H-theorem for some extensions of the Boltzmann operator

Laurent Desvillettes, Univ. Paris Diderot, IMJ-PRG,

in collaboration with

Maxime Breden, Ecole Polytechnique,

November 13, 2019

直 ト イヨ ト イヨト

3

Laurent Desvillettes, Univ. Paris Diderot, IMJ-PRG, in collaboration with

Boltzmann operator for the four waves equation of weak turbulence theory (Zakharov)

$$\begin{aligned} Q_W(f)(v) &= \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} W(v, v_*, v', v_*') \left[f(v') f(v_*') (f(v) + f(v_*)) \right] \\ &- f(v) f(v_*) (f(v') + f(v_*')) \right] \\ &\times \delta_{\{v+v_*=v'+v_*'\}} \, \delta_{\{\omega(v)+\omega(v_*)=\omega(v')+\omega(v_*')\}} \, dv_* dv_*' dv'. \end{aligned}$$

Typical ω :

$$\omega(\mathbf{v}) = C |\mathbf{v}|^{\alpha},$$

< ロ > < 同 > < 回 > < 回 > .

for $0 < \alpha < 1$ and C > 0.

In particular, in the two-dimensional case, $\omega(v) = C\sqrt{|v|}$ is used to describe gravitational waves on a fluid surface

First part of the H-theorem for the 4-waves operator

Entropy:

$$H(f):=(-)\int_{\mathbb{R}^d}\ln f(v)\,dv;$$

Entropy production:

$$\begin{split} &\int_{\mathbb{R}^d} Q_W(f)(v) \, f^{-1}(v) \, dv = \frac{1}{4} \int W(v, v_*, v', v_*') \\ & \times \left[f^{-1}(v) + f^{-1}(v_*) - f^{-1}(v') - f^{-1}(v_*') \right]^2 \end{split}$$

 $\times f(v)f(v_*)f(v')f(v'_*)\delta_{\{v+v_*=v'+v'_*\}}\delta_{\{\omega(v)+\omega(v_*)=\omega(v')+\omega(v'_*)\}} dv dv_* dv'_* dv'.$

イロト 不得 トイヨト イヨト

3

Definition of equilibria

Definition: the equilibria of the 4-waves equation are the functions f > 0 such that when

$$v + v_* = v' + v'_*$$

and

$$\omega(\mathbf{v}) + \omega(\mathbf{v}_*) = \omega(\mathbf{v}') + \omega(\mathbf{v}'_*),$$

one has

$$f^{-1}(v') + f^{-1}(v'_*) = f^{-1}(v) + f^{-1}(v_*),$$

or equivalently, for $g = f^{-1}$,

$$g(v') + g(v'_*) = g(v) + g(v_*).$$

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

It is clear that for all $a, c \in \mathbb{R}$, $b \in \mathbb{R}^d$, the function

 $g(v) := a + b \cdot v + c\omega(v)$

is an equilibrium.

Expected result (Second part of H-theorem): All equilibria (in a suitable functional space) have this form [except maybe for a small class of functions ω].

イロン イロン イヨン イロン

3

Natural functional space for g: weighted L^2 .

Case $\omega(\mathbf{v}) = |\mathbf{v}|^2$ (Boltzmann equation for monoatomic gases) :

- Proof when g is C^2 (Boltzmann);
- Proof when g is measurable, or a distribution (Truesdell-Muncaster; Wennberg)

Case $\omega(\mathbf{v}) = \sqrt{1 + |\mathbf{v}|^2}$ (Boltzmann equation for relativistic monoatomic gases) :

- Proof when g is C^2 (Cercignani, Kremer);
- Proof when g is a distribution (suggested in Cercignani, Kremer)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

Theorem (Breden, LD): Let $d \in \{2,3\}$ and $\omega \in C^2(\mathbb{R}^d - \{0\})$. Assume that there exist $i, j \in \{1, ..., d\}$, $i \neq j$, such that

 $\{1, \partial_i \omega, \partial_j \omega\}$ are linearly independant in $C^1(\mathbb{R}^d - \{0\})$.

Assume also that the boundary ∂A of

$${\mathcal A}:=\left\{\left({\mathbf v},{\mathbf v}_*
ight)\in \left({\mathbb R}^d
ight)^2, \,\,
abla\omega({\mathbf v})
eq
abla\omega({\mathbf v}_*)
ight\}.$$

is of measure 0 in $(\mathbb{R}^d)^2$.

Let $g \in L^1_{loc}(\mathbb{R}^d)$ be an equilibrium.

Then, there exist $a, c \in \mathbb{R}$ and $b \in \mathbb{R}^d$ such that, for a.e. v in \mathbb{R}^d ,

$$g(v) = a + b \cdot v + c \,\omega(v).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

We consider only grazing collisions, that is, collisions for which

 $v' \sim v, \qquad v'_* \sim v_*.$

Then, the equilibria satisfy the following property (for a.e. $v, v_* \in \mathbb{R}^d$):

 $(\nabla g(\mathbf{v}) - \nabla g(\mathbf{v}_*)) \times (\nabla \omega(\mathbf{v}) - \nabla \omega(\mathbf{v}_*)) = 0.$

This amounts to say that the entropy dissipation of the grazing collision approximation (Landau-type operator) of Q_W is zero.

The method of proof is then based on ideas taken from the study of Cercignani's conjecture for Landau's equation with Coulomb potential, cf. LD 2015; LD; Carrapatoso, LD, He 2017, using multipliers in the v_* variable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

The assumption: There exist $i, j \in \{1, ..., d\}$, $i \neq j$, such that

 $\{1, \partial_i \omega, \partial_j \omega\}$ are linearly independant in $C^1(\mathbb{R}^d - \{0\})$

is close to optimal: when it is not satified for d = 2, counter-examples exist.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

The other assumption is probably technical.

Boltzmann operator for the three waves equation of weak turbulence theory (Zakharov)

$$Q_{W}(f)(v) = \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \left[R(v, v', v'') - R(v', v, v'') - R(v'', v, v') \right] dv' dv''$$

with

 $R(v, v', v'') = W(v, v', v'') f(v) f(v') f(v'') [f^{-1}(v) - f^{-1}(v') - f^{-1}(v'')]$ $\times \delta_{\{v=v'+v''\}} \delta_{\{\omega(v)=\omega(v')+\omega(v'')\}}$

and W satisfying some symmetry assumptions.

First part of the H-theorem for the 3-waves operator

Entropy:

$$H(f):=(-)\int_{\mathbb{R}^d}\ln f(v)\,dv;$$

Entropy production:

$$\int_{\mathbb{R}^d} Q_W(f)(v) f^{-1}(v) dv = \int W(v, v', v'')$$

× $f(v)f(v')f(v'') \left[f^{-1}(v) - f^{-1}(v') - f^{-1}(v'') \right]^2$
× $\delta_{\{v=v'+v''\}} \delta_{\{\omega(v)=\omega(v')+\omega(v'')\}} dv dv' dv''.$

- 4 同 6 4 日 6 4 日 6

э

Definition of equilibria

Definition: the equilibria of the 3-waves equation are the functions f > 0 such that when

$$v = v' + v''$$

and

$$\omega(\mathbf{v}) = \omega(\mathbf{v}') + \omega(\mathbf{v}''),$$

one has

$$f^{-1}(v) = f^{-1}(v') + f^{-1}(v''),$$

or equivalently, for $g = f^{-1}$,

$$g(v) = g(v') + g(v'').$$

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

It is clear that for all $c \in \mathbb{R}$, $b \in \mathbb{R}^d$, the function

$$g(v) := b \cdot v + c \,\omega(v)$$

is an equilibrium.

Expected result (Second part of H-theorem): For suitable functions ω , all equilibria (in a suitable functional space) have this form.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Natural functional space for g: weighted L^2 .

Theorem (Breden, LD): Let $d \ge 2$ and $\omega \in C^1(\mathbb{R}^d)$ such that

 $\omega(0)=0, \qquad \nabla \omega(0)=0,$

 $\forall v \neq 0, \qquad \omega(v) > 0, \qquad \nabla \omega(v) \neq 0.$ Assume also that $\omega^{-1}(\{a\})$ is connected for all $a \in \mathbb{R}$. Let $g \in C^1(\mathbb{R}^d)$ be an equilibrium.

Then, there exist $c \in \mathbb{R}$ and $b \in \mathbb{R}^d$ such that, for all v in \mathbb{R}^d ,

$$g(v) = b \cdot v + c \,\omega(v).$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Method of proof

First step: One first assumes that $\nabla g(0) = 0$. Then

 $\nabla g(\mathbf{v}) / / \nabla \omega(\mathbf{v}),$

so that

 $g(\mathbf{v}) = \mu(\omega(\mathbf{v}))$

for some μ which is C^1 on $\omega(\mathbb{R}) - \{0\}$ and continuous at point 0.

Second step The function μ is additive on its range:

 $\mu(a+b)=\mu(a)+\mu(b),$

so that it is in fact linear, and

 $g(v)=c\,\omega(v).$

Third step Finally, one considers $v \mapsto g(v) - \nabla g(0) v$ in order to conclude.

Empty assumptions: For $\omega(v) = |v|^{\alpha}$ with $\alpha \in]0, 1[$, it is not possible to find (nontrivial) v = v' + v'' such that $\omega(v) = \omega(v') + \omega(v'')$.

Borderline case: For $\omega(v) = |v|$ in dimension 2, all $g(r, \theta) = r h(\theta)$ are equilibria.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

One strange case: For $\omega(v) = \frac{v_1}{1+|v|^2}$ in dimension 2, the function $g(v) = \arctan\left(\frac{v_1\sqrt{3}+v_2}{|v|^2}\right) - \arctan\left(\frac{-v_1\sqrt{3}+v_2}{|v|^2}\right)$ is an equilibrium.

- Better result for the 3-waves equation (current result far from optimal!)
- Spectral gaps for the 3-waves and 4-waves linearized equations

イロト イポト イヨト イヨト

э.