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Abstract. We propose a numerical method, suitable to study trans-
port problems with highly oscillatory coefficients, based on a formulation
of the equations in terms of a semigroup acting on an enlarged phase
space. After testing the strategy on a model case, we consider the rele-
vant situation of the radiative transfer equations.

1. Introduction

The presence of rapidly oscillating terms is one of the major difficulties
when dealing with the numerical simulation of differential equations.

This problem is particularly apparent in the case of the radiative transfer,
which describes, by means of a kinetic approach, a gas of photons exchang-
ing energy with a background material (such as a plasma, a stellar or a
planetary atmosphere). This energy exchange is the result of absorption,
emission or scattering of photons by the atoms in the background matter.
The effects of the background are described by a term, the opacity, that is in
general not known explicitly, but only through tabulated values. Moreover,
its dependence on the independent variables is quite involved and shows, in
general, a wildly oscillating behaviour [3].

In [1], the authors explained how the notion of a “kinetic theory in ex-
tended phase space” can be used in the homogenization of the radiative
transfer equation with rapidly oscillating opacities. In order to avoid the
modifications of the structure of the equation caused by the homogenization
limit, they proposed a new formulation of the problem in terms of a semi-
group acting on an enlarged phase space (i.e. on functions involving more
variables than in the original problem) which allows to keep unchanged the
group properties satisfied by the solution of the equation.

In this paper we show that the strategy of [1] is useful not only from the
viewpoint of semigroup theory. Indeed, it can be also the starting point for
developing a new numerical strategy for some classes of transport equations
with rapidly oscillating terms.

This new numerical approach has two advantages with respect to a stan-
dard discretization procedure: first of all, it is very robust with respect
to the modification of the structure of the transport equations under the
homogenization process.

Moreover, this strategy has the peculiar feature of transferring the effects
of the fast oscillations from the equations to the initial data only. As a
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consequence, the homogenization with respect to the fast oscillating scale is
performed only once, at the beginning of the numerical procedure.

The paper is organized as follows: in the next section we consider, on
a theoretical example, the homogenization effect on the structure of an or-
dinary differential equation and test our strategy on this model problem.
Finally, in Section 3, we apply our method to a radiative transfer problem,
which is a natural framework where rapidly oscillating terms can modify the
structure of the limit equations.

2. A model problem

2.1. The problem. Our starting point is the following example, due to L.
Tartar [5]. It shows that the the homogenization of some evolutionary differ-
ential equations may lead to evolution problems with a completely different
structure, usually integro-differential equations with memory effects.

Let a ∈ L∞(TN ), with a ≥ 0 a.e. on T
N , and consider, for each ǫ > 0,

the ODE with unknown uǫ ≡ uǫ(t, z) ∈ R:

(2.1)







duǫ
dt

+ a
(z

ǫ

)

uǫ = 0, t > 0, z ∈ R
N ,

uǫ(0, z) = uin(z),

where uin ∈ L2(RN ) ∩ L∞(RN ).
It is well known that this problem admits the explicit solution

uǫ(t, z) = uin(z)e−ta(z/ǫ), t > 0, z ∈ R
N ,

for each ǫ > 0.
In the limit as ǫ → 0+, we obtain

uǫ⇀u in L∞(R+ × R
N) weak-*

where the limit u is explicitly given by the formula

(2.2) u(t, z) = uin(z)Φ(t), t ≥ 0, z ∈ R
N ,

with

(2.3) Φ(t) =

∫

TN

e−ta(y)dy , t ≥ 0.

It is apparent that the homogenized solution u does not satisfy the equation

(2.4)







du

dt
+ au = 0, t > 0, z ∈ R

N ,

uǫ(0, z) = uin(z),

where a is the average of a on T
N , i.e.

a =

∫

TN

a(y)dy.

Indeed, as shown by Tartar, the homogenized solution satisfies the following
integro-differential equation

(2.5)











du

dt
(t, z) + au(t, z) =

∫ t

0
K(t− s)u(s, z)ds , t > 0 , z ∈ R

N ,

u(0, z) = uin(z) ,
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where the Laplace transform of K is given by the expression

K̃(p) :=

∫ ∞

0
e−ptK(t)dt =

∫

TN

(p+a(y))dy−

(
∫

TN

dy

p+ a(y)
dy

)−1

, p> 0 .

2.2. The theoretical background. A difficult point for the numerical
simulations is given by the oscillations of the function a with respect to
the space variable z. The space variable is not influenced by the differential
operator: this fact is the responsible of the modification of the structure of
the equation through the homogenization process.

The theoretical basis of our strategy is given by the following proposition,
whose proof has been given in [1].

Proposition 2.1. Let aǫ ≡ aǫ(z) be a bounded family of functions in
L∞(RN ) converging in the sense of Young measures to (µz)z∈RN and a ∈

L∞(TN ), with a ≥ 0 a.e. on T
N . Let moreover uǫ be the solution of the

Cauchy problem (2.1) for each ǫ > 0.
Then, in the limit as ǫ → 0+, one has

uǫ⇀u =

∫ +∞

0
Uds in L∞(R+ ×R

N ) weak-* ,

where U ≡ U(t, s, z) is the solution of

(2.6)







∂tU − ∂sU = 0 , t, s > 0 , z ∈ R
N ,

U(0, s, z) = −uin(z)
dµ̃z

ds
(s)

and µ̃z is the Laplace transform of µz.

As already pointed out in the introduction, this result has the great ad-
vantage to transfer the effects of the fast oscillations on the initial data,
and it allows to keep unchanged the structure of the equation, even when
performing the limiting procedure as ǫ → 0+.

2.3. The numerical strategy. The numerical method for solving the prob-
lem consists in discretizing Equation (2.6) instead of considering Equation
(2.1). We work hence in the phase space individuated by the variables (z, s).

We define on the spatial domain of the equation, described by the variable
z, a regular Cartesian grid, (zj)0≤j≤J with J ≥ 1. We set ∆z = 1/J > 0, so
that we have zj = j∆z. In order to filter the rapid oscillations of the initial
data of Equation (2.6), we apply a strategy, theoretically studied in [2],
which consists in averaging many sampling of the initial condition, assessed
on random points of each interval [zj , zj+1], such points being distributed
with an uniform law.

Then, the numerical solution of (2.6) is obtained by applying to this
filtered initial data the transport operator, which can be numerically treated
by means of a standard finite-differences non-oscillatory method (see [4]).

Finally, the solution of Equation (2.1) is obtained by integrating, with
respect to the scalar supplementary variable s, the numerical solution of
(2.6) by means of a standard quadrature rule. We point out that the solution
of (2.6) is essentially a Laplace transform (see [1]), hence the contributions
to the integral for large values of s are negligible.
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Our method is robust with respect to the homogenization procedure and
to the changes in the structure of the equation caused by the homogenization
process. Indeed, in the enlarged phase space, the structure of Equation (2.6)
is independent of ǫ, and the effects of the fast oscillations are transferred
from the equations on the initial data only. The homogenization of the
initial condition with respect to the fast oscillating parameter is performed
only once, at the beginning of the simulation.

2.4. Numerical simulations. We now implement the strategy explained
before and describe some relevant numerical tests.

Preliminarily, it is to point out that the error that can be performed
by considering the Cauchy problem (2.4) as the limit of Equation (2.1) is
not negligible. In Figure 1 we give an example of the error committed by
replacing the solution of the Cauchy problem (2.5) with the naive approxi-
mation of Equation (2.1) given by the solution of (2.4). The initial datum
is uin(z) = sin(z)/(1 + z2) and both solutions have been computed at time
t = 0.4.
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Figure 1. Comparison between the solution of the homogenized
problem (2.5) (continuous blue line) and the naive approximation
given by the solution of the Cauchy problem (2.4) (dotted red line)
at time t = 0.4.

Moreover, we note that, even when the relaxation parameter ǫ is not too
small, the solution of the homogenized problem already looks as the correct
weak-* limit of the solution of the Cauchy problem (2.1).

In order to emphasize the homogenization effect, we compare in Figure 2
the solution of (2.1), with ǫ = 0.1, with initial datum uin(z) = sin(z)/(1+z2)
and the solution of the homogenized problem (2.5), with the same initial
data, at time t = 0.4.

In the numerical examples described below, we use Equation (2.6) in order
to obtain the numerical solution of Equation (2.1).

The numerical values of the supplementary variable s have been reduced
to the interval [0, 5], instead of belonging to the whole positive part of the
real axis.
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Figure 2. Comparison between the solutions of (2.1) (blue line)
and of (2.5) (red line) at time t = 0.4.

Indeed, we have numerically checked that greater values of s do not give
a substantial contribution to the reconstruction of the numerical solution
of problem (2.1), obtained by integrating the solution of (2.6) with respect
to s on its whole domain of definition. This happens because the effect of
the exponential function in the definition of the Laplace transform is very
dominant in the computation of the integral. The interval of definition of s
has been divided in 6/∆t sub-intervals, the time step being ∆t = 0.05.

We have supposed here that z ∈ [0, 1]. The initial condition of Equation
(2.1) is uin(z) = z(1− z) and the decay rate is a(z) = cos(2z/ǫ)/4 + 1, with
ǫ = 10−6.

In Figures 3 and 4 we compare the exact solution of the Cauchy problem
(2.5) (dotted blue line), the numerical solution of Equation (2.1), without
any filter on the high frequencies (continuous red line), and the numerical
solution of the reconstruction based on the integration of the solution of
Equation (2.6) with respect to the supplementary variable s.

The quadrature method used here is a standard trapezoidal rule. In this
latter case, the initial condition has been the result of 100 samples of uin

(continuous violet line). All the tests have been performed at time t = 1.
It is apparent that, while a standard discretization strategy does not give

results which are close to the weak-* limit of the solution of (2.1) for small
values of ǫ, our method gives an accurate reconstruction of the solution,
which is close to the analytical solution of Equation (2.5).

On the other hand, our strategy gives a reasonably accurate result even
for numerical values of ǫ ≫ 0.

In Figure 5 we compare the exact solution of Equation (2.1) and the
reconstruction given by our method when ǫ = 1 at time t = 1. Again,
z ∈ [0, 1], the initial condition is uin(z) = z(1 − z) and the decay rate is
a(z) = cos(2z/ǫ)/4 + 1.
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Figure 3. Comparison between the exact solution of the Cauchy
problem (2.5), the numerical solution of Equation (2.1) and the
numerical solution based on Equation (2.6).
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Figure 4. Zoom on Figure 3.

3. The radiative transfer equation

We apply now the method described in the previous section to a more
complicated problem, which arises in the study of radiative transfer.

3.1. The problem. The state at time t of the population of photons is
given by the specific radiative intensity I(t, x, ω, ν) that is chν times the
number density of photons with frequency ν located at the position x with
direction ω. Here, h is Planck’s constant, while c is the speed of light.

If we neglect scattering phenomena, the radiative intensity satisfies the
radiative transfer equation

(3.1)
1

c
∂tI + ω · ∇xI = σ(ν, T )Bν(T )− σ(ν, T )I .
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Figure 5. Comparison between the exact solution of (2.1) and
the reconstruction given by our method in the case ǫ = 1.

Here Bν(T ) is the specific radiative intensity at frequency ν of a black body
at temperature T , while σ(ν, T ) > 0 is the opacity of the background ma-
terial at temperature T for an incident radiation with frequency ν. While
Bν(T ) has the explicit expression

Bν(T ) =
2hν3

c2
1

ehν/kT − 1
,

the opacity σ(ν, T ) is in general not known explicitly but tabulated. More-
over, the dependence of σ(ν, T ) in ν and T is quite involved, and the function
ν 7→ σ(ν, T ) can be wildly oscillating, as shown in [3].

We recognize in (3.1) the same type of behaviour of the model problem
described in Section 3, since the oscillations in the opacity σ(ν, T ) are due to
the dependence on the frequency ν, while the streaming operator (c−1∂t +
ω · ∇x) acts on the variables t and x only.

Once assumed that the temperature T ≡ T (t, x) is given in the back-
ground medium which occupies the Euclidian space R3, the radiative trans-
fer equation can be written under the form

(3.2)







1

c
∂tIǫ + ω · ∇xIǫ = σǫ(ν, T )Bν(T )− σǫ(ν, T )Iǫ ,

Iǫ
∣

∣

t=0
= Iin(x, ω, ν) ,

posed for (t, x, ω, ν) ∈ R
∗
+ × R

3 × S
2 × R

∗
+. Here the oscillations of the

opacity are recorded by the small parameter ǫ that is the typical “oscillation
wavelength” in the variable ν.

3.2. The theoretical background. The difficult point for the numerical
simulations is given by the rapid oscillations of the opacity (σǫ(ν, T ))ǫ>0,
governed by the small parameter ǫ.

In order to overcome this difficulty, we can apply the strategy described in
the previous section. By working in an enlarged phase space, we will obtain
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an equivalent formulation of the problem, whose structure is independent
of the homogenization process and which transfers the oscillations on the
initial conditions only.

The following theorem, proved in [1], is the main tool of our numerical
study of the problem:

Theorem 3.1. Let us assume that T ∈ [θ,Θ] for some constants 0 < θ < Θ,
and that the family (σǫ(ν, T ))ǫ>0 satisfies the uniform bound

0 < m ≤ σǫ(ν, T ) ≤ M , for each ǫ, ν > 0 and T ∈ [θ,Θ].

Moreover, let us suppose that, for each T > 0, the family σǫ(·, T ) converges
in the sense of Young measures to (µT

ν )ν>0 as ǫ → 0+.
Then, in the limit as ǫ → 0+, one has

Iǫ⇀I =

∫ +∞

0
Jds in L∞(R+ × R

3
× S

2
× R+) weak-* ,

where J ≡ J(t, s, x, ω, ν) is the solution of

(3.3)















1

c
∂tJ + ω · ∇xJ − ∂sJ =

d2µ̃T
ν

ds2
Bν(T ) ,

J
∣

∣

t=0
= −Iin(x, ω, ν)

dµ̃T
ν

ds
(s) ,

posed for (t, s, x, ω, ν) ∈ R
∗
+ × R

∗
+ × R

3 × S
2 × R

∗
+, where the notation µ̃T

ν

denotes the Laplace transform of µT
ν .

3.3. The numerical strategy. Theorem 3.1 gives the theoretical basis of
our numerical strategy: instead of discretizing Equation (3.2), we discretize
Equation (3.3), by working in the phase space individuated by the variables
(s, x, ω, ν).

The second step consists in producing, on the interval of definition of the
variable ν, a regular Cartesian grid, (νj)0≤j≤J with J ≥ 1. We fix ∆ν > 0,
so that we have νj = j∆ν. In order to filter the rapid oscillations of the
initial data in Equation (3.2), we have applied the same strategy used to
filter the initial data in Equation (2.6).

Then, the numerical solution of (3.3) can be obtained by the numerical
integration of the transport-like equation by means of any method for such
kind of problems.

Finally, the solution of Equation (3.2) is obtained by the numerical inte-
gration of the numerical solution of (3.3), with respect to the scalar supple-
mentary variable s. Also in this case, the solution of (3.3) is essentially a
Laplace transform, hence the contributions to the integral for large values
of s are negligible.

The considerations pointed out in Section 2, about the robustness of the
method with respect to the homogenization procedure, are valid also in this
case.

3.4. Numerical simulations. We now describe our numerical tests on the
radiative transfer equations described at the beginning of this section. For
a better readability of the figures, we have chosen to implement the one-
dimensional spatial case (that is, we work in a three-dimensional phase space
described by the variables (x, ν, s)), but the method works also in higher
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dimensions (of course, the computational cost increases proportionally to
the dimension, but the conceptual framework remains unchanged).

In Figures 6 and 7 we compare the asymptotic exact solution of the
Cauchy problem (3.2) (dotted blue line), with the numerical asymptotic
solution of the same equation, obtained by using a standard method for
transport equations, without any filter on the high frequencies (continuous
red line), and the numerical solution of the reconstruction based on the inte-
gration of the solution of Equation (3.3) with respect to the supplementary
variable s.

Since the angular variable ω acts only as a parameter in Equation (3.2),
we have considered a spatially coherent beam, which results in choosing a
particular angular direction, here ω = 0.5.

Moreover, since the stationary solution does not depend on the space
variables, Figures 6 and 7 have the same form for any spatial points of the
domain. The frequency variable ν belongs to the interval [0, 10], whereas
the numerical range of the supplementary variable s has been reduced to the
interval [0, 5], which has been subdivided in 4/∆t sub-intervals, the time step
being ∆t = 0.05.

In the numerical examples described below, we have chosen the initial con-
dition Iin(x, ω, ν) = νe−ν and the cross section σǫ(ν) = 5(1 + 0.9 cos(2ν/ǫ),
with ǫ = 10−3.

We have moreover chosen to scale the physical constants, in such a way
that h = c2/2 and T = c2/2k, which means that the expression of Planck’s
law is simply Bν = ν3/(eν − 1).
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1.5
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without sampling
with 100 samples
Exact solution (equilibrium)

Figure 6. Comparison between the exact asymptotic solution
of the Cauchy problem (3.2), the numerical solution of the same
equation without filtering the high frequencies and the numerical
solution based on the new formulation (3.3).

Also in this case, the robustness of our strategy with respect to the ho-
mogenization procedure is numerically observed.
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Figure 7. Zoom on Figure 6.
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