Approximate controllability of hypoelliptic equations

Matthieu Léautaud

Université d'Orsay

joint with Camille Laurent, CNRS Sorbonne Université

Recent advances in kinetic equations and applications Rome, november 2019

The proofs

Motivation

Hypoelliptic operators

Two results

The proofs

Motivation

Hypoelliptic operators

Two results

The proofs

Usual Riemannian setting:

The proofs

Motivation

Usual Riemannian setting:

• \mathcal{M} compact connected manifold,

Main example:

• $\mathcal{M} = \mathbb{T}^d$

The proofs

Motivation

Usual Riemannian setting:

- \mathcal{M} compact connected manifold,
- g Riemannian metric on \mathcal{M} ,

- $\mathcal{M} = \mathbb{T}^d$
- $g = \mathsf{Eucl}$

Motivation

Usual Riemannian setting:

- \mathcal{M} compact connected manifold,
- g Riemannian metric on \mathcal{M} ,
- *d*Vol_g Riemannian density (volume form) → L^p = L^p(M, *d*Vol_g)

- $\mathcal{M} = \mathbb{T}^d$
- *g* = Eucl
- $dVol_g = dx$ Lebesgue measure

Motivation

Usual Riemannian setting:

- \mathcal{M} compact connected manifold,
- g Riemannian metric on \mathcal{M} ,
- $d\operatorname{Vol}_g$ Riemannian density (volume form) $\rightsquigarrow L^p = L^p(\mathcal{M}, d\operatorname{Vol}_g)$
- $-\Delta_g = -\operatorname{div}_g(
 abla_g\cdot)$ Laplace operator, selfadjoint in L^2

- $\mathcal{M} = \mathbb{T}^d$
- *g* = Eucl
- $dVol_g = dx$ Lebesgue measure

•
$$-\Delta = -(\partial_{x_1}^2 + \cdots + \partial_{x_d}^2)$$

Motivation

Usual Riemannian setting:

- \mathcal{M} compact connected manifold,
- g Riemannian metric on \mathcal{M} ,
- $d\operatorname{Vol}_g$ Riemannian density (volume form) $\rightsquigarrow L^p = L^p(\mathcal{M}, d\operatorname{Vol}_g)$
- $-\Delta_g = -\operatorname{div}_g(
 abla_g\cdot)$ Laplace operator, selfadjoint in L^2
- Ellipticity $\sum_{i,j} g^{ij}(x) \xi_i \xi_j \ge c_0 |\xi|^2$, with $c_0 > 0$.

- $\mathcal{M} = \mathbb{T}^d$
- *g* = Eucl
- $dVol_g = dx$ Lebesgue measure

•
$$-\Delta = -(\partial_{x_1}^2 + \cdots + \partial_{x_d}^2)$$

Motivation

Usual Riemannian setting:

- \mathcal{M} compact connected manifold,
- g Riemannian metric on \mathcal{M} ,
- $d\operatorname{Vol}_g$ Riemannian density (volume form) $\rightsquigarrow L^p = L^p(\mathcal{M}, d\operatorname{Vol}_g)$
- $-\Delta_g = -\operatorname{div}_g(
 abla_g\cdot)$ Laplace operator, selfadjoint in L^2
- Ellipticity $\sum_{i,j} g^{ij}(x)\xi_i\xi_j \ge c_0|\xi|^2$, with $c_0 > 0$.
- Eigenvalues/eigenfunctions: $0 = \lambda_0 < \lambda_1 \le \lambda_2 \le \cdots \le \lambda_j \to +\infty$, $-\Delta_g \varphi_j = \lambda_j \varphi_j$.

- $\mathcal{M} = \mathbb{T}^d$
- g = Eucl
- $dVol_g = dx$ Lebesgue measure
- $-\Delta = -(\partial_{x_1}^2 + \cdots + \partial_{x_d}^2)$

Motivation

Usual Riemannian setting:

- \mathcal{M} compact connected manifold,
- g Riemannian metric on \mathcal{M} ,
- $d\operatorname{Vol}_g$ Riemannian density (volume form) $\rightsquigarrow L^p = L^p(\mathcal{M}, d\operatorname{Vol}_g)$
- $-\Delta_g = -\operatorname{div}_g(
 abla_g\cdot)$ Laplace operator, selfadjoint in L^2
- Ellipticity $\sum_{i,j} g^{ij}(x)\xi_i\xi_j \ge c_0|\xi|^2$, with $c_0 > 0$.
- Eigenvalues/eigenfunctions: $0 = \lambda_0 < \lambda_1 \le \lambda_2 \le \cdots \le \lambda_j \to +\infty$, $-\Delta_g \varphi_j = \lambda_j \varphi_j$.

- $\mathcal{M} = \mathbb{T}^d$
- $g = \mathsf{Eucl}$
- $dVol_g = dx$ Lebesgue measure
- $-\Delta = -(\partial_{x_1}^2 + \cdots + \partial_{x_d}^2)$
- Family of vector fields: $\partial_{x_1}, \cdots, \partial_{x_d}$, with span $(\partial_{x_1}, \cdots, \partial_{x_d}) = \mathbb{R}^d$

Motivation

Usual Riemannian setting:

- \mathcal{M} compact connected manifold,
- g Riemannian metric on \mathcal{M} ,
- $d\operatorname{Vol}_g$ Riemannian density (volume form) $\rightsquigarrow L^p = L^p(\mathcal{M}, d\operatorname{Vol}_g)$
- $-\Delta_g = -\operatorname{div}_g(
 abla_g\cdot)$ Laplace operator, selfadjoint in L^2
- Ellipticity $\sum_{i,j} g^{ij}(x)\xi_i\xi_j \ge c_0|\xi|^2$, with $c_0 > 0$.
- Eigenvalues/eigenfunctions: $0 = \lambda_0 < \lambda_1 \le \lambda_2 \le \cdots \le \lambda_j \to +\infty$, $-\Delta_g \varphi_j = \lambda_j \varphi_j$.

Main example:

- $\mathcal{M} = \mathbb{T}^d$
- $g = \mathsf{Eucl}$
- $dVol_g = dx$ Lebesgue measure
- $-\Delta = -(\partial_{x_1}^2 + \cdots + \partial_{x_d}^2)$
- Family of vector fields: $\partial_{x_1}, \cdots, \partial_{x_d}$, with span $(\partial_{x_1}, \cdots, \partial_{x_d}) = \mathbb{R}^d$

Relax the ellipticity condition $g^{ij}\xi_i\xi_j \ge c_0|\xi|^2$, with $c_0 > 0$?

Motivation

Usual Riemannian setting:

- \mathcal{M} compact connected manifold,
- g Riemannian metric on \mathcal{M} ,
- $d\operatorname{Vol}_g$ Riemannian density (volume form) $\rightsquigarrow L^p = L^p(\mathcal{M}, d\operatorname{Vol}_g)$
- $-\Delta_g = -\operatorname{div}_g(
 abla_g\cdot)$ Laplace operator, selfadjoint in L^2
- Ellipticity $\sum_{i,j} g^{ij}(x)\xi_i\xi_j \ge c_0|\xi|^2$, with $c_0 > 0$.
- Eigenvalues/eigenfunctions: $0 = \lambda_0 < \lambda_1 \le \lambda_2 \le \cdots \le \lambda_j \to +\infty$, $-\Delta_g \varphi_j = \lambda_j \varphi_j$.

Main example:

- $\mathcal{M} = \mathbb{T}^d$
- $g = \mathsf{Eucl}$
- $dVol_g = dx$ Lebesgue measure
- $-\Delta = -(\partial_{x_1}^2 + \cdots + \partial_{x_d}^2)$
- Family of vector fields: $\partial_{x_1}, \cdots, \partial_{x_d}$, with span $(\partial_{x_1}, \cdots, \partial_{x_d}) = \mathbb{R}^d$

Relax the ellipticity condition $g^{ij}\xi_i\xi_j \ge c_0|\xi|^2$, with $c_0 > 0$? What if g vanishes at some points, in some directions?

Typical unique continuation results: Riemannian setting

Theorem (Holmgren, Carleman, Calderón) An eigenfunction φ_i of Δ_{σ} never vanishes identically on an open set $\omega \neq \emptyset$.

Theorem (Donnelly-Fefferman 1988, Lebeau-Robbiano 95) Assume $\omega \subset \mathcal{M}, \ \omega \neq \emptyset$. Then $\|\varphi_j\|_{L^2(\mathcal{M})} \leq Ce^{\kappa \sqrt{\lambda_j}} \|\varphi_j\|_{L^2(\omega)}$

$$\stackrel{\rightsquigarrow}{\longrightarrow} \|\varphi_j\|_{L^2(\omega)} \gtrsim e^{-\kappa \sqrt{\lambda_j}} \text{ for normalized eigenfunctions.}$$

$$\stackrel{\longrightarrow}{\longrightarrow} \text{Optimal in general.}$$

Relax the ellipticity condition $g^{ij}\xi_i\xi_j \ge c_0|\xi|^2$, with $c_0 > 0$? What if g vanishes at some points, in some directions?

$$\begin{cases} (\partial_t - \Delta_g)u = \mathbb{1}_{\omega} f, & \text{in } (0, T) \times \mathcal{M}, \\ u(0) = 0, & \text{in } \mathcal{M}. \end{cases}$$
(1)

• Exact controllability: find f so that $u(T) = u_1 \in L^2$?

$$\begin{cases} (\partial_t - \Delta_g)u = \mathbf{1}_{\omega}f, & \text{in } (0, T) \times \mathcal{M}, \\ u(0) = 0, & \text{in } \mathcal{M}. \end{cases}$$
(1)

• Exact controllability: find f so that $u(T) = u_1 \in L^2$?

 \rightsquigarrow not possible in general \rightsquigarrow smoothing properties of the heat equation

$$\begin{cases} (\partial_t - \Delta_g)u = \mathbf{1}_{\omega}f, & \text{in } (0, T) \times \mathcal{M}, \\ u(0) = 0, & \text{in } \mathcal{M}. \end{cases}$$
(1)

- Exact controllability: find f so that u(T) = u₁ ∈ L²?
 → not possible in general → smoothing properties of the heat equation
- Approximate controllability: find f so that $u(T) \approx u_1$?

$$\begin{cases} (\partial_t - \Delta_g)u = \mathbf{1}_{\omega}f, & \text{in } (0, T) \times \mathcal{M}, \\ u(0) = 0, & \text{in } \mathcal{M}. \end{cases}$$
(1)

- Exact controllability: find f so that u(T) = u₁ ∈ L²?
 → not possible in general → smoothing properties of the heat equation
- Approximate controllability: find f so that $u(T) \approx u_1$?

Theorem (Fernández-Cara-Zuazua 2000, Phung 2004) Fix T > 0. For any $\varepsilon > 0$, $u_1 \in L^2(\mathcal{M})$, there is $f \in L^2((0, T) \times \omega)$

s.t. the solution of (1) satisfies

$$\|u(T)-u_1\|_{H^{-1}(\mathcal{M})}\leq \varepsilon \|u_1\|_{L^2(\mathcal{M})}.$$

$$\begin{cases} (\partial_t - \Delta_g)u = \mathbf{1}_{\omega}f, & \text{in } (0, T) \times \mathcal{M}, \\ u(0) = 0, & \text{in } \mathcal{M}. \end{cases}$$
(1)

- Exact controllability: find f so that u(T) = u₁ ∈ L²?
 → not possible in general → smoothing properties of the heat equation
- Approximate controllability: find f so that $u(T) \approx u_1$?

Theorem (Fernández-Cara-Zuazua 2000, Phung 2004) Fix T > 0. For any $\varepsilon > 0$, $u_1 \in L^2(\mathcal{M})$, there is $f \in L^2((0, T) \times \omega)$ with

$$\|f\|_{L^2((0,T)\times\omega)}\leq Ce^{\frac{c}{\varepsilon}}\|u_1\|_{L^2(\mathcal{M})},$$

s.t. the solution of (1) satisfies

$$\|u(T)-u_1\|_{H^{-1}(\mathcal{M})}\leq \varepsilon \|u_1\|_{L^2(\mathcal{M})}.$$

$$\begin{cases} (\partial_t - \Delta_g)u = \mathbf{1}_{\omega}f, & \text{in } (0, T) \times \mathcal{M}, \\ u(0) = 0, & \text{in } \mathcal{M}. \end{cases}$$
(1)

- Exact controllability: find f so that u(T) = u₁ ∈ L²?
 → not possible in general → smoothing properties of the heat equation
- Approximate controllability: find f so that $u(T) \approx u_1$?

Theorem (Fernández-Cara-Zuazua 2000, Phung 2004) Fix T > 0. For any $\varepsilon > 0$, $u_1 \in L^2(\mathcal{M})$, there is $f \in L^2((0, T) \times \omega)$ with

$$\|f\|_{L^2((0,T)\times\omega)}\leq Ce^{\frac{c}{\varepsilon}}\|u_1\|_{L^2(\mathcal{M})},$$

s.t. the solution of (1) satisfies

$$\|u(T)-u_1\|_{H^{-1}(\mathcal{M})}\leq \varepsilon \|u_1\|_{L^2(\mathcal{M})}.$$

Relax the ellipticity condition $g^{ij}\xi_i\xi_j \ge c_0|\xi|^2$, with $c_0 > 0$?

$$\begin{cases} (\partial_t - \Delta_g)u = \mathbf{1}_{\omega}f, & \text{in } (0, T) \times \mathcal{M}, \\ u(0) = 0, & \text{in } \mathcal{M}. \end{cases}$$
(1)

- Exact controllability: find f so that u(T) = u₁ ∈ L²?
 → not possible in general → smoothing properties of the heat equation
- Approximate controllability: find f so that $u(T) \approx u_1$?

Theorem (Fernández-Cara-Zuazua 2000, Phung 2004) Fix T > 0. For any $\varepsilon > 0$, $u_1 \in L^2(\mathcal{M})$, there is $f \in L^2((0, T) \times \omega)$ with

$$\|f\|_{L^2((0,T)\times\omega)}\leq Ce^{\frac{c}{\varepsilon}}\|u_1\|_{L^2(\mathcal{M})},$$

s.t. the solution of (1) satisfies

$$\|u(T)-u_1\|_{H^{-1}(\mathcal{M})}\leq \varepsilon \|u_1\|_{L^2(\mathcal{M})}.$$

Relax the ellipticity condition $g^{ij}\xi_i\xi_j \ge c_0|\xi|^2$, with $c_0 > 0$? What if g vanishes at some points, in some directions?

Sub-Riemannian/hypoelliptic setting

- \mathcal{M} compact connected manifold
- ds a density on \mathcal{M} , $L^2 = L^2(\mathcal{M}, ds)$
- *m* vector fields X_1, \cdots, X_m
- Type I Hörmander operator

$$\mathcal{L} = \sum_{i=1}^m X_i^* X_i.$$

Here $\int_{\mathcal{M}} X^*(u) v \, ds = \int_{\mathcal{M}} u X(v) \, ds \quad \iff \quad X^* = -X - \operatorname{div}_{ds}(X)$

• Formally symmetric nonnegative, $\mathcal{L} = -\operatorname{div}_{\mathit{ds}}(
abla_{\mathit{SR}}\cdot)$

Examples in dimension $d=2,~\mathcal{M}=\mathbb{T}^2=[-1,1)^2,~ds=dx_1dx_2$:

- Elliptic operator: $X_1 = \partial_{x_1}$, $X_2 = \partial_{x_2} \implies \mathcal{L} = -(\partial_{x_1}^2 + \partial_{x_2}^2)$ is elliptic.
- Grushin operator:

$$X_1 = \partial_{x_1}, \quad X_2 = x_1 \partial_{x_2} \implies \quad \mathcal{L} = -\left(\partial_{x_1}^2 + x_1^2 \partial_{x_2}^2\right)$$

• *p*-Grushin operators:

$$X_1 = \partial_{x_1}, \quad X_2 = x_1^p \partial_{x_2} \implies \quad \mathcal{L}_p = -\left(\partial_{x_1}^2 + x_1^{2p} \partial_{x_2}^2\right)$$

Definition with $\mathscr{F} = (X_1, \dots, X_m)$ set $\operatorname{Lie}^{\ell}(\mathscr{F})$: • $\operatorname{Lie}^{1}(\mathscr{F})(x) = \operatorname{span}(X_1(x), \dots, X_m(x))$, • $\operatorname{Lie}^{\ell+1}(\mathscr{F}) = \operatorname{span}(\operatorname{Lie}^{\ell}(\mathscr{F}) \cup \{[X, X_j]; X \in \operatorname{Lie}^{\ell}(\mathcal{F}), j = 1, \dots, m\}).$

Assumption (Chow-Rashevski-Hörmander)

- $\exists \ell \geq 1$ so that for any $x \in \mathcal{M}$, $\mathsf{Lie}^{\ell}(X_1, \cdots, X_m)(x) = T_x \mathcal{M}$.
- set k := the minimal ℓ .

Examples:

- Elliptic operator: $X_1 = \partial_{x_1}$ and $X_2 = \partial_{x_2} \rightsquigarrow k = 1$
- Grushin operator: $X_1 = \partial_{x_1}$ and $X_2 = x_1 \partial_{x_2} \rightsquigarrow k = 2$ since $[\partial_{x_1}, x_1 \partial_{x_2}] = \partial_{x_2}$
- *p*-Grushin operators: $X_1 = \partial_{x_1}$ and $X_2 = x_1^p \partial_{x_2} \rightsquigarrow k = p + 1$

Theorem (Chow-Rashevski, 1938)

Assume Chow-Rashevski-Hörmander condition. For any $x_0, x_1 \in \mathcal{M}$, there is a curve $[0,1] \rightarrow \mathcal{M}$, $t \mapsto \gamma(t)$ such that

•
$$\gamma(0) = x_0$$
 and $\gamma(1) = x_1$

• γ is always tangent to span (X_1, \cdots, X_m)

Theorem (Hörmander 1967, Rothschild-Stein 1976) *Assume Chow-Rashevski-Hörmander condition.*

• The operator $\mathcal L$ is hypoelliptic: $\forall u \in \mathscr D'(\mathcal M), x_0 \in \mathcal M$

$$\mathcal{L}u \in C^{\infty}$$
 near $x_0 \implies u \in C^{\infty}$ near x_0 .

• The operator \mathcal{L} is subelliptic of order $\frac{1}{k}$:

$$\|u\|_{H^{\frac{2}{k}}(\mathcal{M})} \lesssim \|\mathcal{L}u\|_{L^{2}(\mathcal{M})} + \|u\|_{L^{2}(\mathcal{M})}$$

Examples:

- Elliptic operators $\rightsquigarrow k = 1$: $||u||_{H^2(\mathcal{M})} \lesssim ||\mathcal{L}u||_{L^2(\mathcal{M})} + ||u||_{L^2(\mathcal{M})}$
- Grushin operator $\rightsquigarrow k = 2$: $||u||_{H^1(\mathcal{M})} \lesssim ||\mathcal{L}u||_{L^2(\mathcal{M})} + ||u||_{L^2(\mathcal{M})}$

• *p*-Grushin operators
$$\mathcal{L}_p = -(\partial_{x_1}^2 + x_1^{2p} \partial_{x_2}^2) \rightsquigarrow k = p+1$$

 $\|u\|_{H^{\frac{2}{p+1}}(\mathcal{M})} \lesssim \|\mathcal{L}u\|_{L^2(\mathcal{M})} + \|u\|_{L^2(\mathcal{M})}$

The proofs

Properties of \mathcal{L} :

$$\mathcal{L}: D(\mathcal{L}) \subset L^2(\mathcal{M}) \to L^2(\mathcal{M}),$$

- subelliptic estimates $\implies H^2(\mathcal{M}) \subset D(\mathcal{L}) \subset H^{\frac{2}{k}}(\mathcal{M})$
- $\rightsquigarrow \mathcal{L}$ is selfadjoint on $L^2(\mathcal{M})$, with compact resolvent
- \rightsquigarrow Hilbert basis of eigenfunctions $(\varphi_j)_{j\in\mathbb{N}}$, real eigenvalues $(\lambda_j)_{j\in\mathbb{N}}$

$$\mathcal{L}\varphi_i = \lambda_i \varphi_i, \quad (\varphi_i, \varphi_j)_{L^2(\mathcal{M})} = \delta_{ij}, \quad \mathbf{0} = \lambda_0 < \lambda_1 \le \lambda_2 \le \cdots \le \lambda_j \to +\infty.$$

- $\rightsquigarrow \varphi_j \in C^{\infty}(\mathcal{M}).$
- → Well-posedness of hypoelliptic wave and heat equations $(\partial_t^2 + \mathcal{L})v = f$ and $(\partial_t + \mathcal{L})u = f$

Assumption (Analyticity)

The manifold \mathcal{M} , the density ds, and the vector fields X_i are real-analytic.

→ the Chow-Rashevski-Hörmander is necessary for attainability/hypoellipticity.

Theorem (Bony 1969) An eigenfunction φ_j of \mathcal{L} never vanishes identically on an open set $\omega \neq \emptyset$.

Theorem

Let $\omega \subset M$, $\omega \neq \emptyset$. Then, for normalized eigenfunctions:

$$\|arphi_j\|_{L^2(\omega)} \geq C e^{-c\lambda_j^{k/2}}$$

• False in general without the analyticity assumption (Bahouri 1986).

Proposition (Csq of Beauchard-Cannarsa-Guglielmi 2017) For the p-Grushin examples, there are $\omega \neq \emptyset$ and (λ_j, φ_j) eigenvalues/eigenfunctions of \mathcal{L}_p s.t.

$$\|\varphi_j\|_{L^2(\omega)} \leq C e^{-c_0 \lambda_j^{k/2}}, \quad k=p+1.$$

hypoelliptic heat equation: controllability

Sobolev norms:

$$\|u\|_{\mathcal{H}^{s}_{\mathcal{L}}} = \left\| (1+\mathcal{L})^{\frac{s}{2}} u \right\|_{L^{2}(\mathcal{M})}, \quad s \in \mathbb{R}.$$

Hypoelliptic heat equation controlled from ω :

$$\begin{cases} (\partial_t + \mathcal{L})u = \mathbf{1}_{\omega}f, & \text{in } (0, T) \times \mathcal{M}, \\ u(0) = 0, & \text{in } \mathcal{M}. \end{cases}$$
(2)

Approximate controllability: drive the solution to $u(T) \approx u_1$?

Corollary (Approximate controllability and its cost) Fix T > 0. For any $\varepsilon > 0$, $u_1 \in L^2(\mathcal{M})$, there is $f \in L^2((0, T) \times \omega)$

s.t. the solution of (2) satisfies

$$\|u(T)-u_1\|_{\mathcal{H}_{\mathcal{L}}^{-1}}\leq \varepsilon \|u_1\|_{L^2(\mathcal{M})}.$$

hypoelliptic heat equation: controllability

Sobolev norms:

$$\|u\|_{\mathcal{H}^{s}_{\mathcal{L}}} = \left\| (1+\mathcal{L})^{\frac{s}{2}} u \right\|_{L^{2}(\mathcal{M})}, \quad s \in \mathbb{R}.$$

Hypoelliptic heat equation controlled from ω :

$$\begin{cases} (\partial_t + \mathcal{L})u = \mathbf{1}_{\omega}f, & \text{in } (0, T) \times \mathcal{M}, \\ u(0) = 0, & \text{in } \mathcal{M}. \end{cases}$$
(2)

Approximate controllability: drive the solution to $u(T) \approx u_1$?

Corollary (Approximate controllability and its cost) Fix T > 0. For any $\varepsilon > 0$, $u_1 \in L^2(\mathcal{M})$, there is $f \in L^2((0, T) \times \omega)$

s.t. the solution of (2) satisfies

$$\|u(T)-u_1\|_{\mathcal{H}_{\mathcal{L}}^{-1}}\leq \varepsilon \|u_1\|_{L^2(\mathcal{M})}.$$

hypoelliptic heat equation: controllability

Sobolev norms:

$$\|u\|_{\mathcal{H}^{s}_{\mathcal{L}}} = \left\| (1+\mathcal{L})^{\frac{s}{2}} u \right\|_{L^{2}(\mathcal{M})}, \quad s \in \mathbb{R}.$$

Hypoelliptic heat equation controlled from ω :

$$\begin{cases} (\partial_t + \mathcal{L})u = \mathbf{1}_{\omega}f, & \text{in } (0, T) \times \mathcal{M}, \\ u(0) = 0, & \text{in } \mathcal{M}. \end{cases}$$
(2)

Approximate controllability: drive the solution to $u(T) \approx u_1$?

Corollary (Approximate controllability and its cost) Fix T > 0. For any $\varepsilon > 0$, $u_1 \in L^2(\mathcal{M})$, there is $f \in L^2((0, T) \times \omega)$ with

$$\|f\|_{L^2((0,T)\times\omega)}\leq Ce^{\frac{c}{\varepsilon^k}}\|u_1\|_{L^2(\mathcal{M})},$$

s.t. the solution of (2) satisfies

$$\|u(T)-u_1\|_{\mathcal{H}_{\mathcal{L}}^{-1}}\leq \varepsilon \|u_1\|_{L^2(\mathcal{M})}.$$

The proofs

hypoelliptic heat equation: observability

Hypoelliptic free heat equation:

$$\begin{cases} \partial_t y + \mathcal{L}y = 0, & \text{in } (0, T) \times \mathcal{M}, \\ y(0) = y_0 & \text{in } \mathcal{M}, \end{cases}$$

Theorem (Approximate observability)

For all T > 0, there are C, c > 0 s.t. for all $y_0 \in \mathcal{H}^1_{\mathcal{L}}$, for all $\varepsilon > 0$

$$\|y_0\|_{L^2}^2 \leq C e^{\frac{c}{\varepsilon^k}} \int_0^T \|y(t)\|_{L^2(\omega)}^2 dt + \varepsilon^2 \|y_0\|_{\mathcal{H}^1_{\mathcal{L}}}^2,$$

The proofs

About the proofs

Theorem (Approximate observability)

For all T > 0, there are C, c > 0 s.t. for all $y_0 \in \mathcal{H}^1_{\mathcal{L}}$, for all μ large

$$\|y_0\|_{L^2}^2 \leq C e^{\mu^k} \int_0^T \|e^{-t\mathcal{L}} y_0\|_{L^2(\omega)}^2 dt + \frac{1}{\mu^2} \|y_0\|_{\mathcal{H}^1_{\mathcal{L}}}^2,$$

The proofs

About the proofs

Theorem (Approximate observability) For all T > 0, there are C, c > 0 s.t. for all $y_0 \in \mathcal{H}^1_{\mathcal{L}}$, for all μ large

$$\|y_0\|_{L^2}^2 \leq C e^{\mu^k} \int_0^T \|e^{-t\mathcal{L}}y_0\|_{L^2(\omega)}^2 dt + \frac{1}{\mu^2} \|y_0\|_{\mathcal{H}^1_{\mathcal{L}}}^2,$$

The proofs

About the proofs

Theorem (Approximate observability) For all T > 0, there are C, c > 0 s.t. for all $y_0 \in \mathcal{H}^1_{\mathcal{L}}$, for all μ large

$$\|y_0\|_{L^2}^2 \leq C e^{\mu^k} \int_0^T \|e^{-t\mathcal{L}}y_0\|_{L^2(\omega)}^2 dt + \frac{1}{\mu^2} \|y_0\|_{\mathcal{H}^1_{\mathcal{L}}}^2,$$

4 main steps/ingredients:

1. Quantitative Unique Continuation for $\partial_t^2 + \mathcal{L}$ (hypoelliptic wave equation) ~ Laurent-L. 2015-2019

The proofs

About the proofs

Theorem (Approximate observability) For all T > 0, there are C, c > 0 s.t. for all $y_0 \in \mathcal{H}^1_{\mathcal{L}}$, for all μ large

$$\|y_0\|_{L^2}^2 \leq C e^{\mu^k} \int_0^T \|e^{-t\mathcal{L}}y_0\|_{L^2(\omega)}^2 dt + \frac{1}{\mu^2} \|y_0\|_{\mathcal{H}^1_{\mathcal{L}}}^2,$$

- 1. Quantitative Unique Continuation for $\partial_t^2 + \mathcal{L}$ (hypoelliptic wave equation) ~ Laurent-L. 2015-2019
- 2. A (sub-Riemmanian) geometric construction → Rifford-Trélat 2005

The proofs

About the proofs

Theorem (Approximate observability) For all T > 0, there are C, c > 0 s.t. for all $y_0 \in \mathcal{H}^1_{\mathcal{L}}$, for all μ large

$$\|y_0\|_{L^2}^2 \leq C e^{\mu^k} \int_0^T \|e^{-t\mathcal{L}}y_0\|_{L^2(\omega)}^2 dt + \frac{1}{\mu^2} \|y_0\|_{\mathcal{H}^1_{\mathcal{L}}}^2,$$

- 1. Quantitative Unique Continuation for $\partial_t^2 + \mathcal{L}$ (hypoelliptic wave equation) ~ Laurent-L. 2015-2019
- 2. A (sub-Riemmanian) geometric construction → Rifford-Trélat 2005
- Subelliptic estimates (H^s norms ↔→ H^s_L norms)
 → Rotschild-Stein 1976

The proofs

About the proofs

Theorem (Approximate observability) For all T > 0, there are C, c > 0 s.t. for all $y_0 \in \mathcal{H}^1_{\mathcal{L}}$, for all μ large

$$\|y_0\|_{L^2}^2 \leq C e^{\mu^k} \int_0^T \|e^{-t\mathcal{L}}y_0\|_{L^2(\omega)}^2 dt + \frac{1}{\mu^2} \|y_0\|_{\mathcal{H}^1_{\mathcal{L}}}^2,$$

- 1. Quantitative Unique Continuation for $\partial_t^2 + \mathcal{L}$ (hypoelliptic wave equation) ~ Laurent-L. 2015-2019
- 2. A (sub-Riemmanian) geometric construction → Rifford-Trélat 2005
- Subelliptic estimates (H^s norms ↔→ H^s_L norms)
 → Rotschild-Stein 1976
- 4. From $\partial_t^2 + \mathcal{L}$ (waves) to $\mathcal{L} \lambda_j$ (eigenfunctions) or $\partial_t + \mathcal{L}$ (heat): transmutation
 - → Ervedoza-Zuazua 2011

The proofs

About the proofs

Theorem (Approximate observability) For all T > 0, there are C, c > 0 s.t. for all $y_0 \in \mathcal{H}^1_{\mathcal{L}}$, for all μ large

$$\|y_0\|_{L^2}^2 \leq C e^{\mu^k} \int_0^T \|e^{-t\mathcal{L}}y_0\|_{L^2(\omega)}^2 dt + \frac{1}{\mu^2} \|y_0\|_{\mathcal{H}^1_{\mathcal{L}}}^2,$$

4 main steps/ingredients:

1. Quantitative Unique Continuation for $\partial_t^2 + \mathcal{L}$ (hypoelliptic wave equation) ~ Laurent-L. 2015-2019

The proofs

The proofs: Quantitative Unique Continuation

• Global UC statements \leftarrow local UC results + geometric constructions. Local (near x^0) UC result across { $\phi = 0$ } $\ni x^0$ for $P = p(x, D_x)$:

$$(Pu = 0 \text{ near } x^0, \quad u = 0 \text{ in } \{\phi > 0\}) \stackrel{?}{\Longrightarrow} u = 0 \text{ near } x^0.$$

Holmgren-John (1949)

- analytic coefficients
- ϕ non characteristic for *P*: $p(x^0, d\phi(x^0)) \neq 0$

Carleman-Hörmander (1960)

- C^{∞} (even C^1) coefficients
- ϕ pseudoconvex for P: {p, {p, ϕ }}(x^0 , ξ) > 0

Quantitative Carleman-Hörmander theorem

Usual Hörmander theorem: 3 steps:

1. Carleman estimates:

$$\left\| e^{\tau\psi} v
ight\|_{L^2} \lesssim \left\| e^{\tau\psi} \mathsf{P} v
ight\|_{L^2}, \quad ext{ for all } au \geq au_0,$$

v compactly supported near x^0 . Here, $\psi = \text{convexification of } \phi$.

2. Apply it with $v = \chi u$ where Pu = 0, $\chi \rightarrow$ levelsets of ψ . Yields ($\mu = \tau$)

$$\|u\|_{V_2} \lesssim e^{\kappa\mu} \|u\|_{V_1} + \underbrace{e^{-\kappa'\mu} \|u\|}_{\text{expo. small remainder}}$$

3. propagates very well (Bahouri 87, Robbiano 95, Lebeau-Robbiano 95):

$$\|u\|_{L^{2}(\mathcal{K})} \lesssim e^{\kappa \mu} \|u\|_{H^{1}(\tilde{\omega})} + \underbrace{e^{-\kappa' \mu} \|u\|_{H^{1}}}_{\mathcal{L}^{2}(\mathcal{K})} , \qquad \mathcal{P}u = 0.$$

expo. small remainder

Quantitative Holmgren-John theorem (Tataru-Robbiano-Zuily-Hörmander spirit)

• A Carleman estimate "localized in $\xi = 0$ "

$$\left| e^{-\frac{\varepsilon}{2\tau} |D|^2} e^{\tau \psi} v \right\| \lesssim \left\| e^{-\frac{\varepsilon}{2\tau} |D|^2} e^{\tau \psi} P v \right\| + e^{-\tau \mathsf{d}} \left\| e^{\tau \psi} v \right\|, \quad \tau \ge \tau_0$$

- Apply it with $v = \chi u$, $\chi \to$ levelsets of ψ . Yields (Pu = 0) $\left\| e^{-\frac{\varepsilon}{2\tau} |D|^2} e^{\tau \psi} \chi u \right\| \lesssim e^{\kappa \tau} \|u\|_{V_1} + e^{-\delta \tau} \|u\|$ for all $\tau \ge \tau_0$.
- Complex analysis in the au variable \rightsquigarrow Local estimate

$$\|u\|_{V_2} \leq e^{\kappa\mu} \|u\|_{V_1} + \underbrace{\frac{C}{\mu}}_{\mu} \|u\|$$

not so small remainder

PROBLEM: does not propagate well $\rightsquigarrow e^{e^{e^{\cdots \cdot e^{\mu}}}}$

• Solution! propagate low frequencies only: with $m \in C_c^{\infty}(\mathbb{R})$:

$$\left\| m\left(\frac{|D|}{\mu}\right)\chi_{V_2}u\right\| \leq Ce^{\kappa\mu} \left\| m\left(\frac{|D|}{\mu}\right)\chi_{V_1}u\right\| + C \underbrace{e^{-\kappa'\mu} \|u\|}_{\text{equation}},$$

for all $\mu \ge \mu_0$ and $u \in C^{\infty}_c(\mathbb{R}^n)$.

- PROBLEM: Commutators $\left[m\left(rac{|D|}{\mu}
 ight),\chi(x)
 ight]$ are of order $\mu^{-\infty} o$ too bad
- Solution! analytic cutoff functions!

The proofs

THANK YOU FOR YOUR ATTENTION!