
A Becker-Döring type model for oscillatory

aggregation kinetics in prion dynamics

Klemens Fellner

Institute for Mathematics and Scientific Computing

University of Graz

joint work with

Marie Doumic, Mathieu Mezache (INRIA, CNRS), Human Rezaei (INRA)

Journal of Theoretical Biology, 480 (2019) pp. 241–261.

Roma 11.11.2019 – p. 1/??



Introduction
Prions

Prion is derived from proteinaceous infectious particle.

The prion phenomenon involves

self-propagation of a biological information

through the transfer of structural information

from a misfolded/infectious protein in a prion-state to the

same protein in a non-prion state.

Prion cause various diseases: Creutzfeld-Jacob, . . .

Prion-like mechanisms are associated to Alzheimer,

Parkinson and Huntington diseases.
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Introduction
Prions

Monomeric prion protein (PrPC) is converted into

misfolded aggregating conformers (PrPSc).

PrPSc assemblies have the ability to

self-replicate and self-organise (mechanism unknown).

Phenotype differences are assigned to

structural differences in PrPSc assemblies.

Experiments using Static Light Scattering (SLS) in the lab of

Human Rezaei studied the depolymerisation kinetics of

recombinant PrP amyloid fibrils.

⇒ surprising, transient oscillations!
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The Challenge

Time evolution of the second moment of PrP polymers
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Background
Coagulation-fragmentation models

The Formation and the Break-up of Clusters/Polymers in

Physics aerosols, rainsdrops, smoke, sprays

Chemistry monomers/polymers

Astronomy formation of galaxies

Biology hematology, animal grouping
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Coagulation-Fragmentation Models
Macroscopic viewpoint

The Formation and the Break-up of Clusters/Polymers

assume particles fully described by mass/size y ∈ Y .

full/realistic models can quickly get very difficult
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Discrete coagulation-fragmentation models
The Smoluchowski coagulation equation [1916/17]

discrete polymer size/mass i ∈ N, density ci(t) ≥ 0, c = (ci)

dtci(t) = Qcoag(c, c) +Qfrag(c)

= Q1(c, c)−Q2(c, c) +Q3(c)−Q4(c)

Binary coagulation:

Q1(c, c): gain of particles of size i

{i− j}+ {j}
ai−j,j

−−−→ {i}, j < i

Q2(c, c): loss of particles of size i

{i}+ {j}
ai,j
−−→ {i+ j}, j ≥ 1.
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Discrete coagulation-fragmentation models
The Smoluchowski coagulation equation [1916/17]

discrete polymer size/mass i ∈ N, density ci(t) ≥ 0, c = (ci)

dtci(t) = Qcoag(c, c) +Qfrag(c)

= Q1(c, c)−Q2(c, c) +Q3(c)−Q4(c)

Fragmentation:

Q3(c): gain of particles of size i

{i+ j}
Bi+jβi+j,i

−−−−−−→ {i}+ {j}, j > 1

Q4(c): loss of particles of size i

{i}
Bi−→ all pairs {i− j}+ {j} with j < i.
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Introduction
Discrete coagulation-fragmentation equation

Discrete in size coagulation-fragmentation models

∂tci = Qi,coag(c, c) +Qi,frag(c), i ∈ N,

Qi,coag =
1

2

∑i−1

j=1
ai−j,j ci−j cj −

∑∞

j=1
ai,j ci cj ,

Qi,frag =
∑∞

j=1
Bi+j βi+j,i ci+j −Bi ci.

Coagulation-fragmentation coefficients

ai,j = aj,i ≥ 0, βi,j ≥ 0, (i, j ∈ N),

B1 = 0, Bi ≥ 0, (i ∈ N),

(mass conservation) i =
∑i−1

j=1
j βi,j, (i ∈ N, i ≥ 2).
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Discrete coagulation-fragmentation models
Weak formulation, conservation of mass

Test-sequence ϕi,

∞
∑

i=1

ϕiQi,coal =
1

2

∞
∑

i=1

∞
∑

j=1

ai,j ci cj (ϕi+j − ϕi − ϕj),

∞
∑

i=1

ϕiQi,frag = −
∞
∑

i=2

Bici

(

ϕi −
i−1
∑

j=1

βi,jϕj

)

.

Conservation of total mass or gelation

ρ(t) =
∞
∑

i=1

ici(t) ≤
∞
∑

i=1

ic0i = ρ0.
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The Becker-Döring model
Interaction between monomers and polymers

The Becker-Döring model only considers (de-)polymerisation

with monomers/clusters-of-size-one.

System of a monomer-equation and polymer-equations:







dtc1 = −J1(c)−
∑∞

i=1 Ji(c),

dtci = Ji−1(c)− Ji(c), i ≥ 2

where Ji(c) = ai c1 ci − bi+1 ci+1
a

The Becker-Döring model is detailed balanced!

aa1 = a1,2/2, b2 = b1,1/2, and ai = ai,1, bi + 1 = bi,1, i ≥ 2
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Coagulation-Fragmentation models
Detailed balance condition : continuous and discrete

non-negative equilibrium E(y) ∈ L1
1(Y ) := L1(Y, (1 + y)dy):

a(y, y′)E(y)E(y′) = b(y, y′)E(y + y′), (y, y′) ∈ Y × Y

This equation is also satisfied by all

Ez(y) = E(y) zy, y ∈ Y, for z ≥ 0

but Ez not necessarily in L1
1(Y ). Thus,

zs := sup{z ≥ 0 : Ez ∈ L1
1(Y )} ∈ [1,∞]

ρs := M1(Ezs(y)) ∈ [0,∞].

ρs is called the saturation mass
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Coagulation-Fragmentation models
Entropy and detailed balance

Entropy functional: H(f |E) =
∫

Y
f
(

ln( f

E
)− 1

)

dy

H-Theorem f ′ = f(y′), f ′′ = f(y + y′)

d

dt
H(f |E) = −

1

2
D(f),

D(f) =

∫

Y

∫

Y

(aff ′ − bf ′′)(ln(aff ′)− ln(bf ′′)) dydy′

Dissipation D(f) = 0 vanishes only for equilibria,

f(t, y)
t→∞
−−−→ Ez(y),







z : M1(Ez)) = M1(f0) M1(f0) ≤ zs

zs M1(f0) > zs

No sustained oscillatory behaviour possible
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Modelling
A bi-monomeric, nonlinear Becker-Döring model

V monomeric species

W conformer species (assumed monomeric for simplicity)

Ci polymers built from i monomers

C1 smallest size of ”active” polymers (one for simplicity)















V +W
k
−→ 2W ,

W + Ci
ai−→ Ci+1, 1 ≤ i ≤ n,

Ci + V
bi−→ Ci−1 + 2V , 2 ≤ i ≤ n.

k reaction rate constant for the monomer/conformer.

ai and bi polymerisation/depolymerisation coefficients.
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Modelling
A bi-monomeric, nonlinear Becker-Döring model

V monomeric species

W conformer species (assumed monomeric for simplicity)

Ci polymers built from i monomers

C1 smallest size of ”active” polymers (one for simplicity)















V +W
k
−→ 2W ,

W + Ci
ai−→ Ci+1, 1 ≤ i ≤ n,

Ci + V
bi−→ Ci−1 + 2V , 2 ≤ i ≤ n.

Key modifications compared to Becker-Döring:

two monomeric species

monomer induced nonlinear depolymerisation
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Equations and formal properties
A bi-monomeric, nonlinear Becker-Döring model

Define with J0 = Jn = 0, n ∈ N or J0 = 0, n = ∞

Ji(t) = ai w(t)ci(t)− bi+1 v(t)ci+1(t), 1 ≤ i ≤ n− 1.



























dv
dt

= −kvw + v
n
∑

i=2

bici, v(0) = v0,

dw
dt

= −w
n−1
∑

i=1

aici + kvw, w(0) = w0,

dci
dt

= Ji−1 − Ji, ci(0) = c0i , 1 ≤ i ≤ n.

Two conservation laws

Total number of polymers: P0 :=
∑n

i=1 ci(t)

Total mass: Mtot := v(t) + w(t) +
∑n

i=1 ici(t)
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Modelling
The two polymer model n = 2

The simplest model for n = 2

{

dv
dt

= v [−kw + c2] ,

dw
dt

= w [kv − c1] ,

{

dc1
dt

= −wc1 + vc2,

dc2
dt

= wc1 − vc2,

transforms upon using the two conservation laws into a

generalised Lotka-Volterra system for v and w







dv
dt

= v [M − (k + 1)w − v] ,

dw
dt

= w [(M − P0) + (k − 1)v − w] .

with M = Mtot − P0.
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Modelling
The two polymer model n = 2

Simplest model for n = 2







dv
dt

= v [M − (k + 1)w − v] ,

dw
dt

= w [(M − P0) + (k − 1)v − w] .

Boundary equilibria (v̄, w̄) = (M, 0) and (v̄, w̄) = (0,M − P0)

(in case M ≥ P0).

Positive equilibrium (v∞, w∞) > 0 provided P0 ∈
(

kM
1+k

, kM
)

v∞ :=
P0

k

(

1 +
1

k

)

−
M

k
, w∞ :=

M

k
−

P0

k2
.
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Modelling
Rescaling two polymer model

Equilibrium (v∞, w∞) is of order ε := 1/k.

Rescaling

v →
v

k
= εv, and w →

w

k
= εw,

Rescaled equilibrium values

v∞ = P0 (1 + ε)−M, and w∞ = M − εP0,

Rescaled two polymer system







dv
dt

= v [w∞ − w]− ε v [v − v∞ + w − w∞] ,

dw
dt

= w [v − v∞]− εw [v − v∞ + w − w∞] .
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Modelling
Limiting ε = 0 Hamiltonian system

The case ε = 0 constitutes a classical Lotka-Volterra system







dv0
dt

= v0 [w∞ − w0] = v0w0

(

− ∂H
∂w0

)

,

dw0

dt
= w0 [v0 − v∞] = w0 v0

(

∂H
∂v0

)

,

which is defined by and conserves the Hamiltonian

H(v, w) = v − v∞ ln v + w − w∞ lnw

d

dt
H(v0(t), w0(t)) =

∂H

∂v

dv0
dt

+
∂H

∂w

dw0

dt
= 0.

Any positive equilibrium (v∞, w∞) > 0 is the unique minimiser

of the associated convex Hamiltonian.
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Analysis
Exponential convergence to positive equilibrium

Theorem: Let P0 ∈
(

kM
1+k

, kM
)

⇒ positive equilibrium (v∞, w∞)

Then, the Hamiltonian is a convex Lyapunov functional with

d

dt
H(v(t), w(t)) = −ε [(v − v∞) + (w − w∞)]2 .

Moreover, for ε sufficiently small, every solution (v(t), w(t))

subject to positive initial data (v0, w0) > 0 satisfies

|v − v∞|2 + |w − w∞|2 ≤ C
(

H0 −H∞

)

e−εrt.

The rate r and constant C depend only on the initial

Hamiltonian value H0 := H(v0, w0) and (v∞, w∞).
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Analysis
Entropy method

Proof: Entropy method for

d

dt
H(v(t), w(t)) = −εp(v, w)2.

Aim for entropy estimate

Ḣ ≤ −εC(H(v, w)−H(v∞, w∞)).

Difficulty due to a degenerate line in (v, w)-phase space:

p = 0 ⇐⇒ w − w∞ = −(v − v∞).

Workaround: Show that trajectories cross an area containing

p = 0 in finite time with finite, positive speed.

Roma 11.11.2019 – p. 20/??



Numerics
Oscillatory mechanism of two polymer model

Trajectories of the monomeric concentrations v and w for the

two-polymer model for k = 10, a = b = 1 and kM
1+k

< P0 < kM .
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Numerics
Oscilatory mechanism of two polymer model

Monotone decay of the Lyapunov functional for the

two-polymer model for k = 10, a = b = 1 and kM
1+k

< P0 < kM
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Numerics
Oscilatory mechanism of two polymer model

Trajectories of the monomeric concentrations v and w for the

two-polymer model for k = 35, a = b = 1 and kM
1+k

< P0 < kM .
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Analysis
Fast transient oscillations

Corollary: For v = v0 + εv1 +O(ε2) and w = w0 + εw1 + O(ε2),

we find a regular perturbation of the zero order T -periodic

Lotka-Volterra solutions (v0(t), w0(t)). The first order terms

(v1(t), w1(t)) satisfiy the non-autonomous, inhomogeneous

system









v̇1

ẇ1









=









w∞ − w0 −v0

w0 v0 − v∞









·









v1

w1









−









v0(v∞ − v0 + w∞ − w0)

w0(v∞ − v0 + w∞ − w0)









The solutions (v(t), w(t)) deviate O(ε) far from the T -periodic

(v0(t), w0(t)) on a time interval of size O(T ) and undergo

O(1/ε) many oscillations before converging to (v∞, w∞).
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The finite n ∈ N 2nBD model
Stationary state analysis

Stability regions of the SSs in 1
k
-Mtot

P0
parametric space:

Case a1 ≤ bn
Mtot

P0

1
k

Mtot

P0
= n

M
to
t

P0

=
n+

bn
k

Mto
t

P0

= 1 +
a1
k
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The finite n ∈ N 2nBD model
Stationary state analysis

Stability regions of the SSs in 1
k
-Mtot

P0
parametric space:

Case a1 > bn
Mtot

P0

1
k

M
t
o
t

P
0

=
1
+

a
1

k

Mtot

P0
= n

M
to
t

P0

=
n+

bn
k

Roma 11.11.2019 – p. 26/??



The n < ∞ model
Biological Intepretation: Stationary state analysis

A key quantity is

Mtot

P0

=

∑

ici
P0

+
v + w

P0

,

sum of average polymer size plus momomer-polymer ratio.

The biologically more realistic zone is Mtot

P0
< n.

Then, there is either one positive steaty state (conjecture to

be stable) or a stable boundary equilibrium with extinged

conformer species w = 0.
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Numerics
Oscillatory mechanism of two polymer model

Convergence to positive SS and evolution of the size

distribution (right images). The parameters are n = 100,

k = 1.1, a = 1.5, b = 2 and 1 + a
k
< Mtot

P0
< n+ b

k
.
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The n = ∞ model
The constant coefficient case ai = a, bi = b

A strictly positive steady state (v̄, w̄, c̄i≥1) is given by

v̄ =
a

k
P0, w̄ = γ

b

k
P0, c̄1 = (1− γ)P0, c̄i≥2 = γi−1(1− γ)P0,

where γ = 1
2

(

−a
b
+ kMtot

bP0
+ 1−

√

(

a
b
− kMtot

bP0
+ 1

)2

+ 4k
b

)

.

Obtain perturbation of predator-pray Lotka-Volterra system















dv
dt

= −kvw + bv(P0 − c1),

dw
dt

= −awP0 + kvw,

dci
dt

= Ji−1 − Ji, 1 ≤ i.
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The n = ∞ model
The linear coefficient case ai = ia, and bi+1 = ib

A strictly positive steady state (v̄, w̄, c̄i≥1) is given by

v̄ =
aP0

k(1− γ)
, w̄ =

bγP0

k(1− γ)
, c̄1 = (1−γ)P0, c̄i≥2 = γi−1(1−γ)P0,

and γ = Mtotk−P0(a+k)
Mtotk+P0b

∈ (0, 1). Introducing M1 = Mtot − v − w

yields for P0 ≪ M1 a perturbation of the Ivanova system a















dv
dt

= −kvw + vb(M1 − P0),

dw
dt

= −waM1 + kvw,

dM1

dt
= waM1 − vb(M1 − P0).

aV +W
k
−→ 2W , W +M

a
−→ 2M, M+ V

b
−→ 2V ,
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A hybrid bi-monomeric, Becker-Döring Model
Only small fraction of nonlinear depolymerisation



























V +W
k
−→ 2W

W + Ci
ai−→ Ci+1 1 ≤ i ≤ n

Ci + V
bi−→ Ci−1 + 2V 2 ≤ i ≤ n

Ci+1
βi
−→ Ci +W 1 ≤ i ≤ n

Simulation: k = 0.3, ai = 2, bi = 0.1, βi = 1.9, n = 50.
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A bi-monomeric, nonlinear BD model
Conclusions

Biologist like the suggested mechanism

→ Experiments are needed to test/improve the model.

Observed oscillatory behaviour should serves as hint

towards unraveling the biological machinery.

Two-polymer model can be solved completely and

examplfies an oscillatory mechanism for large k.

The models with n ≥ 3 feature related oscillations as

interaction of momomer species to polymer hierarachy.

Our model will needs extensions to explain

non-oscillatory behaviour of experiments.
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A bi-monomeric, nonlinear BD model

THANK YOU VERY MUCH!
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