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Abstract. We study a class of nonlinear equations arising in the stochastic theory of
neutron transport. After proving existence and uniqueness of the solution, we consider
the large-time behaviour of the solution and give explicit rates of convergence of the
solution towards the asymptotic state.
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1. Introduction

Classical neutron transport theory (see, e.g. [4]) deals with expected values of neutron
populations. In order to describe the fluctuations from the mean value of neutron distri-
butions, stochastic formulations of neutron chain fissions have been introduced very early
(see, [1, 8, 9]) in terms of probability generating functions (more recent developments in
this direction are given in [13,14]).

In a multiplying medium occupying a region Ω ⊂ Rn, a neutron interacting with
the host material may be absorbed, scattered in random directions or may produce,
by a fission process, k neutrons (1 ≤ k ≤ m) with velocities v′1, . . . , v

′
k. We denote by

c0(x, v) the probability that a neutron with velocity v and position x be absorbed and
1
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by ck(x, v, v
′
1, . . . , v

′
k) the probability to yield, by a fission process, to k neutrons with

velocities v′1, . . . , v
′
k (1 ≤ k ≤ m). Thus

c0(x, v) +
m∑
k=1

∫
V k

ck(x, v, v
′
1, . . . , v

′
k)dv

′
1 . . . dv

′
k = 1

where V is the velocity space (the unit ball of Rn endowed with the normalized Lebesgue
measure). An important information is provided by the probability

pj(tf , x, v, t), j = 0, 1, 2, . . .

that a neutron born at time t with velocity v and position x gives rise to j neutrons at a
final time tf . Such probabilities are governed by infinitely many coupled equations [13,14].
On the other hand, the probability generating function

G(z, x, v, t, tf ) :=
∞∑
0

zjpj(tf , x, v, t) (t < tf )

is governed by a nonlinear backward equation [1] with final condition

G(z, x, v, tf , tf ) = z

and boundary condition

G(z, x, v, t, tf ) = 1, (x, v) ∈ Γ+,

where
Γ+ = {(x, v) ∈ ∂Ω× V ; v · n(x) > 0}

and n(x) is the outward normal at x ∈ ∂Ω. Mathematically speaking, it is expedient to
consider

f(z, x, v, t) = 1−G(z, x, v, tf − t, tf )
which is governed by the initial value problem

∂f

∂t
(t, x, v) + σ(x, v)f(t, x, v)− v · ∇xf(t, x, v)

= σ(x, v)

[
1−c0(x, v)−

m∑
k=1

∫
V k

ck(x, v, v
′
1, . . . , v

′
k)(1− f(t, x, v′1)) . . . (1− f(t, x, v′k))dv

′
1 . . . dv

′
k

]
with homogeneous boundary condition

f(t, x, v) = 0 for x ∈ ∂Ω, v · n(x) > 0

and initial data
f(0, x, v) = 1− z.

The first mathematical analysis (existence, uniqueness and asymptotic behaviour) is
given in [10–12] for constant cross sections. General situations are dealt with in [5, 7]
and [6] (Chapter 10).

The existence of non trivial stationary solutions relies on monotonicity arguments (sub-
and supersolutions) and spectral theory while uniqueness of such solutions relies on con-
cavity arguments. It is known (see [6], Theorem 10.11, p. 241) that the time dependent
solution converges in L∞-norm (as t→ +∞) to the non-trivial solution of the stationary
equation; the latter solution being the probability of divergent chain reactions. On the
other hand, no rate of convergence to this stationary solution is known today. It is the
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aim of this paper to fill in this gap in the space-homogeneous case. We hence consider the
space-homogeneous version of the previous equation, namely

(1)

∂f

∂t
(t, v) = −σ(v)f(t, v)+

σ(v)

[
1− c0(v)−

m∑
k=1

∫
V k

ck(v, v
′
1, . . . , v

′
k)(1− f(t, v′1)) . . . (1− f(t, v′k))dv

′
1 . . . dv

′
k

]

without correlation, i.e. with separable cross sections of the form

ck(v, v
′
1, . . . , v

′
k) = ck(v)F (v′1) . . . F (v′k).

Because of its relative simplicity (in comparison to fully space inhomogeneous models),
we give first a direct and simpler approach to the existence-uniqueness theory and the
(qualitative) trend to equilibrium states. We deal subsequently with (explicit) rates of
convergence to such equilibrium states. We show then that the convergence is exponential
for subcritical and supercritical equations. On the other hand, in the critical case, we show
that the convergence is no longer exponential but only polynomial. We consider separately
the completely homogeneous case (i.e. all cross sections are constants) for which the rates
of convergence are obtained by a direct qualitative analysis. On the other hand, the case
of non constant (non-correlated) cross sections is dealt with by the entropy dissipation
method.

This is a powerful strategy which has been successfully employed to obtain explicit
decay rates towards equilibrium of weak solutions to Cauchy problems for dissipative or
hypocoercive equations and systems (see, for example, [2,3] for applications to transport
equations).

Basically, the key point of the method is the choice of a Lyapunov functional for the
problem, sometimes called entropy. Once proved that this (convex) functional is mono-
tonically decreasing in time (this property justifies the name given to the functional, on
the analogy of the physical entropy), if some norm of the difference between the solution
and the stationary state is controlled by the entropy, the method permits to deduce that
the solutions decay in time towards equilibrium with an explicit convergence rate.

The structure of the paper is the following: after this introduction, we first give, in
Section 2, a complete study of the Cauchy problem that describes completely homogeneous
neutron chain fissions. Subsequently, in Section 3, we consider space-homogeneous only
non-correlated neutron chain fissions.

2. Completely homogeneous neutron chain fissions

This section is devoted to the complete study of the simplest possible situation, namely
the fully homogeneous case.

The system is modeled by the following ordinary differential equation:

(2)

 x′(t) = −σx(t) + σ
[
1− c0 −

∑m
k=1 ck(1− x(t))k

]
x(0) = x0 ∈ [0, 1]
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where m ≥ 2, ck ≥ 0, for all k = 0, . . . ,m− 1, cm > 0, and

(3)
m∑
k=0

ck = 1.

2.1. The stationary equation. An interesting feature of the system concerns the equi-
librium points. Hence we study the stationary problem

1− c0 −
m∑
k=1

ck(1− x)k = x; x ∈ [0, 1] .

Thanks to the condition (3), this equation is equivalent to

(4)
m∑
k=1

ck
[
1− (1− x)k

]
= x; x ∈ [0, 1] .

It is apparent that x = 0 is a trivial solution. On the other hand, if we consider the
function ϕ defined by

(5) ϕ : x ∈ [0, 1]→
m∑
k=1

ck
[
1− (1− x)k

]
∈ [0, 1] ,

we deduce that

ϕ′(x) =
m∑
k=1

kck(1− x)k−1

and

ϕ′′(x) = −
m∑
k=2

k(k − 1)ck(1− x)k−2.

The facts that cm > 0 and m ≥ 2 imply that ϕ is a strictly concave function. Note that
m∑
k=1

kck = ϕ′(0)

is the mean number of neutrons produced by a fission. The equation is said to be critical
(resp. subcritical, supercritical) if

∑m
k=1 kck = 1, (resp.

∑m
k=1 kck < 1,

∑m
k=1 kck > 1).

The following result shows that there exists a nontrivial equilibrium point if and only if
the equation is supercritical.

Theorem 2.1. Let us consider Equation (4), with m ≥ 2, ck ≥ 0 for all k = 0, . . . ,m−1,
cm > 0, and

m∑
k=0

ck = 1.

i) If
∑m

k=1 kck ≤ 1, then Equation (4) has no nontrivial solution.

ii) If
∑m

k=1 kck > 1, then Equation (4) has a unique nontrivial solution.

Moreover, x̃ < 1 when c0 > 0.

Proof. The proof is a direct consequence of the qualitative behaviour of the function ϕ
defined in (5), in particular of its strict concavity.

�
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2.2. The evolution equation. We consider now the integral version of the Cauchy
problem (2)

(6) x(t) = e−σtx0 + σ

∫ t

0

e−σ(t−s)

[
m∑
k=1

ck
[
1− (1− x(s))k

]]
ds.

We have:

Theorem 2.2. For any x0 ∈ [0, 1], Equation (6) has a unique global solution x(·) such
that x(t) ∈ [0, 1] .

Proof. We fix an arbitrary T > 0 and define the operator

L : C([0, T ])→ C([0, T ])

by

Lx(t) = e−σtx0 + σ

∫ t

0

e−σ(t−s)

[
m∑
k=1

ck
[
1− (1− x(s))k

]]
ds.

We observe that if 0 ≤ x(t) ≤ 1 then

0 ≤ Lx(t) ≤ e−σtx0 + σ

(
m∑
k=1

ck

)∫ t

0

e−σ(t−s)ds

≤ e−σt +

(
m∑
k=1

ck

)
(1− e−σt) ≤ e−σt + (1− e−σt) = 1

so that L maps the convex set

C := {x ∈ C([0, T ]); 0 ≤ x(t) ≤ 1}
into itself.

Let us consider now x1, x2 ∈ C. We deduce that

|Lx1(t)− Lx2(t)| ≤ σ
m∑
k=1

ck

∫ t

0

e−σ(t−s) ∣∣(1− x1(s))
k − (1− x2(s))

k
∣∣ ds

≤ σ

m∑
k=1

kck

∫ t

0

e−σ(t−s) |x1(s)− x2(s)| ds

≤ σ

m∑
k=1

kck

∫ t

0

e−σ(t−s)ds sup
s∈[0,t]

|x1(s)− x2(s)|

≤ (1− e−σT )
m∑
k=1

kck sup
s∈[0,T ]

|x1(s)− x2(s)|

so that
‖Lx1 − Lx2‖C([0,T ]) ≤ c(1− e−σT ) ‖x1 − x2‖C([0,T ])

where c =
∑m

k=1 kck. We note that in the subcritical case c < 1, we can work directly in
Cb([0,+∞)) (endowed with the sup norm) and L : C → C is a strict contraction.

We hence deduce that there exists a unique global solution. If c ≥ 1 we choose T > 0
such that c(1− e−σT ) < 1, i.e.

T < σ−1 ln(1− c−1)−1.
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Then L : C → C is a strict contraction and we obtain a unique solution in C([0, T ]). Since
the life-time of the solution is independent of the initial data, by a bootstrap argument,
we can continue the solution beyond T indefinitely. �

2.3. Convergence to equilibrium. Since the constant trajectory

x(t) = 0 ∀t ≥ 0

is always a solution of Equation (4), the Cauchy problem with initial data x0 = 0 is,
actually, a stationary problem.

Nevertheless, in the supercritical case, by Theorem 2.1 there exists another constant
trajectory

x(t) = x̃ ∀t ≥ 0.

The following result holds:

Theorem 2.3. Let x(·) be the solution of the Cauchy problem (2) with initial data x0 ∈
(0, 1] . Then x(t)→ x̃ as t→ +∞ in the supercritical case.

Proof. We exclude the elementary case where x0 = x̃ (which implies that x(t) = x̃ ∀t ≥ 0).
We assume for instance that

0 < x0 < x̃.

We have

(7) x′(t) = σ

[
m∑
k=1

ck
[
1− (1− x(t))k

]
− x(t)

]
= σψ(x(t))

where ψ(x) := ϕ(x)− x. According to the properties of ψ given in the proof of Theorem
2.1, we have ψ(x0) > 0 so that x′(0) = σψ(x0) > 0. Let

t := sup {t ≥ 0; x′(s) > 0 ∀s ∈ [0, t]} ≤ +∞.
We note that x(·) is strictly increasing on

[
0, t
)
. Let us show that t = +∞.

If t < +∞ then, by assumption, x′(t) = 0 and the choice t = t in (7) shows that
x(t) = x̃ and consequently x(t) = x̃ ∀t ≥ 0 which yields a contradiction. Thus t = +∞.

Since x(·) is strictly increasing on
[
0, t
)

then x(t) has a limit x̆ as t → +∞ and
x(t) < x̆ ∀t ≥ 0. Hence limt→+∞ σψ(x(t)) = σψ(x̆) and limt→+∞ x

′(t) = σψ(x̆).
We note that limt→+∞ x

′(t) > 0 would imply that x(t)→ +∞. Thus limt→+∞ x
′(t) = 0

and ψ(x̆) = 0, i.e. x̆ = x̃.
When c0 > 0, we can prove in a similar way that, if x̃ < x0, then x(·) is strictly

decreasing and tends to x̃ as t→ +∞. �

Remark 2.1. If
∑m

k=1 kck ≤ 1 then x = 0 is a unique equilibrium point and, arguing as
in the proof of Theorem 2.3, we can prove that x(t)→ 0 as t→ +∞.

2.4. Convergence rates towards the asymptotic state.

2.4.1. The subcritical and supercritical cases. Here we consider only the supercritical case;
the other case can be dealt with similarly.

When c0 > 0, we have seen in the proof of Theorem 2.1 that ϕ′(x) = 1 and then
ϕ′(y) < 1 ∀y ∈ (x, 1]. In particular ϕ′(x̃) < 1. Then for any α such that ϕ′(x̃) < α < 1
there exists ε > 0 such that

(8) ϕ′(y) ≤ α; ∀y ∈ [x̃− ε, x̃+ ε] .
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Theorem 2.4. Let α and ε as in (8) and c0 > 0. Then, there exists tε such that

(9) |x(t)− x̃| ≤
∣∣x(tε)− x̃

∣∣ e−σ(1−α)(t−tε); t ≥ tε.

Proof. We have

x′(t) = σψ(x(t)); x(0) = x0

where (for instance) x0 < x̃. Let z(t) := x̃− x(t). Since ψ(x̃) = 0 then

z′(t) = σψ(x̃)− σψ(x(t)) = σψ′(ζ(t))z(t)

where ζ(t) ∈ ]x(t), x̃[ . Thus there exists tε such that ζ(t) ∈ [x̃− ε, x̃+ ε] for t ≥ tε because
x(t)→ x̃ as t→ +∞. Hence ψ′(ζ(t)) = ϕ′(ζ(t))− 1 ≤ α− 1 for t ≥ tε so that

z′(t) ≤ −σ(1− α)z(t); t ≥ tε

and

z(t) ≤ z(tε)e
−σ(1−α)(t−tε); t ≥ tε

which ends the proof of the estimate (9). �

Remark 2.2. Note that α can be chosen as close to ϕ′(x̃) as we want so that the rate of
convergence to equilibrium is “almost” as exp(−σ(1− ϕ′(x̃))t) .

When c0 = 0, we obtain a similar result in a direct way:

Theorem 2.5. Let x(t) be the unique solution of Equation (2) with c0 = 0. Then

|x(t)− 1| ≤ (1− x0)e
−cmσt

[1− (1− x0)m−1]1/(m−1)
.

Proof. Since c0 = 0, then
∑m

k=1 ck = 1. In this case, x̃ = 1 is the only non-vanishing
equilibrium point. Hence, from Equation (2) we obtain the differential equation for the
unknown y(t) = 1− x(t) ≥ 0:

1

σ
y′(t) = −y(t) +

m∑
k=1

cky
k(t),

which lead to the differential inequality

1

σ
y′(t) ≤ −cmy(t) + cmy

m(t).

From the previous differential inequality we can deduce exponential convergence towards
the equilibrium point x̃ = 1:

y(t) ≤ (1− x0)e
−cmσt

[1− (1− x0)m−1]1/(m−1)
.

�

Remark 2.3. In the subcritical case
∑m

k=1 kck < 1 we can prove an estimate like inequality
(9) with x̃ = 0.
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2.4.2. The critical case. The situation of the critical case
∑m

k=1 kck = 1 is quite different.
We have:

Theorem 2.6. Let
∑m

k=1 kck = 1. If c2 > 0, then x(t)2 is integrable at infinity and we
have the lower bound

(10)
σc2(∫ +∞

0

x(s)2ds

)−1

+

(
σ

2

m∑
k=2

k(k − 1)ck

)2

t

≤ x(t).

Proof. We already know that x(t) decreases to zero as t→ +∞ (see Remark 2.1).
We note that

ψ′′(x) = −
m∑
k=2

k(k − 1)ck(1− x)k−2

so that

−2c2 ≥ ψ′′(x) ≥ −
m∑
k=2

k(k − 1)ck.

Note that the criticality assumption amounts to ϕ′(0) = 1 (i.e. ψ′(0) = 0) so that

ψ(z) = ψ(0) + ψ′(0)z +
ψ′′(ζ)

2
z2 =

ψ′′(ζ)

2
z2

where ζ ∈ ]0, z[ . Thus ψ(x(s)) = x(s)2ψ′′(ζs)/2 satisfies the estimate

c2x(s)2 ≤ −ψ(x(s)) ≤

[
1

2

m∑
k=2

k(k − 1)ck

]
x(s)2.

On the other hand

x′(t) = σψ(x(t)); x(0) = x0 > 0

and

x(t)− x(T ) = −σ
∫ T

t

ψ(x(s))ds

give for t < T

σc2

∫ T

t

x(s)2ds ≤ x(t)− x(T ) ≤

[
σ

2

m∑
k=2

k(k − 1)ck

]∫ T

t

x(s)2ds

and letting T → +∞

(11) σc2

∫ +∞

t

x(s)2ds ≤ x(t) ≤ √γ
∫ +∞

t

x(s)2ds

where
√
γ :=

σ

2

m∑
k=2

k(k − 1)ck.

This shows that x(t)2 is integrable at infinity. Let now

H(t) :=

∫ +∞

t

x(s)2ds;
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then H ′(t) = −x(t)2 and (11) give

−H ′(t) ≤ γH2(t),

so that

H(t) ≥ 1

H(0)−1 + γt
.

Then (11) implies
σc2

H(0)−1 + γt
≤ x(t),

and this ends the proof. �

Remark 2.4. Note that the bound (10) implies that∫ +∞

0

x(s)2ds ≤ x0

σc2
.

3. Space-homogeneous non-correlated neutron chain fissions

This section is devoted to study the Cauchy problem for Equation (1), under the as-
sumption that the neutron chain fissions are non-correlated.

Let t ∈ R+ and v ∈ V , where V is the unit ball of Rn endowed with the normalized
Lebesgue measure. We study the evolution equation

∂f

∂t
(t, v) = −σ(v)f(t, v)+

σ(v)

[
1− c0(v)−

m∑
k=1

∫
V k

ck(v, v
′
1, . . . , v

′
k)(1− f(t, v′1)) . . . (1− f(t, v′k))dv

′
1 . . . dv

′
k

]
with initial data f(0, v) = f0(v), 0 ≤ f0 ≤ 1 for a.e. v ∈ V , where m ∈ N and

c0(v) +
m∑
k=1

∫
V k

ck(v, v
′
1, . . . , v

′
k)dv

′
1 . . . dv

′
k = 1,

under the additional hypothesis that

ck(v, v
′
1, . . . , v

′
k) = ck(v)F (v′1) . . . F (v′k)

where ∫
V

F (v)dv = 1.

The functions ck, k = 0, . . . ,m, are non-negative elements of the functional space L∞(V ),
such that

m∑
k=0

ck(v) = 1 for a.e. v ∈ V,

and ĉm(v) > 0, where

ĉk =

∫
V

ck(v)F (v) dv, k = 0, . . . ,m.

In what follows, we suppose always that 0 ≤ f0(v) ≤ 1 for a.e. v ∈ V .



10 MUSTAPHA MOKHTAR-KHARROUBI AND FRANCESCO SALVARANI

Under these conditions, the evolution equation (1) becomes

(12)
∂f

∂t
= −σ(v)f(t, v) + σ(v)

[
1− c0(v)−

m∑
k=1

ck(v)

(
1−

∫
V

F (v′)f(t, v′)dv′
)k]

.

3.1. The stationary equation. The equilibrium states f∞(v) are solutions of the equa-
tion

(13) f∞(v) =

[
1− c0(v)−

m∑
k=1

ck(v)

(∫
V

(1− f∞(v′))F (v′) dv′
)k]

,

which can be written in the equivalent form:

(14) f∞(v) =
m∑
k=1

ck(v)

[
1−

(
1−

∫
V

f∞(v′)F (v′) dv′
)k]

.

The first result of this subsection concerns the existence of non-vanishing solutions of
the previous equations.

Lemma 3.1. Equation (14) has a non trivial solution f∞ if and only if

x :=

∫
V

F (v′)f∞(v′)dv′

is a nontrivial solution of

(15)
m∑
k=1

ĉk
[
1− (1− x)k

]
= x.

Proof. Let f∞ be a non trivial solution of Equation (14). By multiplying Equation (14)
by F and integrating over V we obtain that x is a nontrivial solution of (15). Note that
f∞ and x are related through the equation

(16)
m∑
k=1

ck(v)
[
1− (1− x)k

]
= f∞(v).

Conversely, let x be a non trivial solution of Equation (15). Define f∞ by Equation (16).
Then integrating (16) against F we get

m∑
k=1

ĉk
[
1− (1− x)k

]
=

∫
V

F (v′)f∞(v′)dv′.

Then, Equation (15) implies

x =

∫
V

F (v′)f∞(v′)dv′,

so that f∞ is non trivial and (16) implies (15). �

We note that Equation (15) is nothing but the completely homogeneous problem (4)
with the coefficients ĉk instead of ck. Hence Theorem 2.1 implies immediately:
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Theorem 3.1. Let us consider Equation (15), with m ≥ 2, ck ≥ 0 for all k = 0, . . . ,m−1,
ĉm > 0, and

m∑
k=0

ck = 1.

i) If
∑m

k=1 kĉk ≤ 1 then Equation (15) has no nontrivial solution.

ii) If
∑m

k=1 kĉk > 1 then Equation (15) has a unique nontrivial solution.

For non-homogeneous neutron chains fissions it is hence natural to define the subcrit-
icality (resp. criticality, resp. supercriticality) by the condition

∑m
k=1 kĉk < 1 (resp.∑m

k=1 kĉk = 1, resp.
∑m

k=1 kĉk > 1).
In the supercritical case, since there is also a non-vanishing stationary solution, it is

important to deduce some estimates on this non-trivial stationary profile.
These estimates, which give an upper and a lower bound when

∑m
k=1 kĉk > 1, will be

used, later on, for proving the exponential decay in time towards the stationary profile in
the supercritical case. We have:

Lemma 3.2. Let us suppose that the functions ck, k = 1, . . . ,m in Equation (12) are
such that

m∑
k=1

kĉk > 1,

and denote with f∞ the unique non trivial stationary solution of Equation (12). Then, if
ĉ0 > 0, the stationary solution satisfies the bounds

1−

(
m∑
k=1

kĉk

)1/(1−m)

≤ ‖f∞F‖L1(V ) ≤

(
m∑
k=1

kĉk − 1

)
/

(
m∑
k=1

kĉk − 1 + ĉ0

)
.

If ĉ0 = 0, then f∞ = 1.

Proof. Let us consider first the case ĉ0 > 0. We multiply Equation (14) by F (v) and then
integrate with respect to the velocity variable v on V . Since f∞ > 0 by Theorem 3.1, we
deduce an equation for the L1-norm of the product f∞F :

‖f∞F‖L1(V ) =
m∑
k=1

ĉk

[
1−

(
1− ‖f∞F‖L1(V )

)k]
.

It is well known that, for all a ∈ (0, 1),

(17)
k−1∑
j=0

aj =
1− ak

1− a
.

Hence, the previous equation can be written in the form

(18) 1 =
m∑
k=1

ĉk

k−1∑
j=0

(
1− ‖f∞F‖L1(V )

)j
.
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We first deduce the upper bound for ‖f∞F‖L1(V ): since ‖f∞F‖L1(V ) ≤ 1 by hypothesis,
the previous equation implies that

1 ≤
m∑
k=1

ĉk

[
1 +

k−1∑
j=1

(
1− ‖f∞F‖L1(V )

)]
.

This inequality permits to deduce that

‖f∞F‖L1(V ) ≤

(
m∑
k=1

kĉk − 1

)
/

(
m∑
k=1

kĉk − 1 + ĉ0

)
.

The proof of the lower bound is also obtained starting from Equation (18): we easily
obtain that

1 ≥
m∑
k=1

ĉk

k−1∑
j=0

(
1− ‖f∞F‖L1(V )

)k−1 ≥
m∑
k=1

kĉk
(
1− ‖f∞F‖L1(V )

)m−1
.

Hence, we can conclude that

‖f∞F‖L1(V ) ≥ 1−

(
m∑
k=1

kĉk

)1/(1−m)

.

If ĉ0 = 0, by direct inspection, we see that f∞ = 1 is a solution of Equation (13), which
is the unique non-vanishing stationary solution of the equation by Theorem 3.1. �

3.2. The evolution equation. From now on, we deal with the evolution equation under
the assumption that σ is a constant.

We consider the integral version of (12)

(19) f(t, v) = e−σtf0(v) +

∫ t

0

e−σ(t−s)σ

[
m∑
k=1

ck(v)

[
1−

(
1−

∫
V

F (v′)f(s, v′)dv′
)k]]

ds

with 0 ≤ f0(v) ≤ 1. Arguing as in Lemma 3.1 we obtain:

Lemma 3.3. Let us suppose that σ > 0 is constant. Then Equation (19) has a solution
f if and only if

x(t) :=

∫
V

F (v′)f(t, v′)dv′

solves

(20) x(t) =

∫
F (v)e−σtf0(v)dv +

∫ t

0

e−σ(t−s)σ

[
m∑
k=1

ĉk
[
1− (1− x(s))k

]]
ds.

Note that f(t, v) and x(t) are related by

(21) f(t, v) = e−σtf0(v) +

∫ t

0

e−σ(t−s)σ

[
m∑
k=1

ck(v)
[
1− (1− x(s))k

]]
ds.

We can solve (20) uniquely by using a contraction principle argument exactly as in the
proof of Theorem 2.2, where the term x0 is replaced by∫

F (v)f0(v)dv.
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Actually, to deal with time asymptotic behaviour of the solution, we give here other
existence proofs. We consider the operator

Λ : x(·) ∈ Z →
∫
F (v)e−σtf0(v)dv +

∫ t

0

e−σ(t−s)σ

[
m∑
k=1

ĉk
[
1− (1− x(s))k

]]
ds,

where Z denotes the space of measurable functions from [0,+∞) into [0, 1] . We note that

Λx(t) ≤ e−σt +

(
m∑
k=1

ĉk

)∫ t

0

e−σ(t−s)σ ds

= e−σt +

(
m∑
k=1

ĉk

)
(1− e−σt) ≤ 1

so that Λ maps Z into itself. It is also clear that Λx ≤ Λy if x ≤ y so that Λ is an
nondecreasing operator on Z. We note that Λ1 ≤ 1 so that the sequence {ϕn}n defined
inductively as

ϕ0 = 1, ϕn+1 = Λϕn

is nonincreasing since ϕ1 = Λϕ0 = Λ1 ≤ 1 = ϕ0 and Λ is an nondecreasing operator. We
can hence pass to the limit in

ϕn+1(t) =

∫
F (v)e−σtf0(v)dv +

∫ t

0

e−σ(t−s)σ

[
m∑
k=1

ĉk
[
1− (1− ϕn(s))k

]]
ds

and obtain the solution to (20).
In the supercritical case, we can obtain the solution to (20) by means of a nondecreasing

sequence
{
ψ
n

}
n
. Indeed: let

ϕ : x ∈ [0, 1]→
m∑
k=1

ĉk
[
1− (1− x)k

]
∈ [0, 1] .

We have ϕ(0) = 0 and

ϕ′(0) =
m∑
k=1

kĉk.

Then

ϕ(x) = ϕ(x)− ϕ(0) = xϕ′(ζ) (ζ ∈ [0, x])

so

ϕ(x) = x+ x(ϕ′(ζ)− 1)

and then, since ϕ′(ζ) → ϕ′(0) =
∑m

k=1 kĉk > 1 as x → 0, there exists ε0 > 0 such that,
for any 0 < ε < ε0, 0 ≤ x ≤ ε implies ϕ(x) ≥ x.
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It follows that for a constant x ≤ ε we have∫
F (v)e−σtf0(v)dv +

∫ t

0

e−σ(t−s)σ

[
m∑
k=1

ĉk
[
1− (1− x)k

]]
ds

≥
∫
F (v)e−σtf0(v)dv +

(∫ t

0

e−σ(t−s)σds

)
x

= e−σt
∫
F (v)f0(v)dv + (1− e−σt)x = e−σt

(∫
F (v)f0(v)dv − x

)
+ x ≥ x

if

x ≤
∫
F (v)f0(v)dv.

Thus for a nontrivial initial datum f0 and

ε ≤
∫
F (v)f0(v)dv,

by the choice ψ
0

= x we have Λψ
0
≥ ψ

0
. We can then define inductively a nondecreasing

sequence
{
ψ
n

}
n

by

ψ
n+1

= Λψ
n

=

∫
F (v)e−σtf0(v)dv +

∫ t

0

e−σ(t−s)σ

[
m∑
k=1

ĉk

[
1− (1− ψ

n
(s))k

]]
ds

and then passing to the limit we obtain again the solution of (20).

Writing Λx(t) as∫
F (v)e−σtf0(v)dv +

∫ t

0

e−στσ

[
m∑
k=1

ĉk
[
1− (1− x(t− τ))k

]]
dτ

one sees that if x(t) → p as t → +∞ then Λx(t) →
∑m

k=1 ĉk
[
1− (1− p)k

]
as t → +∞.

Thus, since ϕ0(t)→ 1 as t→ +∞ it follows that for all n, ϕn(t)→ xn as t→ +∞ where

x0 = 1, xn+1 =
m∑
k=1

ĉk
[
1− (1− xn)k

]
.

Similarly, in the supercritical case, since ψ
0
(t) → x as t → +∞ it follows that for all n,

ψ
n
(t)→ xn as t→ +∞ where

x0 = x, xn+1 =
m∑
k=1

ĉk
[
1− (1− xn)k

]
.

Lemma 3.4. Let us suppose that σ > 0 is constant.

i) If
∑m

k=1 kĉk ≤ 1 then xn → 0 as n→ +∞.
ii)
∑m

k=1 kĉk > 1 then both xn and xn tend to the nontrivial solution of (15).
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Proof. We note that by construction {xn}n is nonincreasing, {xn}n is nondecreasing and
xn ≤ xn. Thus both z := limxn and z := limxn exist and satisfy the equation

z =
m∑
k=1

ĉk
[
1− (1− z)k

]
.

Thus limxn = 0 if
∑m

k=1 kĉk ≤ 1 (Theorem 2.1). Let
∑m

k=1 kĉk > 1 and let x be the unique
nontrivial solution to (15). We have x = ϕ(x) ≤ 1 = x0 so that x = ϕ(x) ≤ ϕ(x0) = x1

and by induction x ≤ xn ∀n so that x ≤ z. Finally x = z by uniqueness of the nontrivial

solution. Moreover, by construction,
{
ψ
n

}
n

is bounded below by a positive constant so

that {xn}n is bounded below by the same constant and then z is nontrivial and coincides
with x.

�

We are ready to prove the following result:

Theorem 3.2. Let f be the solution of the integral equation (19).

i) If
∑m

k=1 kĉk ≤ 1 then f(t, v)→ 0 as t→ +∞ uniformly in v.

ii) If the initial datum f0 is not vanishing and
∑m

k=1 kĉk > 1, then f(t, v) tends to the
nontrivial solution of Equation (14) uniformly in v.

Proof. According to Equation (21)

f(t, v) = e−σtf0(v) +

∫ t

0

e−στσ

[
m∑
k=1

ck(v)
[
1− (1− x(t− τ))k

]]
dτ

and then it suffices to show, in the case i), that x(t)→ 0 as t→ +∞ and in the case ii)
that x(t) tends to the non trivial solution of (15) as t→ +∞.
i) By construction x(t) ≤ ϕn(t) for all n ∈ N so that lim supt→+∞ x(t) ≤ xn for all n ∈ N.
Hence x(t)→ 0 by Lemma 3.4.

ii) By construction ψ
n
(t) ≤ x(t) ≤ ϕn(t)for all n ∈ N so that

xn ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤ xn

for all n ∈ N and Lemma 3.4 ends the proof. �

3.3. Convergence rates towards the asymptotic state. In this section, we will study
the speed of convergence towards equilibrium for the Cauchy problem (12) with initial
data f0 ∈ L∞(V ), 0 ≤ f0 ≤ 1, and give some quantitative bounds.

The asymptotic behaviour is governed by the quantity
∑m

k=1 kĉk, which governs not
only the equilibrium state itself, but also the speed of convergence towards the asymptotic
state.

The proof of the speed of convergence towards the steady-state profile will be deduced
by studying the time evolution of a suitable functional of the system. In particular,
we will consider the weighted L1-norm of the difference between the solution and the
corresponding asymptotic state:

H(t) =

∫
V

|f − f∞|F (v) dv.
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We note that, since ‖f‖L∞(V ) ≤ 1 uniformly in time by Theorem 3.3, the entropy is well
defined and 0 ≤ H(t) ≤ 1 uniformly for all t ∈ R+.

The following theorem holds:

Theorem 3.3. Consider the unique non-negative global solution of the Cauchy problem
for Equation (12), with ck(v) ≥ 0, k = 1, . . . ,m, and ĉm > 0, with non-negative initial
condition f0 satisfying the bound ‖f0‖L∞(V ) ≤ 1.

i) Let
∑m

k=1 kĉk > 1 and ĉ0 > 0. Then, for all η > 0 there exists a time tη > 0 such
that, for all t ≥ tη, the solution of (12) decays exponentially fast in time towards the
non-vanishing stationary state according to the following estimate:

‖(f − f∞)F‖L1(V )(t) ≤ ‖(f(tη, ·)− f∞)F‖L1(V ) exp [−σβηmt] ,
where

βηm =

ĉm−1
0

(
m∑
k=1

kĉk − 1 + ĉ0

)1−m
1−

(
m∑
k=1

ĉkk

)1/(1−m)

− η

 m∑
k=2

(k − 1)ĉk

 .
ii) Let

∑m
k=1 kĉk > 1 and ĉ0 = 0. Then,

‖(f − f∞)F‖L1(V )(t) ≤
‖(f0 − f∞)F‖L1(V )[

1− ‖(f0 − f∞)F‖m−1
L1(V )

]1/(m−1)
exp [−ĉmσt].

iii) Let
∑m

k=1 kĉk < 1. Then the solution of (12) decays exponentially fast in time towards
the trivial stationary solution according to the following estimate:

‖fF‖L1(V ) ≤ ‖f0F‖L1(V ) exp

[
−σ

(
1−

m∑
k=1

kĉk

)
t

]
.

iv) Let
∑m

k=1 kĉk = 1. Then, ĉ0 > 0 and the solution of (12) decays in time towards
the trivial stationary solution with an algebraic speed of convergence and the following
estimate holds:

‖fF‖L1(V ) ≤
1

σc0t+ ‖f0F‖−1
L1(V )

.

Proof. i) We hence consider the difference between Equation (12) and Equation (13), then
multiply the obtained equation by sign(f −f∞)F (v) and integrate with respect to v in V .

We hence obtain
1

σ
H ′(t) = −H(t)+

m∑
k=1

∫
V

ck(v)F (v) sign(f − f∞) dv
[
(1− ‖f∞F‖L1(V ))

k − (1− ‖fF‖L1(V ))
k
]
.

The previous equation can be written in the following form:

1

σ
H ′(t) = −H(t) +

m∑
k=1

[∫
V

ck(v)F (v) sign(f − f∞) dv ×
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k−1∑
j=0

(1− ‖f∞F‖L1(V ))
j(1− ‖fF‖L1(V ))

k−1−j(‖fF‖L1(V ) − ‖f∞F‖L1(V ))

]
.

Since ‖fF‖L1(V ) ≤ 1 and ‖f∞f‖L1(V ) ≤ 1, we can deduce that

1

σ
H ′ ≤ −H +H

m∑
k=1

ĉk

k−1∑
j=0

(1− ‖f∞F‖L1(V ))
j(1− ‖fF‖L1(V ))

k−j−1.

The previous inequality can be written in the form

1

σ
H ′ ≤ −H +H

m∑
k=1

ĉk

k−1∑
j=0

(1− ‖f∞F‖L1(V ))
j−

H

m∑
k=1

ĉk

k−1∑
j=0

(1− ‖f∞F‖L1(V ))
j
[
1− (1− ‖fF‖L1(V ))

k−j−1
]
.

We use now the elementary formula (17), which leads to

m∑
k=1

ĉk

k−1∑
j=0

(1− ‖f∞F‖L1(V ))
j =

m∑
k=1

ĉk
1− (1− ‖f∞F‖L1(V ))

k

‖f∞F‖L1(V )

.

Thanks to the stationary equation (13), we deduce that

m∑
k=1

ĉk
(
1− ‖f∞F‖L1(V )

)k
= 1− ĉ0 − ‖f∞F‖L1(V ),

and, since
m∑
k=0

ck =
m∑
k=0

ĉk = 1

by the properties of the family ck(v) and F , we finally deduce that

m∑
k=1

ĉk

k−1∑
j=0

(1− ‖f∞F‖L1(V ))
j = 1.

This implies that

1

σ
H ′ ≤ −H

m∑
k=1

ĉk

k−1∑
j=0

(1− ‖f∞F‖L1(V ))
j
[
1− (1− ‖fF‖L1(V ))

k−j−1
]

and hence

1

σ
H ′ ≤ −H(1− ‖f∞F‖L1(V ))

m−1‖fF‖L1(V )

m∑
k=2

(k − 1)ĉk.

Since ‖f‖L1(V ) → ‖f∞‖L1(V ) thanks to the results of Theorem 3.2, for all η > 0 there
exists tη > 0 such that, for all t ≥ tη,∣∣ ‖f‖L1(V ) − ‖f∞‖L1(V )

∣∣ < η.
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Hence, for all t > tη,

1

σ
H ′ ≤ −H(1− ‖f∞F‖L1(V ))

m−1(‖f∞F‖L1(V ) − η)
m∑
k=2

(k − 1)ĉk.

Thanks to Lemma 3.2, we finally obtain

H ′ ≤ −σ

ĉm−1
0

(
m∑
k=1

kĉk − 1 + ĉ0

)1−m
1−

(
m∑
k=1

ĉkk

)1/(1−m)

− η

 m∑
k=2

(k − 1)ĉk

H.
Hence we deduce asymptotic exponential convergence in time towards equilibrium for

the weighted L1-norm H(t):

H(t) ≤ H(tη) exp (−σβηmt) ,
where

βηm =

ĉm−1
0

(
m∑
k=1

kĉk − 1 + ĉ0

)1−m
1−

(
m∑
k=1

ĉkk

)1/(1−m)

− η

 m∑
k=2

(k − 1)ĉk

 .
for all t ≥ tη.

ii) We treat now the supercritical case, namely
∑m

k=1 kĉk > 1, when ĉ0 = 0. By Lemma
3.2, the stationary solution is f∞ = 1.

We consider the time evolution of the weighted L1-norm of the difference between the
solution of Equation (12) and its stationary state

H(t) =

∫
V

(1− f)F (v) dv =

∫
V

|f − 1|F (v) dv.

Thanks to Equation (12), we have that

dH

dt
(t) = −σH(t) + σ

m∑
k=1

ĉkH
k(t).

Since
∑m

k=1 ĉk = 1, we deduce from the previous equation that

1

σ

dH

dt
(t) ≤ −ĉmH(t) + ĉmH

m(t).

Hence it is easy to conclude that

H(t) ≤ H(0)

(1−H(0)m−1)1/(m−1)
e−ĉmσt.

iii) In the subcritical case, that is
∑m

k=1 kĉk < 1, we have that the only stationary solution
is f∞ = 0 (see Theorem 3.1). Since f ≥ 0, it is easy to see that the time evolution of the
quantity ‖fF‖L1(V ) is governed by the following ordinary differential equation:

1

σ

d

dt
‖fF‖L1(V ) = −‖fF‖L1(V )+

m∑
k=1

∫
V

ck(v)F (v)
[
1− (1− ‖fF‖L1(V ))

k
]
dv =
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−‖fF‖L1(V ) +
m∑
k=1

ĉk(v)
k−1∑
j=0

(1− ‖fF‖L1(V ))
j‖fF‖L1(V ).

Since ‖f‖L1(V ) ≤ 1, we can deduce that

(22)
1

σ

d

dt
‖fF‖L1(V ) ≤ −‖fF‖L1(V ) +

m∑
k=1

kĉk(1− ‖fF‖L1(V ))‖fF‖L1(V ).

We now use the hypothesis of subcriticality: we finally obtain

‖fF‖L1(V ) ≤ ‖f0F‖L1(V ) exp

[
−σ

(
1−

m∑
k=1

kĉk

)
t

]
.

The previous differential inequality means exponential convergence in time towards zero.

iv) The situation
∑m

k=1 kĉk = 1 is quite different, since the speed of convergence towards
the stationary solution is no more exponential.

We first notice that, in this case, ĉ0 > 0: indeed, by contradiction, if ĉ0 = 0 (which is
equivalent to say that c0(v) = 0 for all v ∈ V ), then we would have

m∑
k=1

kĉk = 1 =
m∑
k=1

ĉk,

a result which is false for all m > 1.
We consider hence, as in case iii), the time evolution of the L1-norm of (fF ). The same

computations as before lead to Equation (22).
Thanks to the hypothesis

∑m
k=1 kĉk = 1, we finally deduce

1

σ

d

dt
‖fF‖L1(V ) ≤ −‖fF‖2L1(V ).

Hence, the thesis of the theorem follows. �

Remark 3.1. The strategy employed in the previous proof does not give the best possible
constant of decay but, nevertheless, it permits to deduce that, qualitatively, the decay
towards equilibrium is exponential in both cases

∑m
k=1 kĉk < 1 and

∑m
k=1 kĉk > 1.
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