H-theorem for some extensions of the Boltzmann operator

Laurent Desvillettes, Univ. Paris Diderot, IMJ-PRG, in collaboration with Maxime Breden, Ecole Polytechnique,

November 13, 2019

Boltzmann operator for the four waves equation of weak turbulence theory (Zakharov)

$$
\begin{gathered}
Q_{W}(f)(v)=\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} W\left(v, v_{*}, v^{\prime}, v_{*}^{\prime}\right)\left[f\left(v^{\prime}\right) f\left(v_{*}^{\prime}\right)\left(f(v)+f\left(v_{*}\right)\right)\right. \\
\left.-f(v) f\left(v_{*}\right)\left(f\left(v^{\prime}\right)+f\left(v_{*}^{\prime}\right)\right)\right] \\
\times \delta_{\left\{v+v_{*}=v^{\prime}+v_{*}^{\prime}\right\}} \delta_{\left\{\omega(v)+\omega\left(v_{*}\right)=\omega\left(v^{\prime}\right)+\omega\left(v_{*}^{\prime}\right)\right\}} d v_{*} d v_{*}^{\prime} d v^{\prime} .
\end{gathered}
$$

Typical ω :

$$
\omega(v)=C|v|^{\alpha}
$$

for $0<\alpha<1$ and $C>0$.
In particular, in the two-dimensional case, $\omega(v)=C \sqrt{|v|}$ is used to describe gravitational waves on a fluid surface

Entropy:

$$
H(f):=(-) \int_{\mathbb{R}^{d}} \ln f(v) d v ;
$$

Entropy production:

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}} Q_{W}(f)(v) f^{-1}(v) d v=\frac{1}{4} \int W\left(v, v_{*}, v^{\prime}, v_{*}^{\prime}\right) \\
& \quad \times\left[f^{-1}(v)+f^{-1}\left(v_{*}\right)-f^{-1}\left(v^{\prime}\right)-f^{-1}\left(v_{*}^{\prime}\right)\right]^{2}
\end{aligned}
$$

$\times f(v) f\left(v_{*}\right) f\left(v^{\prime}\right) f\left(v_{*}^{\prime}\right) \delta_{\left\{v+v_{*}=v^{\prime}+v_{*}^{\prime}\right\}} \delta_{\left\{\omega(v)+\omega\left(v_{*}\right)=\omega\left(v^{\prime}\right)+\omega\left(v_{*}^{\prime}\right)\right\}} d v d v_{*} d v_{*}^{\prime} d v^{\prime}$.

Definition of equilibria

Definition: the equilibria of the 4 -waves equation are the functions $f>0$ such that when

$$
v+v_{*}=v^{\prime}+v_{*}^{\prime}
$$

and

$$
\omega(v)+\omega\left(v_{*}\right)=\omega\left(v^{\prime}\right)+\omega\left(v_{*}^{\prime}\right),
$$

one has

$$
f^{-1}\left(v^{\prime}\right)+f^{-1}\left(v_{*}^{\prime}\right)=f^{-1}(v)+f^{-1}\left(v_{*}\right),
$$

or equivalently, for $g=f^{-1}$,

$$
g\left(v^{\prime}\right)+g\left(v_{*}^{\prime}\right)=g(v)+g\left(v_{*}\right) .
$$

Second part of H-theorem: explicit form of equilibria

It is clear that for all $a, c \in \mathbb{R}, b \in \mathbb{R}^{d}$, the function

$$
g(v):=a+b \cdot v+c \omega(v)
$$

is an equilibrium.
Expected result (Second part of H-theorem): All equilibria (in a suitable functional space) have this form [except maybe for a small class of functions ω].

Natural functional space for g : weighted L^{2}.

Existing results

Case $\omega(v)=|v|^{2}$ (Boltzmann equation for monoatomic gases) :

- Proof when g is C^{2} (Boltzmann);
- Proof when g is measurable, or a distribution (Truesdell-Muncaster; Wennberg)

Case $\omega(v)=\sqrt{1+|v|^{2}}$ (Boltzmann equation for relativistic monoatomic gases) :

- Proof when g is C^{2} (Cercignani, Kremer);
- Proof when g is a distribution (suggested in Cercignani, Kremer)

Result in the general case

Theorem (Breden, LD): Let $d \in\{2,3\}$ and $\omega \in C^{2}\left(\mathbb{R}^{d}-\{0\}\right)$. Assume that there exist $i, j \in\{1, \ldots, d\}, i \neq j$, such that
$\left\{1, \partial_{i} \omega, \partial_{j} \omega\right\}$ are linearly independant in $C^{1}\left(\mathbb{R}^{d}-\{0\}\right)$.

Assume also that the boundary ∂A of

$$
A:=\left\{\left(v, v_{*}\right) \in\left(\mathbb{R}^{d}\right)^{2}, \nabla \omega(v) \neq \nabla \omega\left(v_{*}\right)\right\} .
$$

is of measure 0 in $\left(\mathbb{R}^{d}\right)^{2}$.
Let $g \in L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$ be an equilibrium.
Then, there exist $a, c \in \mathbb{R}$ and $b \in \mathbb{R}^{d}$ such that, for a.e. v in \mathbb{R}^{d},

$$
g(v)=a+b \cdot v+c \omega(v) .
$$

Method of proof

We consider only grazing collisions, that is, collisions for which

$$
v^{\prime} \sim v, \quad v_{*}^{\prime} \sim v_{*}
$$

Then, the equilibria satisfy the following property (for a.e. $v, v_{*} \in \mathbb{R}^{d}$):

$$
\left(\nabla g(v)-\nabla g\left(v_{*}\right)\right) \times\left(\nabla \omega(v)-\nabla \omega\left(v_{*}\right)\right)=0 .
$$

This amounts to say that the entropy dissipation of the grazing collision approximation (Landau-type operator) of Q_{W} is zero.

The method of proof is then based on ideas taken from the study of Cercignani's conjecture for Landau's equation with Coulomb potential, cf. LD 2015; LD; Carrapatoso, LD, He 2017, using multipliers in the v_{*} variable.

Remark

The assumption: There exist $i, j \in\{1, \ldots, d\}, i \neq j$, such that

$$
\left\{1, \partial_{i} \omega, \partial_{j} \omega\right\} \text { are linearly independant in } C^{1}\left(\mathbb{R}^{d}-\{0\}\right)
$$

is close to optimal: when it is not satified for $d=2$, counter-examples exist.

The other assumption is probably technical.

Boltzmann operator for the three waves equation of weak

 turbulence theory (Zakharov)$$
Q_{W}(f)(v)=\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}}\left[R\left(v, v^{\prime}, v^{\prime \prime}\right)-R\left(v^{\prime}, v, v^{\prime \prime}\right)-R\left(v^{\prime \prime}, v, v^{\prime}\right)\right] d v^{\prime} d v^{\prime \prime}
$$

with

$$
\begin{gathered}
R\left(v, v^{\prime}, v^{\prime \prime}\right)=W\left(v, v^{\prime}, v^{\prime \prime}\right) f(v) f\left(v^{\prime}\right) f\left(v^{\prime \prime}\right)\left[f^{-1}(v)-f^{-1}\left(v^{\prime}\right)-f^{-1}\left(v^{\prime \prime}\right)\right] \\
\times \delta_{\left\{v=v^{\prime}+v^{\prime \prime}\right\}} \delta_{\left\{\omega(v)=\omega\left(v^{\prime}\right)+\omega\left(v^{\prime \prime}\right)\right\}}
\end{gathered}
$$

and W satisfying some symmetry assumptions.

Entropy:

$$
H(f):=(-) \int_{\mathbb{R}^{d}} \ln f(v) d v ;
$$

Entropy production:

$$
\begin{gathered}
\int_{\mathbb{R}^{d}} Q_{W}(f)(v) f^{-1}(v) d v=\int W\left(v, v^{\prime}, v^{\prime \prime}\right) \\
\times f(v) f\left(v^{\prime}\right) f\left(v^{\prime \prime}\right)\left[f^{-1}(v)-f^{-1}\left(v^{\prime}\right)-f^{-1}\left(v^{\prime \prime}\right)\right]^{2} \\
\times \delta_{\left\{v=v^{\prime}+v^{\prime \prime}\right\}} \delta_{\left\{\omega(v)=\omega\left(v^{\prime}\right)+\omega\left(v^{\prime \prime}\right)\right\}} d v d v^{\prime} d v^{\prime \prime} .
\end{gathered}
$$

Definition of equilibria

Definition: the equilibria of the 3 -waves equation are the functions $f>0$ such that when

$$
v=v^{\prime}+v^{\prime \prime}
$$

and

$$
\omega(v)=\omega\left(v^{\prime}\right)+\omega\left(v^{\prime \prime}\right)
$$

one has

$$
f^{-1}(v)=f^{-1}\left(v^{\prime}\right)+f^{-1}\left(v^{\prime \prime}\right)
$$

or equivalently, for $g=f^{-1}$,

$$
g(v)=g\left(v^{\prime}\right)+g\left(v^{\prime \prime}\right)
$$

Second part of H-theorem: explicit form of equilibria

It is clear that for all $c \in \mathbb{R}, b \in \mathbb{R}^{d}$, the function

$$
g(v):=b \cdot v+c \omega(v)
$$

is an equilibrium.
Expected result (Second part of H -theorem): For suitable functions ω, all equilibria (in a suitable functional space) have this form.

Natural functional space for g : weighted L^{2}.

Rigorous result

Theorem (Breden, LD): Let $d \geq 2$ and $\omega \in C^{1}\left(\mathbb{R}^{d}\right)$ such that

$$
\omega(0)=0, \quad \nabla \omega(0)=0
$$

$$
\forall v \neq 0, \quad \omega(v)>0, \quad \nabla \omega(v) \neq 0
$$

Assume also that $\omega^{-1}(\{a\})$ is connected for all $a \in \mathbb{R}$.
Let $g \in C^{1}\left(\mathbb{R}^{d}\right)$ be an equilibrium.
Then, there exist $c \in \mathbb{R}$ and $b \in \mathbb{R}^{d}$ such that, for all v in \mathbb{R}^{d},

$$
g(v)=b \cdot v+c \omega(v) .
$$

Method of proof

First step: One first assumes that $\nabla g(0)=0$. Then

$$
\nabla g(v) / / \nabla \omega(v)
$$

so that

$$
g(v)=\mu(\omega(v))
$$

for some μ which is C^{1} on $\omega(\mathbb{R})-\{0\}$ and continuous at point 0 .
Second step The function μ is additive on its range:

$$
\mu(a+b)=\mu(a)+\mu(b),
$$

so that it is in fact linear, and

$$
g(v)=c \omega(v) .
$$

Third step Finally, one considers $v \mapsto g(v)-\nabla g(0) v$ in order to conclude.

Counterexamples

Empty assumptions: For $\omega(v)=|v|^{\alpha}$ with $\left.\alpha \in\right] 0,1[$, it is not possible to find (nontrivial) $v=v^{\prime}+v^{\prime \prime}$ such that $\omega(v)=\omega\left(v^{\prime}\right)+\omega\left(v^{\prime \prime}\right)$.

Borderline case: For $\omega(v)=|v|$ in dimension 2, all $g(r, \theta)=r h(\theta)$ are equilibria.

One strange case: For $\omega(v)=\frac{v_{1}}{1+|v|^{2}}$ in dimension 2, the function $g(v)=\arctan \left(\frac{v_{1} \sqrt{3}+v_{2}}{|v|^{2}}\right)-\arctan \left(\frac{-v_{1} \sqrt{3}+v_{2}}{|v|^{2}}\right)$ is an equilibrium.

Perspectives

- Better result for the 3 -waves equation (current result far from optimal!)
- Spectral gaps for the 3-waves and 4-waves linearized equations

