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Introduction

Description of the problem

Context

Moving dust particles in a rarefied
gas inside a Vessel such as in MEMs

λmol ∼ 1− 100mm� L ∼ 100µm ⇒ kinetic approach
A possibility : consider a gas-particle mixture with adapted collisional
operators
Here, we suppose that the number of dust is small and we follow them
individually
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Description of the Model

Modelling

Motion of particles
The behavior of the Nd particles is described by means of the Newton
laws of classical mechanics : translation + rotation.
No influence of the gas on dust particles.
We denote

ξi(t) Centers of particles

Br(ξi(t)) = {x ∈ R` : ‖x− ξi(t)‖ < r}. Particles

Γt = ∪Nd
i=1∂Br(ξi(t)) Boundary of particles

T1 = sup
{
t ≥ 0 : ∀s ∈ [0, t[,

Br(ξj(s)) ∩Br(ξi(s)) = ∅

∀j, i = 1, . . . , Nd, j 6= i
} Maximal time of non-

overlapping of particles

c(t, x) Velocity at x ∈ Γt
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Description of the Model

Modelling

Description of the gas and boundaries
Knudsen gas : no collisions between gas molecules
Container D ∈ Rl, l = 2, 3.
Time T2 which guarantee the non-exit of dust particles out of the domain

T2 = sup{t ≥ 0 : ∀s ∈ [0, t[, inf
x∈∂D

‖x− ξi(s)‖ ≥ r for all i = 1, . . . , Nd}.

nx ∂D

Γt

nx

ξ1(t)

ξ2(t)

Ωt = D \ ∪Nd
i=1Br(ξi(t))

∂Ωt = Γt ∪ ∂D
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Description of the Model

Modelling

Boundary conditions
We suppose

perfectly specular reflexion for the particles hitting ∂D
diffuse reflexion conditions for the interaction between gaseous particles
and dust, that is on Γt.
We assume that all particles have the same temperature of surface Tp,
independant of the time.

nx ∂D

Γt

nx

ξ1(t)

ξ2(t)
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Description of the Model

Modelling

f(t, x, v) : density function in gas molecules

Boundary conditions
For x ∈ ∂Ωt

f(t, x, v) =
∫
{(w−c(t,x))·nx≥0}

k(t, x, v, w)f(t, x, w)dw 1{(v−c(t,x))·nx<0},

Specular reflexion and c(t, x) = 0 on ∂D :

k(t, x, v, w) = δ(w − v + 2(v · nx)nx), x ∈ ∂D,

that is

f(t, x, v) = f(t, x, v − 2(v · nx)nx) for x ∈ ∂D, v · nx < 0.
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Description of the Model

Modelling

Boundary conditions

f(t, x, v) =
∫
{(w−c(t,x))·nx≥0}

k(t, x, v, w)f(t, x, w)dw 1{(v−c(t,x))·nx<0},

Diffuse reflexion on Γt :

k(t, x, v, w) =
√

2π
Tp
MTp

(v − c(t, x))(w − c(t, x)), x ∈ Γt

with
MTp

(s) = 1
(2πTp)`/2

e
− |s|

2
2Tp , Tp > 0.
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Description of the Model

Modelling

Boundary conditions

f(t, x, v) =
∫
{(w−c(t,x))·nx≥0}

k(t, x, v, w)f(t, x, w)dw 1{(v−c(t,x))·nx<0},

Flux normalization properties : ∀x ∈ ∂Ωt,∫
{(v−c(t,x))·nx<0}

k(t, x, v, w) |(v − c(t, x)) · nx|
(w − c(t, x)) · nx

dv = 1

and∫
{(w−c(t,x))·nx≥0}

k(t, x, v, w)MTp
(w − c(t, x))dw = MTp

(v − c(t, x))

Link to DG Lemma
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Description of the Model

The model

The time evolution of f is hence governed by the following PDE :

∂f

∂t
+ v · ∇xf = 0 (t, x, v) ∈ (0, T )× Ωt × R`

with T = min(T1, T2),
with normalized non-negative initial data

f(0, x, v) =
{
f in(x, v) if (x, v) ∈ Ω0 × R`
0 otherwise

where f in ∈ L∞(Ω0 × R`), ‖f in‖L1(Ω0×R`) = 1
and boundary conditions :

f(t, x, v) =
∫
{(w−c(t,x))·nx≥0}

k(t, x, v, w)f(t, x, w)dw 1{(v−c(t,x))·nx<0},

F. Charles 9 / 21



Description of the Model

Extension of Darrozes-Guiraud’s Lemma

Lemma (Sonne)
For F stricly convex, f a solution of the previous system

−
∫
Rl

[v − c(t, x)] · nxMTp
(v − c(t, x))F

(
f

MTp
(· − c(t, x))

)
(v)dv ≤ 0

In particular for F (s) = s2 we get

−
∫
Rl

[v − c(t, x)] · nxe
|v−c(t,x)|2

2Tp f2(v)dv ≤ 0

Proof
Jensen inequality and properties of the kernel k link .
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Existence result

Existence result

Theorem
Let c ∈ L∞((0, T )× Ω) and let f in ≥ 0 for a.e. (x, v) ∈ Ω0 × R`, such that

e
|v|2
Tp f in ∈ L∞(Ω0 × R`). Then there exists one non-negative weak solution

f ∈ L∞((0, T )× Ωt × R`) of the initial-boundary value problem.

Backward interaction time
The backward interaction time τΩt(x, v) for a particle starting from x ∈ Ωt in
the direction v ∈ Rl, is defined as

τΩt(x, v) = inf{θ > 0 : x− θv ∈ Γt−θ ∪ ∂D}.

If the set Θ := {θ > 0 : x− θv ∈ Γt−θ ∪ ∂D} is empty, then τΩt(x, v) = +∞.
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Existence result

Existence result

Strategy of the proof
Consider the auxiliary problem for the function g : R+ × Ωt × R` → R

∂g

∂t
+ v · ∇xg = 0, (t, x, v) ∈ R+ × Ωt × R`,

g(0, x, v) = f in(x, v)1{Ω0×R`}(x, v)
g(t, x, v) = Φ(t, x, v) for a.e. x ∈ ∂Ωt, (v − c(t, x)) · nx < 0

where Φ ∈ L∞((0, T )× (∂Ωt × Rl)). The problem has a unique weak
solution, given by

g(t, x, v) = f in(x− vt, v)1{τΩt (x,v)>t} + Φ(t, x∗, v)1{τΩt (x,v)<t},

where x∗ = x− τΩt(x, v)v, and

‖g‖L∞((0,T )×Ωt×R`) ≤ max{‖f in‖L∞(Ω0×R`) , ‖Φ‖L∞((0,T )×(∂Ωt×Rl))}.
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Existence result

Existence result

Strategy of the proof
We now construct a sequence {fn}n∈N, such that

f1(t, x, v) = 0 for a.e. (t, x, v) ∈ [0, T )× Ω̄t × R`

and, for all n ∈ N, n ≥ 2, fn is the solution of the previous problem with
the boundary condition : for x ∈ ∂Ωt :

fn(t, x, v) =
∫
{(w−c(t,x))·nx≥0}

k(t, x, v, w)fn−1(t, x, w)dw 1{(v−c(t,x))·nx<0},

Then we can proove that for a.e. (t, x, v) ∈ (0, T )× Ωt × Rl,

0 ≤ fn ≤ C‖f ine
|v|2
Tp ‖L∞(Ω0×Rl)

hn := fn+1 − fn ≥ 0 for a.e. (t, x, v) ∈ (0, T )× Ωt × R`.
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Numerical simulations

Numerical strategy

Particle method
f(tn, ·, ·) is approached by

fnε,Nm
(x, v) =

Nm∑
k=1

ωk ϕε(x−Xn
k )ϕε(v − V nk ), (1)

(Xn
k )1≤k≤Nm and are the positions of the "numerical molecules" at time

tn,
(V nk )1≤k≤Nm

are their velocities
ωk their weight,
ϕε a smooth shape function.
Initially (X0

k)1≤k≤Nm and (V 0
k )1≤k≤Nm are sampled according to the

initial density f ini(x, v).
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Numerical simulations

Numerical strategy

At each time step
We compute

the free flow of the particles in the absence of any interaction,
mathematically represented by the transport operator v · ∇ ;
the time evolution of the set of dust particles.
the boundary conditions
I the specular reflexion of the gas particles at the boundary ∂D ;
I the diffuse reflexion between gas particles and spherical dust particles by

computing the intersection of the trajectories of molecules and dust
particles.

I Iteration in the time [tn, tn + ∆t] to obtain positions and velocities of
molecules at time tn+1.
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Numerical simulations

Numerical results

Physical quantities

f in(x, v) = n0m

2πkBT in e
−m|v−ug|2

2kB T in ,

with ug = (−2ud, 0) or ug = (0, 0).

λ Kn T in Ma ud = aMa

2 · 10−3 m 10 293 K 0.1 34.41 m/s

Particles :
radius r = 10−5m

Tp = 500 K.

nx ∂D

Γt

nx

ξ1(t)

ξ2(t)
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Numerical simulations

Numerical results

Scenario 1
Evolution of a system of two particles with translational velocities u1 = (0, ud)
and u2 = (0,−1.5ud), with ud = 2uin, and no rotational velocities.

Density at time t = 5 · 10−7 (here with periodic BC)
F. Charles 17 / 21



Numerical simulations

Numerical results

Scenario 2
Time evolution of the mean temperature of the gas with a motionless particle

〈T (t)〉 =
∫

Ωt

T (t, x)dx
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Numerical simulations

Numerical results

Scenario 3
Time evolution of the mean temperature of the gas with a motionless particle
at temperature Tp = 100 K.
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Numerical simulations

Numerical results

Scenario 4
Time evolution of the mean temperature of the gas with a particle at
temperature Tp = 100 K ; the spherical dust particle has a rotational velocity
equal to 2π × 106 rad· s−1.
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Numerical simulations

Futur prospects

Addition of the evolution of temperature in dust particles
Numerical simulations with an ellipsoidal dust, with more particles...
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