Mathematical and Numerical Study of a Dusty Knudsen Gas Mixture

Frédérique Charles ${ }^{(1)}$, Francesco Salvarani ${ }^{(2,3)}$
(1) LJLL, Sorbonne Université, (2) Ceremade, Université Paris-Dauphine
(3) Dipartimento di Matematica, Universitá degli Studi di Pavia

INDAM Workshop, Rome, November 15th 2019

Description of the problem

Context

Moving dust particles in a rarefied gas inside a Vessel such as in MEMs

- $\lambda_{\text {mol }} \sim 1-100 \mathrm{~mm} \gg L \sim 100 \mu m \Rightarrow$ kinetic approach
- A possibility : consider a gas-particle mixture with adapted collisional operators
- Here, we suppose that the number of dust is small and we follow them individually

Modelling

Motion of particles

- The behavior of the N_{d} particles is described by means of the Newton laws of classical mechanics : translation + rotation.
- No influence of the gas on dust particles.
- We denote

$$
\xi_{i}(t)
$$

$$
B_{r}\left(\xi_{i}(t)\right)=\left\{x \in \mathbb{R}^{\ell}:\left\|x-\xi_{i}(t)\right\|<r\right\} . \quad \text { Particles }
$$

$$
\Gamma^{t}=\cup_{i=1}^{N_{d}} \partial B_{r}\left(\xi_{i}(t)\right)
$$

$$
T_{1}=\sup \{t \geq 0: \forall s \in[0, t[
$$

$$
B_{r}\left(\xi_{j}(s)\right) \cap B_{r}\left(\xi_{i}(s)\right)=\emptyset
$$

$$
\left.\forall j, \quad i=1, \ldots, N_{d}, j \neq i\right\}
$$

$$
c(t, x)
$$

Centers of particles

Boundary of particles

Maximal time of nonoverlapping of particles

Velocity at $x \in \Gamma^{t}$

Modelling

Description of the gas and boundaries

- Knudsen gas : no collisions between gas molecules
- Container $D \in \mathbb{R}^{l}, l=2,3$.
- Time T_{2} which guarantee the non-exit of dust particles out of the domain

$$
T_{2}=\sup \left\{t \geq 0: \forall s \in\left[0, t\left[, \inf _{x \in \partial D}\left\|x-\xi_{i}(s)\right\| \geq r \quad \text { for all } i=1, \ldots, N_{d}\right\} .\right.\right.
$$

$$
\begin{gathered}
\Omega^{t}=D \backslash \cup_{i=1}^{N_{d}} B_{r}\left(\xi_{i}(t)\right) \\
\partial \Omega^{t}=\Gamma^{t} \cup \partial D
\end{gathered}
$$

Modelling

Boundary conditions

We suppose

- perfectly specular reflexion for the particles hitting ∂D
- diffuse reflexion conditions for the interaction between gaseous particles and dust, that is on Γ^{t}.
- We assume that all particles have the same temperature of surface T_{p}, independant of the time.

Modelling

$f(t, x, v)$: density function in gas molecules

Boundary conditions

For $x \in \partial \Omega^{t}$

$$
f(t, x, v)=\int_{\left\{(w-c(t, x)) \cdot n_{x} \geq 0\right\}} k(t, x, v, w) f(t, x, w) d w 1_{\left\{(v-c(t, x)) \cdot n_{x}<0\right\}},
$$

- Specular reflexion and $c(t, x)=0$ on ∂D :

$$
k(t, x, v, w)=\delta\left(w-v+2\left(v \cdot n_{x}\right) n_{x}\right), \quad x \in \partial D,
$$

that is

$$
f(t, x, v)=f\left(t, x, v-2\left(v \cdot n_{x}\right) n_{x}\right) \quad \text { for } x \in \partial D, \quad v \cdot n_{x}<0 .
$$

Modelling

Boundary conditions

$$
f(t, x, v)=\int_{\left\{(w-c(t, x)) \cdot n_{x} \geq 0\right\}} k(t, x, v, w) f(t, x, w) d w 1_{\left\{(v-c(t, x)) \cdot n_{x}<0\right\}},
$$

- Diffuse reflexion on Γ^{t} :

$$
k(t, x, v, w)=\sqrt{\frac{2 \pi}{T_{p}}} M_{T_{p}}(v-c(t, x))(w-c(t, x)), \quad x \in \Gamma^{t}
$$

with

$$
M_{T_{p}}(s)=\frac{1}{\left(2 \pi T_{p}\right)^{\ell / 2}} e^{-\frac{|s|^{2}}{2 T_{p}}}, \quad T_{p}>0
$$

Modelling

Boundary conditions

$$
f(t, x, v)=\int_{\left\{(w-c(t, x)) \cdot n_{x} \geq 0\right\}} k(t, x, v, w) f(t, x, w) d w 1_{\left\{(v-c(t, x)) \cdot n_{x}<0\right\}}
$$

- Flux normalization properties : $\forall x \in \partial \Omega^{t}$,

$$
\int_{\left\{(v-c(t, x)) \cdot n_{x}<0\right\}} k(t, x, v, w) \frac{\left|(v-c(t, x)) \cdot n_{x}\right|}{(w-c(t, x)) \cdot n_{x}} d v=1
$$

and

$$
\int_{\left\{(w-c(t, x)) \cdot n_{x} \geq 0\right\}} k(t, x, v, w) M_{T_{p}}(w-c(t, x)) d w=M_{T_{p}}(v-c(t, x))
$$

The model

The time evolution of f is hence governed by the following PDE :

$$
\frac{\partial f}{\partial t}+v \cdot \nabla_{x} f=0 \quad(t, x, v) \in(0, T) \times \Omega^{t} \times \mathbb{R}^{\ell}
$$

with $T=\min \left(T_{1}, T_{2}\right)$,

- with normalized non-negative initial data

$$
f(0, x, v)= \begin{cases}f^{\text {in }}(x, v) & \text { if }(x, v) \in \Omega^{0} \times \mathbb{R}^{\ell} \\ 0 & \text { otherwise }\end{cases}
$$

where $f^{\text {in }} \in L^{\infty}\left(\Omega^{0} \times \mathbb{R}^{\ell}\right),\left\|f^{\text {in }}\right\|_{L^{1}\left(\Omega^{0} \times \mathbb{R}^{\ell}\right)}=1$

- and boundary conditions :

$$
f(t, x, v)=\int_{\left\{(w-c(t, x)) \cdot n_{x} \geq 0\right\}} k(t, x, v, w) f(t, x, w) d w 1_{\left\{(v-c(t, x)) \cdot n_{x}<0\right\}}
$$

Extension of Darrozes-Guiraud's Lemma

Lemma (Sonne)

For F stricly convex, f a solution of the previous system

$$
-\int_{\mathbb{R}^{l}}[v-c(t, x)] \cdot n_{x} M_{T_{p}}(v-c(t, x)) F\left(\frac{f}{M_{T_{p}}(\cdot-c(t, x))}\right)(v) d v \leq 0
$$

In particular for $F(s)=s^{2}$ we get

$$
-\int_{\mathbb{R}^{l}}[v-c(t, x)] \cdot n_{x} e^{\frac{|v-c(t, x)|^{2}}{2 T_{p}}} f^{2}(v) d v \leq 0
$$

Proof

Jensen inequality and properties of the kernel k

Existence result

Theorem

Let $c \in L^{\infty}((0, T) \times \Omega)$ and let $f^{\text {in }} \geq 0$ for a.e. $(x, v) \in \Omega^{0} \times \mathbb{R}^{\ell}$, such that $e^{\frac{|v|^{2}}{T_{p}}} f^{\text {in }} \in L^{\infty}\left(\Omega^{0} \times \mathbb{R}^{\ell}\right)$. Then there exists one non-negative weak solution $f \in L^{\infty}\left((0, T) \times \Omega^{t} \times \mathbb{R}^{\ell}\right)$ of the initial-boundary value problem.

Backward interaction time

The backward interaction time $\tau_{\Omega^{t}}(x, v)$ for a particle starting from $x \in \Omega^{t}$ in the direction $v \in \mathbb{R}^{l}$, is defined as

$$
\tau_{\Omega^{t}}(x, v)=\inf \left\{\theta>0: x-\theta v \in \Gamma^{t-\theta} \cup \partial D\right\} .
$$

If the set $\Theta:=\left\{\theta>0: x-\theta v \in \Gamma^{t-\theta} \cup \partial D\right\}$ is empty, then $\tau_{\Omega^{t}}(x, v)=+\infty$.

Existence result

Strategy of the proof

- Consider the auxiliary problem for the function $g: \mathbb{R}^{+} \times \Omega^{t} \times \mathbb{R}^{\ell} \rightarrow \mathbb{R}$

$$
\left\{\begin{array}{l}
\frac{\partial g}{\partial t}+v \cdot \nabla_{x} g=0, \quad(t, x, v) \in \mathbb{R}^{+} \times \Omega^{t} \times \mathbb{R}^{\ell}, \\
g(0, x, v)=f^{\text {in }}(x, v) 1_{\left\{\Omega^{0} \times \mathbb{R}^{\ell}\right\}}(x, v) \\
g(t, x, v)=\Phi(t, x, v) \quad \text { for a.e. } x \in \partial \Omega^{t},(v-c(t, x)) \cdot n_{x}<0
\end{array}\right.
$$

where $\Phi \in L^{\infty}\left((0, T) \times\left(\partial \Omega^{t} \times \mathbb{R}^{l}\right)\right)$. The problem has a unique weak solution, given by

$$
g(t, x, v)=f^{\text {in }}(x-v t, v) 1_{\left\{\tau_{\Omega^{t}}(x, v)>t\right\}}+\Phi\left(t, x^{*}, v\right) 1_{\left\{\tau_{\Omega^{t}}(x, v)<t\right\}}
$$

where $x^{*}=x-\tau_{\Omega^{t}}(x, v) v$, and

$$
\|g\|_{L^{\infty}\left((0, T) \times \Omega^{t} \times \mathbb{R}^{\ell}\right)} \leq \max \left\{\left\|f^{\text {in }}\right\|_{L^{\infty}\left(\Omega^{0} \times \mathbb{R}^{\ell}\right)},\|\Phi\|_{L^{\infty}\left((0, T) \times\left(\partial \Omega^{t} \times \mathbb{R}^{l}\right)\right)}\right\}
$$

Existence result

Strategy of the proof

- We now construct a sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}}$, such that

$$
f_{1}(t, x, v)=0 \text { for a.e. }(t, x, v) \in[0, T) \times \bar{\Omega}^{t} \times \mathbb{R}^{\ell}
$$

and, for all $n \in \mathbb{N}, n \geq 2, f_{n}$ is the solution of the previous problem with the boundary condition : for $x \in \partial \Omega^{t}$:

$$
f_{n}(t, x, v)=\int_{\left\{(w-c(t, x)) \cdot n_{x} \geq 0\right\}} k(t, x, v, w) f_{n-1}(t, x, w) d w 1_{\left\{(v-c(t, x)) \cdot n_{x}<0\right\}},
$$

- Then we can proove that for a.e. $(t, x, v) \in(0, T) \times \Omega^{t} \times \mathbb{R}^{l}$,

$$
\begin{gathered}
0 \leq f_{n} \leq C\left\|f^{\text {in }} e^{\frac{|v|^{2}}{T_{p}}}\right\|_{L^{\infty}\left(\Omega^{0} \times \mathbb{R}^{l}\right)} \\
h_{n}:=f_{n+1}-f_{n} \geq 0 \quad \text { for a.e. }(t, x, v) \in(0, T) \times \Omega^{t} \times \mathbb{R}^{\ell} .
\end{gathered}
$$

Numerical strategy

Particle method

$f\left(t^{n}, \cdot, \cdot\right)$ is approached by

$$
\begin{equation*}
f_{\varepsilon, N_{m}}^{n}(x, v)=\sum_{k=1}^{N_{m}} \omega_{k} \varphi_{\varepsilon}\left(x-X_{k}^{n}\right) \varphi_{\varepsilon}\left(v-V_{k}^{n}\right) \tag{1}
\end{equation*}
$$

- $\left(X_{k}^{n}\right)_{1 \leq k \leq N_{m}}$ and are the positions of the "numerical molecules" at time t^{n},
- $\left(V_{k}^{n}\right)_{1 \leq k \leq N_{m}}$ are their velocities
- ω_{k} their weight,
- φ_{ε} a smooth shape function.
- Initially $\left(X_{k}^{0}\right)_{1 \leq k \leq N_{m}}$ and $\left(V_{k}^{0}\right)_{1 \leq k \leq N_{m}}$ are sampled according to the initial density $f^{i n i}(x, v)$.

Numerical strategy

At each time step

We compute

- the free flow of the particles in the absence of any interaction, mathematically represented by the transport operator $v \cdot \nabla$;
- the time evolution of the set of dust particles.
- the boundary conditions
- the specular reflexion of the gas particles at the boundary ∂D;
- the diffuse reflexion between gas particles and spherical dust particles by computing the intersection of the trajectories of molecules and dust particles.
- Iteration in the time $\left[t^{n}, t^{n}+\Delta t\right]$ to obtain positions and velocities of molecules at time t^{n+1}.

Numerical results

Physical quantities

$$
f^{\mathrm{in}}(x, v)=\frac{n_{0} m}{2 \pi k_{B} T^{\mathrm{in}}} e^{-\frac{m \mid v-\mathbf{u g}^{2}}{2}} 2 k_{B} T^{\mathrm{Tn}},
$$

with $\mathbf{u}_{\mathbf{g}}=\left(-2 u_{d}, 0\right)$ or $\mathbf{u}_{\mathbf{g}}=(0,0)$.

$$
\begin{array}{ccccc}
\lambda & K_{n} & T^{\mathrm{in}} & M_{a} & u_{d}=a M_{a} \\
2 \cdot 10^{-3} \mathrm{~m} & 10 & 293 \mathrm{~K} & 0.1 & 34.41 \mathrm{~m} / \mathrm{s}
\end{array}
$$

Particles:

- radius $r=10^{-5} m$
- $T_{p}=500 \mathrm{~K}$.

Numerical results

Scenario 1

Evolution of a system of two particles with translational velocities $u_{1}=\left(0, u_{d}\right)$ and $u_{2}=\left(0,-1.5 u_{d}\right)$, with $u_{d}=2 u^{\text {in }}$, and no rotational velocities.

Density at time $t=5 \cdot 10^{-7}$ (here with periodic BC)

Numerical results

Scenario 2

Time evolution of the mean temperature of the gas with a motionless particle

$$
\langle T(t)\rangle=\int_{\Omega^{t}} T(t, x) d x
$$

Numerical results

Scenario 3

Time evolution of the mean temperature of the gas with a motionless particle at temperature $T_{p}=100 \mathrm{~K}$.

Numerical results

Scenario 4

Time evolution of the mean temperature of the gas with a particle at temperature $T_{p}=100 \mathrm{~K}$; the spherical dust particle has a rotational velocity equal to $2 \pi \times 10^{6} \mathrm{rad} \cdot \mathrm{s}^{-1}$.

Futur prospects

- Addition of the evolution of temperature in dust particles
- Numerical simulations with an ellipsoidal dust, with more particles...

