= �1

2

ZZZ

R6⇥S2

B

ij

(v, v⇤,�)
h
f(v

0
)g(v

0
⇤)� f(v)g(v⇤)

ih
 (v

0
)�  (v)

i
d� dv dv⇤

=

ZZZ

R6⇥S2

B

ij

(v, v⇤,�) f(v)g(v⇤)
h
 (v

0
)�  (v)

i
d� dv dv⇤,

or

(7)
Z

R3

Q

ij

(f, g)(v) (v) dv +

Z

R3

Q

ji

(g, f)(v)�(v) dv

= �1

2

ZZZ

R6⇥S2

B

ij

(v, v⇤,�)
h
f(v

0
)g(v

0
⇤)� f(v)g(v⇤)

ih
 (v

0
) + �(v

0
⇤)�  (v)� �(v⇤)

i
d� dv dv⇤,

for any  , � : R3 ! R such that the integrals on the left hand sides of (6) and (7) are well defined.
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The collision kernels B

ij

only depend on the modulus of the relative velocity and on the cosine
of the deviation angle, i.e.,

B

ij

(v, v⇤,�) = B

ij

(|v � v⇤|, cos ✓) with cos ✓ =

v � v⇤
|v � v⇤| · �.

In order to ease the presentation and also to ensure that the resulting mathematical model for the
molar concentrations be simple, throughout this work we stick to the case of Maxwellian molecules.
More specifically, we shall work with collision kernels that are independent of the relative velocity,
i.e., they are of the form

B

ij

(v, v⇤,�) = b

ij

(cos ✓),(8)

where we assume that the angular collision kernels b

ij

2 L

1

(�1,+1) and are even. Observe that,
because of the microreversibility assumption on the collision kernels, we have

B

ij

(v, v⇤,�) = B

ji

(v⇤, v,�) =) b

ij

✓
v � v⇤
|v � v⇤| · �

◆
= b

ji

✓
v⇤ � v

|v � v⇤| · �
◆
,

and that, by parity, b
ij

(cos ✓) = b

ji

(cos ✓).

Remark 1. Taking  (v) = 1 in the weak form (6), yields

(9)
Z

R3

Q

ij

(f, g)(v) dv = 0 for all i, j = 1, . . . , n

which helps us deduce the conservation of the total number of molecules of species A
i

. Moreover
in (7), if  (v) = m

i

v and �(v⇤) = m

j

v⇤, and then if  (v) = m

i

|v|2/2 and �(v) = m

j

|v⇤|2/2, we
recover the conservation of the total momentum and of the total kinetic energy during the collision
between a particle of species A

i

and a particle of species A
j

:
Z

R3

Q

ij

(f, g)(v)

✓
m

i

v

m

i

|v|2/2
◆

dv +

Z

R3

Q

ji

(g, f)(v)

✓
m

j

v

m

j

|v|2/2
◆

dv = 0.

2.2. Diffuse scaling and main assumptions. In order to arrive at the diffusive limit, we intro-
duce a scaling parameter 0 < "⌧ 1 which represents the mean free path. The space-time variables
are scaled as (t, x) 7! ("

2

t, "x). Note that the velocity variable is not scaled. The unknown dis-
tribution functions in the transformed variables are denoted by f

"

i

. Each distribution function f

"

i

solves the following scaled version of (1)-(2):

" @

t

f

"

i

+ v ·r
x

f

"

i

=

1

"

nX

j=1

Q

ij

(f

"

i

, f

"

j

) for (t, x, v) 2 (0,1)⇥ R3 ⇥ R3

,(10)

f

"

i

(0, x, v) =

�
f

in

i

�
"

(x, v) for (x, v) 2 R3 ⇥ R3

.(11)

The initial data are assumed to be such that the associated local macroscopic velocities are of O("),
i.e., Z

R3

v

�
f

in

i

�
"

(x, v) dv = " c

in

i

(x)u

in

i

(x)

for some c

in

i

: R3 ! [0,1) and u

in

i

: R3 ! R3.
The main assumption in our work is that the evolution following (10) keeps the distribution

functions f "

i

(t, x, v) in local Maxwellian states. We hence suppose that there exist the local densities
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c

"

i

: [0,1) ⇥ R3 ! [0,1), the local macroscopic velocities u

"

i

: [0,1) ⇥ R3 ! R3 and the local
temperatures T "

i

: [0,1)⇥R3 ! [0,1) such that the solution to the scaled Boltzmann system (10)
has the following Maxwellian structure:

f

"

i

(t, x, v) = c

"

i

(t, x)

✓
m

i

2⇡kT

"

i

(t, x)

◆
3/2

e

�m

i

|v�"u

"

i

(t,x)|2/2kT "

i

(t,x)(12)

where k is the Boltzmann constant. We record the zeroth, first and second moments for the above
Maxwellian states:Z

R3

f

"

i

(t, x, v)

0

@
1

v

|v|2

1

A
dv =

0

B@
c

"

i

(t, x)

" c

"

i

(t, x)u

"

i

(t, x)

3k

m

i

c

"

i

(t, x)T

"

i

(t, x) + "

2

c

"

i

(t, x)|u"
i

(t, x)|2

1

CA .(13)

notation: For ` 2 {1, 2, 3}, we denote by w

(`)

the `-th component of any vector w 2 R3.
Note that we postulate the ansatz (12) for the distribution functions. This line of attack to address
diffusion limit procedures in the context of Boltzmann models is borrowed from [11, 20]. Also, note
that the choice of O(") local macroscopic velocities in the ansatz (12) results in the first moment of
the distribution functions to be of O(") since we are only interested in the pure diffusive dynamics.

2.3. Balance laws. To derive a macroscopic description out of the mesoscopic dynamics of the
Boltzmann-type equations such as (10), we need to arrive at balance equations obtained by in-
tegrating the transport model (10) with respect to the velocity variable v only. The next result
records various macroscopic equations associated with the scaled Boltzmann-like system (10)-(11).

Proposition 1. Suppose that the evolution according to (10) keeps the distribution functions
f

"

i

(t, x, v) in the local Maxwellian states (12) for all time t > 0. Then, the local macroscopic
observables (c

"

i

, u

"

i

, T

"

) solve the following equations. We have the mass balance equations:

@

t

c

"

i

+r
x

· (c"
i

u

"

i

) = 0 for (t, x) 2 (0,1)⇥ R3

,(14)

for each 1  i  n. We further have the momentum balance:

"

2

⇣
@

t

(c

"

i

u

"

i

) +r
x

· (c"
i

u

"

i

⌦ u

"

i

)

⌘
+

k

m

i

r
x

(c

"

i

T

"

i

) = ⇥

"

i

for (t, x) 2 (0,1)⇥ R3

,(15)

for each 1  i  n, where the right hand side of (15) reads

⇥

"

i

(t, x) =

X

j 6=i

2⇡kb
ij

k
L

1

m

j

m

i

+m

j

⇣
c

"

i

c

"

j

u

"

j

� c

"

j

c

"

i

u

"

i

⌘
+O(").(16)

Furthermore, the energy balance reads

"

✓
3k

m

i

@

t

(c

"

i

T

"

i

) +

5k

m

i

r
x

· (c"
i

T

"

i

u

"

i

)

◆
+ "

3

✓
@

t

�
c

"

i

|u"
i

|2�+ 3k

m

i

r
x

· �c"
i

T

"

i

|u"
i

|2u"
i

�◆
= ⌅

"

i

(17)

for (t, x) 2 (0,1)⇥ R3 and for each 1  i  n, where the right hand side of (17) reads

(18)

⌅

"

i

(t, x) =

1

"

X

j 6=i

kb
ij

k
L

1

m

j

(m

i

+m

j

)

2

c

"

i

c

"

j

�
T

"

i

� T

"

j

�

+ "

X

j 6=i

2kb
ij

k
L

1c

"

i

c

"

j

m

j

✓
(m

j

u

"

j

+m

i

u

"

i

) · (u"
j

� u

"

i

)

(m

i

+m

j

)

2

◆
.
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Proof. To arrive at the balance equations (14)-(15)-(17), multiply the scaled equation (10) by
(1, v

(`)

, |v|2) and integrate over all possible velocities in R3 yielding

" @

t

Z

R3

f

"

i

(t, x, v)

0

@
1

v

(`)

|v|2

1

A
dv +r

x

·
Z

R3

vf

"

i

(t, x, v)

0

@
1

v

(`)

|v|2

1

A
dv =

1

"

nX

j=1

Z

R3

Q

ij

(f

"

i

, f

"

j

)

0

@
1

v

(`)

|v|2

1

A
dv.

(19)

The assumption of Maxwellian structure (12) on the solution f

"

i

(t, x, v) helps us compute the
divergence term in the second line on the left hand side of the above equation:

(20)

r
x

·
0

@
Z

R3

v

(`)

f

"

i

(t, x, v)v dv

1

A

=

k

m

i

@

@x

(`)

⇣
c

"

i

(t, x)T

"

i

(t, x)

⌘
+ "

2

3X

k=1

@

@x

(k)

⇣
c

"

i

(t, x) (u

"

i

)

(k)

(t, x) (u

"

i

)

(`)

(t, x)

⌘
.

Next, we have for the divergence term in the third line on the left hand side of (19):

r
x

·
0

@
Z

R3

|v|2vf "

i

(v) dv

1

A
=

3X

k=1

@

@x

(k)

Z

R3

�|v
(1)

|2 + |v
(2)

|2 + |v
(3)

|2� v
(k)

f

"

i

(v) dv

=

3X

k=1

@

@x

(k)

Z

R3

⇣
|v

(1)

+ " (u

"

i

)

(1)

|2 + |v
(2)

+ " (u

"

i

)

(2)

|2 + |v
(3)

+ " (u

"

i

)

(3)

|2
⌘
⇥

⇣
v

(k)

+ " (u

"

i

)

(k)

⌘
c

"

i

(t, x)

✓
m

i

2⇡kT

"

i

(t, x)

◆
3/2

e

�m

i

|v|2
2kT

"

i

(t,x)

dv.

Therefore, we have:

r
x

·
0

@
Z

R3

|v|2vf "

i

(v) dv

1

A
= "

5k

m

i

r
x

· (c"
i

T

"

i

u

"

i

) + "

3

3k

m

i

r
x

· �c"
i

T

"

i

|u"
i

|2u"
i

�
.(21)

Observation (9) in Remark 1 implies that the first line on the right hand side of (19) vanishes.
Under the Maxwellian molecules assumption (8) and under the local Maxwellian states assumption
(12) on the solution f

"

i

(t, x, v), the second line on the right hand side of (19) has already been
computed by L. Boudin, B. Grec and F. Salvarani [11, Section 4]. We will simply borrow the end
result of their computation below:

1

"

nX

j=1

Z

R3

v

(`)

Q

ij

(f

"

i

, f

"

j

)(v) dv =

X

j 6=i

2⇡m

j

kb
ij

k
L

1

m

i

+m

j

⇣
c

"

i

c

"

j

�
u

"

j

�
(`)

� c

"

j

c

"

i

(u

"

i

)

(`)

⌘
+O(").(22)
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On the other hand to arrive at the expression (18), let us consider the right hand side of the third
line in (19):
1

"

X

j 6=i

Z

R3

|v|2Q
ij

(f

"

i

, f

"

j

) dv =

1

"

X

j 6=i

ZZZ

R6⇥S2

B

ij

(v, v⇤,�)f
"

i

(v)f

"

j

(v⇤)
�|v0|2 � |v|2� d� dv dv⇤

=

1

"

X

j 6=i

3X

`=1

ZZZ

R6⇥S2

B

ij

(v, v⇤,�)f
"

i

(v)f

"

j

(v⇤)
⇣
|v0

(`)

|2 � |v
(`)

|2
⌘
d� dv dv⇤

where we have used the weak form (6) with  (v) = |v|2. Next, using the relation (4), the above
expression can be further simplified as

1

"

X

j 6=i

Z

R3

|v|2Q
ij

(f

"

i

, f

"

j

) dv =

1

"

X

j 6=i

3X

`=1

kb
ij

k
L

1

✓
m

2

i

(m

i

+m

j

)

2

� 1

◆ZZ

R6

f

"

i

(v)f

"

j

(v⇤)|v
(`)

|2 dv dv⇤

+

1

"

X

j 6=i

3X

`=1

kb
ij

k
L

1

m

2

j

(m

i

+m

j

)

2

ZZ

R6

f

"

i

(v)f

"

j

(v⇤)|v⇤(`)|2 dv dv⇤

+

1

"

X

j 6=i

3X

`=1

kb
ij

k
L

1

2m

i

m

j

(m

i

+m

j

)

2

ZZ

R6

f

"

i

(v)f

"

j

(v⇤)v
(`)

v⇤(`) dv dv⇤

+

1

"

X

j 6=i

3X

`=1

2

(m

i

+m

j

)

2

ZZZ

R6⇥S2

B

ij

(v, v⇤,�)f
"

i

(v)f

"

j

(v⇤)⇥

�
m

i

m

j

|v � v⇤|v
(`)

+m

2

j

|v � v⇤|v⇤(`)
�
�

(`)

d� dv dv⇤

+

1

"

X

j 6=i

3X

`=1

m

2

j

(m

i

+m

j

)

2

ZZZ

R6⇥S2

B

ij

(v, v⇤,�)f
"

i

(v)f

"

j

(v⇤)|v � v⇤|2|�
(`)

|2 d� dv dv⇤

=: I
1

+ I
2

+ I
3

+ I
4

+ I
5

.

Substituting the local Maxwellian structure (12) for the distribution function f

"

i

(t, x, v) in the above
integrals and computing the thus obtained Gaussian integrals yield

I
1

=

1

"

X

j 6=i

✓
kb

ij

k
L

1

✓
m

2

i

(m

i

+m

j

)

2

� 1

◆
c

"

i

c

"

j

3kT

"

i

m

i

+ "

2kb
ij

k
L

1

✓
m

2

i

(m

i

+m

j

)

2

� 1

◆
c

"

i

c

"

j

|u"
i

|2
◆
,

I
2

=

1

"

X

j 6=i

 
kb

ij

k
L

1

m

2

j

(m

i

+m

j

)

2

c

"

i

c

"

j

3kT

"

j

m

j

+ "

2kb
ij

k
L

1

m

2

j

(m

i

+m

j

)

2

c

"

i

c

"

j

|u"
j

|2
!
,

I
3

=

1

"

X

j 6=i

✓
"

2kb
ij

k
L

1

2m

i

m

j

(m

i

+m

j

)

2

c

"

i

c

"

j

�
u

"

i

· u"
j

�◆
.

Now, to treat the integral I
4

, let us introduce the polar variable ' 2 [0, 2⇡] so that we can find the
relationships between the Euclidean coordinates of � and the spherical ones, namely

�

(1)

= sin ✓ cos', �

(2)

= sin ✓ sin', �

(3)

= cos ✓.
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In the integral I
4

, note that the terms for ` = 1 or 2 in the sum are zero because

2⇡Z

0

sin' d' =

2⇡Z

0

cos' d' = 0,

and for ` = 3, because b

ij

is even, one has

Z

S2

b

ij

✓
v � v⇤
|v � v⇤| · �

◆
�

(3)

d� = 2⇡

⇡Z

0

sin ✓ cos ✓ b

ij

(cos ✓) d✓ = 2⇡

1Z

�1

⌘ b

ij

(⌘) d⌘ = 0.

Hence the integral I
4

vanishes. Next, we get to the computation of the integral I
5

. Before we go
further, we make the following observation:

3X

`=1

Z

S2

B

ij

(v, v⇤,�)|�
(`)

|2 d� =

Z

S2

B

ij

(v, v⇤,�) d� = kb
ij

k
L

1

because |�|2 = 1. Hence the integral I
5

reduces to

I
5

=

1

"

X

j 6=i

kb
ij

k
L

1

m

2

j

(m

i

+m

j

)

2

ZZ

R6

f

"

i

(v)f

"

j

(v⇤)|v � v⇤|2 dv dv⇤.

Substituting the local Maxwellian structures (12) for the distribution functions f

"

i

and performing
the change of variables: (v, v⇤) 7! (v + "u

"

i

, v⇤ + "u

"

j

) yields

I
5

=

1

"

X

j 6=i

kb
ij

k
L

1

m

2

j

(m

i

+m

j

)

2

c

"

i

c

"

j

✓
m

i

2⇡kT

"

i

◆
3/2

 
m

j

2⇡kT

"

j

!
3/2

⇥
ZZ

R6

��
v + "u

"

i

� v⇤ � "u

"

j

��2
e

�m

i

|v|2/2kT "

i

e

�m

j

|v⇤|2/2kT "

j

dv dv⇤

=

1

"

X

j 6=i

kb
ij

k
L

1

m

2

j

(m

i

+m

j

)

2

c

"

i

c

"

j

✓
m

i

2⇡kT

"

i

◆
3/2

 
m

j

2⇡kT

"

j

!
3/2

⇥

3X

`=1

ZZ

R6

⇣
|v

(`)

|2 + "

2| (u"
i

)

(`)

|2 + 2"v

(`)

(u

"

i

)

(`)

+ |v⇤(`)|2 + "

2| �u"
j

�
(`)

|2 + 2"v⇤(`)
�
u

"

j

�
(`)

� 2v

(`)

v⇤(`) � 2"v

(`)

�
u

"

j

�
(`)

� 2"v⇤(`) (u
"

i

)

(`)

� 2"

2

(u

"

i

)

(`)

�
u

"

j

�
(`)

⌘
e

�m

i

|v|2/2kT "

i

e

�m

j

|v⇤|2/2kT "

j

dv dv⇤.
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Note that some of the Gaussian integrals in the above sum vanish. Thus, the integral I
5

simplifies
as follows:

I
5

=

1

"

X

j 6=i

kb
ij

k
L

1

m

2

j

(m

i

+m

j

)

2

c

"

i

c

"

j

✓
m

i

2⇡kT

"

i

◆
3/2

 
m

j

2⇡kT

"

j

!
3/2

3X

`=1

ZZ

R6

⇣
|v

(`)

|2 + |v⇤(`)|2

+ "

2| (u"
i

)

(`)

|2 + "

2| �u"
j

�
(`)

|2 � 2"

2

(u

"

i

)

(`)

�
u

"

j

�
(`)

⌘
e

�m

i

|v|2/2kT "

i

e

�m

j

|v⇤|2/2kT "

j

dv dv⇤

=

1

"

X

j 6=i

kb
ij

k
L

1

m

2

j

(m

i

+m

j

)

2

c

"

i

c

"

j

✓
3kT

"

i

m

i

+

3kT

"

j

m

j

+ "

2|u"
i

|2 + "

2|u"
j

|2 � 2"

2

u

"

i

· u"
j

◆
.

Summing all the above integral computations together, i.e., I
1

through I
5

, we have

(23)

1

"

X

j 6=i

Z

R3

|v|2Q
ij

(f

"

i

, f

"

j

) dv =

1

"

X

j 6=i

kb
ij

k
L

1

m

j

(m

i

+m

j

)

2

c

"

i

c

"

j

�
T

"

i

� T

"

j

�

+ "

X

j 6=i

2kb
ij

k
L

1c

"

i

c

"

j

m

j

✓
(m

j

u

"

j

+m

i

u

"

i

) · (u"
j

� u

"

i

)

(m

i

+m

j

)

2

◆
.

Finally, using the moments’ computations (13), the divergence terms (20)-(21) and the right hand
side terms (22)-(23) in the balance equation (19), we have arrived at the result. ⇤

In this article, we suppose that the cross sections are of Maxwellian type. Of course, it is possible
to consider the problem under more general assumptions on the cross sections. For example, in
[20] the authors considered collision kernels of the form

B

ij

(v, v⇤,�) = b

ij

(cos(✓))�(|v � v⇤|)
with the kinetic collision kernel having the structure (see [20, section 4] for precise details)

�(|v � v⇤|) =
X

n2N⇤

a

n

|v � v⇤|2n .

It would be clearly feasible to handle such cross sections in the computations for ⌅

i

above – see
(18). However an inspection of the computations in the proof of Proposition 1 suggests that any
such consideration of a general cross section would only complicate the computations, without
giving a reasonable added value about the structure of the equation. For this reason, we have not
considered here this possibility.

2.4. Asymptotic analysis. We are now ready to consider, at the formal level the " ! 0 limit of
the system (14)-(15)-(17).

In the following, let us set the fluxes for i = 1, . . . , n:

J

"

i

(t, x) :=

1

"

Z

R3

v f

"

i

(t, x, v) dv = c

"

i

(t, x)u

"

i

(t, x) for (t, x) 2 (0,1)⇥ R3

,

and denote, for any t � 0 and x 2 R3,

c

i

(t, x) := lim

"!0

+

c

"

i

(t, x); J

i

(t, x) := lim

"!0

+

J

"

i

(t, x);

T

i

(t, x) := lim

"!0

+

T

"

i

(t, x); c

tot

(t, x) := lim

"!0

+

c

"

tot

(t, x),
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where

c

"

tot

(t, x) :=

nX

i=1

c

"

i

(t, x).

We first note that, at the leading order, all the kinetic temperatures of the components of the
mixture converge to the same limit.

Lemma 1. Suppose that the distribution functions f "

i

(t, x, v) preserve the local Maxwellian structure
(12) for all time t > 0. Then, we have

T

"

i

(t, x)� T

"

j

(t, x) = O("

2

) for (t, x) 2 (0,1)⇥ R3

, i, j = 1, . . . , n.

Consequently,
lim

"!0

+

T

"

i

(t, x) = T (t, x)

for all i = 1, . . . , n.

Proof. By considering the leading order terms in the energy balance (17)-(18) we have:
X

j 6=i

kb
ij

k
L

1

m

j

(m

i

+m

j

)

2

c

"

i

c

"

j

�
T

"

i

� T

"

j

�
= O("

2

) for each i = 1, . . . , n.

In the limit, the above relations are linearly dependent. Hence we deduce that

T

i

(t, x) = T

j

(t, x) ⌘ T (t, x) for (t, x) 2 (0,1)⇥ R3

for each i, j = 1, . . . , n.
⇤

Then, the following theorem holds.

Theorem 2. Let (c
i

, J

i

, T ) be the limit, as "! 0

+ of the quantities (c

"

i

, J

"

i

, T

"

i

). Then the macro-
scopic observables (c

i

, J

i

, T ) solve the system

(24)

8
>>>>>>>>><

>>>>>>>>>:

@

t

c

i

+r
x

· J
i

= 0 on (0,1)⇥ R3

, i = 1, . . . , n

r
x

(c

i

T ) = �
X

j 6=i

c

j

J

i

� c

i

J

j

Ð
ij

on (0,1)⇥ R3

, i = 1, . . . , n

@

t

(c

tot

T ) +

5

3

r
x

·
 
T

nX

i=1

J

i

!
= 0 on (0,1)⇥ R3

,

where c

tot

(t, x) :=

nX

i=1

c

i

(t, x) is the total concentration and the binary diffusion coefficients Ð
ij

are

given by

Ð
ij

=

k

2⇡kb
ij

k
L

1

(m

i

+m

j

)

m

i

m

j

i 6= j, i, j = 1, . . . , n.

Furthermore, the sum
nX

i=1

c

i

(t, x)T (t, x) is space-independent.
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Proof. The first equation of (24) can be straightforwardly obtained by performing the formal limit,
as " ! 0, of Equation (14). Deducing the flux-gradient relations is straightforward: equate the
O(1) terms in the momentum balance equations (15)-(16) and pass to the limit as "! 0. Observe
that the binary diffusion coefficients Ð

ij

= Ð
ji

, thanks to our earlier observation that b

ij

= b

ji

for i, j = 1, . . . , n on the angular collision kernels. To show that the sum
P

n

i=1

c

i

T is space-
independent, consider the flux-gradient relations on the second line of Equation (24), sum over the
index 1  i  n and pass to the limit. The result is

(25) r
 

nX

i=1

c

i

T

!
= r(c

tot

T ) = 0

which in turn implies that
nX

i=1

c

i

(t, x)T (t, x) = g(t) for (t, x) 2 (0,1)⇥ R3

,

for some function g(t). At the next order in the energy balance, by summing Equations (17)-(18)
over the index 1  i  n, we have that the right-hand side is identically zero by symmetry and
hence, at the leading order in ", we obtain the transport equation:

@

t

(c

tot

T ) +

5

3

r
x

·
 
T

nX

i=1

J

i

!
= 0.

⇤
Remark 2. In our setting, all the kinetic temperatures of the species tend to the same limit T .
In the literature, some authors considered limit procedures leading to multi-temperature and multi-
velocity fluid-dynamic models, starting from the rescaled system

@

t

f

"

i

+ v ·rf

"

i

=

1

"

Q

ii

(f

"

i

, f

"

i

) +

X

j 6=i

Q

ij

(f

"

i

, f

"

j

)

for i 2 {1, . . . , n}, which can be interpreted to be under the hyperbolic time-space scaling, i.e.,
(t, x) 7! ("t, "x). More details can be found in [4, 5, 25, 26].

2.5. Closure relation. Note that the flux-gradient relations, i.e., the second line of equations in
(24) are linearly dependent. So, we have 2n independent equations for 2n+1 unknowns (c

i

, J

i

, T ).
This necessitates an additional equation – a closure relation. Of course, the correct closure depends
on the physical setting and on the observed physical phenomena. We propose here, as an example,
a possible closure relation, which basically imposes that, as a whole, the total concentration follows
a Fickian behaviour, and analyse its consequences.

We hence suppose that the sum of the molar fluxes is locally proportional to the gradient of the
total molar concentration, i.e.,

nX

i=1

J

i

= �↵rc

tot

= ↵c

tot

rT

T

(26)

for some proportionality constant ↵ > 0, where the last equality comes from Equation (25). The
negative sign guarantees that the mass flows locally in the opposite direction of the total concen-
tration gradient. We name this closure the decoupling closure relation, as this leads to decoupled
equations for the total concentration c

tot

and the temperature field T .



12 HARSHA HUTRIDURGA AND FRANCESCO SALVARANI

Remark 3. In (25), if we take the temperature field to be constant (i.e., isothermal case), then
rc

tot

= 0. Hence the closure relation (26) would yield in this scenario:
nX

i=1

J

i

= 0,

i.e., the sum of the molar fluxes is locally identically zero. This is indeed the classical closure
equation for the Maxwell-Stefan diffusion model in the isothermal setting.

2.6. Qualitative properties of the coupled system for c

tot

and T . Associated with the
closure relation (26), we shall derive a system of equations for the total molar concentration and
for the temperature field.

Lemma 2. Under the closure relation (26), the unknowns c

tot

and T satisfy the equations:

@

t

c

tot

� ↵�c

tot

= 0,(27)

@

t

T �
✓
2

3

@

t

log c

tot

◆
T �

✓
5↵

3

r log c

tot

◆
·rT = 0.(28)

Proof. Sum the mass balance equations in (24) over the index i = 1, . . . , n yielding

@

t

c

tot

+r ·
 

nX

i=1

J

i

!
= 0.

Substituting the closure relation (26) in the above equation yields the parabolic equation (27).
Next we substitute the closure relation (26) in the energy balance equation in (24) which yields

c

tot

@

t

T + T@

t

c

tot

� 5↵

3

rc

tot

·rT � 5↵

3

T�c

tot

= 0.

Substituting for �c

tot

using (27) in the above equation yields the advection equation (28) for the
temperature field T (t, x). ⇤

Note that the system of equations (27)-(28) are decoupled. One can solve the heat equation (27)
for the total concentration c

tot

and treat it as a known coefficient in the advection problem (28)
for T (t, x).

For system (27)-(28), we record a maximum principle.

Proposition 3. Suppose the initial data c

in

tot

and T

in to the evolution equations (27)-(28) are
non-negative and satisfy

0 < c

min

 c

in

tot

(x)  c

max

< 1; 0 < T

min

 T

in

(x)  T

max

< 1.

Then

c

min

 c

tot

(t, x)  c

max

for (t, x) 2 [0,1)⇥ R3

.

Furthermore

T (t, x) = T

in

(X(0; t, x))e

2

3

tR

0

@

t

(log c

tot

)(s,X(s;t,x)) ds

for (t, x) 2 [0,1)⇥ R3

,(29)

where X(s; t, x) is the flow associated with the vector field V(t, x) := �5↵

3

r log c

tot

.
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Proof. Standard maximum principles on the heat equation implies that the solution to (27) stays
non-negative and is bounded both from above and below, the same as the initial data.
To solve for the temperature field T (t, x) in the evolution equation (28), consider the solution
X(s; t, x) to the differential equation

dX

ds

(s; t.x) = V(s,X(s; t, x))
X(t; t.x) = x.

Equipped with the flow X(s; t.x), the solution T (t, x) as given by (29) follows. ⇤

This article concerns a formal derivation of the diffusion limit for the gas mixtures in a non-
isothermal setting. Proving an existence-uniqueness result for the proposed system is out of the
scope of this present article. The authors are currently working on this problem and expect to have
a publication in the near future.
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