

イロト イボト イヨト イヨト

Mathematical and Numerical Study of a Dusty Knudsen Gas Mixture

Frédérique Charles⁽¹⁾, Francesco Salvarani^(2,3)

LJLL, Sorbonne Université, (2) Ceremade, Université Paris-Dauphine
 (3) Dipartimento di Matematica, Universitá degli Studi di Pavia

INDAM Workshop, Rome, November 15th 2019

Description of the problem

Context

• Moving dust particles in a rarefied gas inside a Vessel such as in MEMs

- $\lambda_{\rm mol} \sim 1 100 mm \gg L \sim 100 \mu m \Rightarrow$ kinetic approach
- A possibility : consider a gas-particle mixture with adapted collisional operators
- Here, we suppose that the number of dust is small and we follow them individually

Motion of particles

- The behavior of the N_d particles is described by means of the Newton laws of classical mechanics : translation + rotation.
- No influence of the gas on dust particles.
- We denote

$$\begin{aligned} \xi_i(t) & \text{Centers of particles} \\ B_r(\xi_i(t)) &= \{x \in \mathbb{R}^\ell : \|x - \xi_i(t)\| < r\}. & \text{Particles} \\ \Gamma^t &= \cup_{i=1}^{N_d} \partial B_r(\xi_i(t)) & \text{Boundary of particles} \\ T_1 &= \sup \left\{ t \ge 0 : \forall s \in [0, t], \\ B_r(\xi_j(s)) \cap B_r(\xi_i(s)) = \emptyset & \text{Maximal time of non-overlapping of particles} \\ \forall j, \ i = 1, \dots, N_d, \ j \neq i \right\} \\ c(t, x) & \text{Velocity at } x \in \Gamma^t \end{aligned}$$

Description of the gas and boundaries

- Knudsen gas : no collisions between gas molecules
- Container $D \in \mathbb{R}^l$, l = 2, 3.
- Time T_2 which guarantee the *non-exit* of dust particles out of the domain

$$T_{2} = \sup\{t \geq 0 : \forall s \in [0, t[, \inf_{x \in \partial D} || x - \xi_{i}(s)|| \geq r \text{ for all } i = 1, \dots, N_{d}\}.$$

$$\uparrow^{n_{x}} \xrightarrow{\partial D}$$

$$\bigcap_{\xi_{1}(t)} \Gamma^{t}$$

$$\Omega^{t} = D \setminus \bigcup_{i=1}^{N_{d}} B_{r}(\xi_{i}(t))$$

$$\partial\Omega^{t} = \Gamma^{t} \cup \partial D$$

Boundary conditions

We suppose

- $\bullet\,$ perfectly specular reflexion for the particles hitting ∂D
- diffuse reflexion conditions for the interaction between gaseous particles and dust, that is on Γ^t .
- We assume that all particles have the same temperature of surface T_p , independant of the time.

 $f(t,\boldsymbol{x},\boldsymbol{v})$: density function in gas molecules

Boundary conditions

For $x \in \partial \Omega^t$

$$f(t,x,v) = \int_{\{(w-c(t,x)) \cdot n_x \ge 0\}} k(t,x,v,w) f(t,x,w) dw \, \mathbf{1}_{\{(v-c(t,x)) \cdot n_x < 0\}},$$

• Specular reflexion and c(t,x)=0 on ∂D :

$$k(t, x, v, w) = \delta(w - v + 2(v \cdot n_x)n_x), \qquad x \in \partial D,$$

that is

$$f(t, x, v) = f(t, x, v - 2(v \cdot n_x)n_x) \quad \text{for } x \in \partial D, \quad v \cdot n_x < 0.$$

2

Boundary conditions

$$f(t, x, v) = \int_{\{(w-c(t,x)) \cdot n_x \ge 0\}} k(t, x, v, w) f(t, x, w) dw \, \mathbf{1}_{\{(v-c(t,x)) \cdot n_x < 0\}} + \frac{1}{2} \int_{\{(w-c(t,x)) \cdot n_x < 0\}} k(t, x, v, w) f(t, x, w) dw \, \mathbf{1}_{\{(v-c(t,x)) \cdot n_x < 0\}} + \frac{1}{2} \int_{\{(w-c(t,x)) \cdot n_x < 0\}} k(t, x, v, w) f(t, x, w) dw \, \mathbf{1}_{\{(v-c(t,x)) \cdot n_x < 0\}} + \frac{1}{2} \int_{\{(w-c(t,x)) \cdot n_x < 0\}} k(t, x, v, w) f(t, x, w) dw \, \mathbf{1}_{\{(v-c(t,x)) \cdot n_x < 0\}} + \frac{1}{2} \int_{\{(w-c(t,x)) \cdot n_x < 0\}} k(t, x, v, w) f(t, x, w) dw \, \mathbf{1}_{\{(v-c(t,x)) \cdot n_x < 0\}} + \frac{1}{2} \int_{\{(w-c(t,x)) \cdot n_x < 0\}} k(t, x, v, w) f(t, x, w) dw \, \mathbf{1}_{\{(v-c(t,x)) \cdot n_x < 0\}} + \frac{1}{2} \int_{\{(w-c(t,x)) \cdot n_x < 0\}} k(t, x, v, w) f(t, x, w) dw \, \mathbf{1}_{\{(v-c(t,x)) \cdot n_x < 0\}} + \frac{1}{2} \int_{\{(w-c(t,x)) \cdot n_x < 0\}} k(t, x, v, w) f(t, x, w) dw \, \mathbf{1}_{\{(v-c(t,x)) \cdot n_x < 0\}} + \frac{1}{2} \int_{\{(w-c(t,x)) \cdot n_x < 0\}} k(t, x, v, w) f(t, x, w) dw \, \mathbf{1}_{\{(v-c(t,x)) \cdot n_x < 0\}} + \frac{1}{2} \int_{\{(w-c(t,x)) \cdot n_x < 0\}} k(t, x, v, w) f(t, x, w) dw \, \mathbf{1}_{\{(v-c(t,x)) \cdot n_x < 0\}} + \frac{1}{2} \int_{\{(w-c(t,x)) \cdot n_x < 0\}} k(t, x, v, w) f(t, x, w) dw \, \mathbf{1}_{\{(v-c(t,x)) \cdot n_x < 0\}} + \frac{1}{2} \int_{\{(w-c(t,x)) \cdot n_x < 0\}} k(t, x, v, w) f(t, x, w) dw \, \mathbf{1}_{\{(v-c(t,x)) \cdot n_x < 0\}} + \frac{1}{2} \int_{\{(w-c(t,x)) \cdot n_x < 0\}} k(t, x, v, w) f(t, x, w) dw \, \mathbf{1}_{\{(v-c(t,x)) \cdot n_x < 0\}} + \frac{1}{2} \int_{\{(w-c(t,x)) \cdot n_x < 0\}} k(t, x, v, w) f(t, x, w) dw \, \mathbf{1}_{\{(v-c(t,x)) \cdot n_x < 0\}} + \frac{1}{2} \int_{\{(w-c(t,x)) \cdot n_x < 0\}} k(t, x, v, w) f(t, x, w) dw \, \mathbf{1}_{\{(v-c(t,x)) \cdot n_x < 0\}} + \frac{1}{2} \int_{\{(w-c(t,x)) \cdot n_x < 0\}} k(t, x, v, w) dw \, \mathbf{1}_{\{(w-c(t,x)) \cdot n_x < 0\}} + \frac{1}{2} \int_{\{(w-c(t,x)) \cdot n_x < 0\}} k(t, x, w) dw \, \mathbf{1}_{\{(w-c(t,x)) \cdot n_x < 0\}} + \frac{1}{2} \int_{\{(w-c(t,x)) \cdot n_x < 0\}} k(t, x, w) dw \, \mathbf{1}_{\{(w-c(t,x)) \cdot n_x < 0\}} + \frac{1}{2} \int_{\{(w-c(t,x)) \cdot n_x < 0\}} k(t, x, w) dw \, \mathbf{1}_{\{(w-c(t,x)) \cdot n_x < 0\}} + \frac{1}{2} \int_{\{(w-c(t,x)) \cdot n_x < 0\}} k(t, x, w) dw \, \mathbf{1}_{\{(w-c(t,x)) \cdot n_x < 0\}} + \frac{1}{2} \int_{\{(w-c(t,x)) \cdot n_x < 0\}} k(t, x, w) dw \, \mathbf{1}_{\{(w-c(t,x)) \cdot n_x < 0\}} + \frac{1}{2} \int_{\{(w-c(t,x)) \cdot n_x < 0\}} k(t, x, w) dw \, \mathbf{1}_{\{(w-c(t,x)) \cdot n_x < 0\}} +$$

 \bullet Diffuse reflexion on Γ^t :

$$k(t,x,v,w) = \sqrt{\frac{2\pi}{T_p}} M_{T_p}(v - c(t,x))(w - c(t,x)), \qquad x \in \Gamma^t$$

with

$$M_{T_p}(s) = \frac{1}{(2\pi T_p)^{\ell/2}} e^{-\frac{|s|^2}{2T_p}}, \qquad T_p > 0.$$

2

Boundary conditions

$$f(t,x,v) = \int_{\{(w-c(t,x)) \cdot n_x \ge 0\}} k(t,x,v,w) f(t,x,w) dw \, \mathbf{1}_{\{(v-c(t,x)) \cdot n_x < 0\}},$$

• Flux normalization properties : $\forall x \in \partial \Omega^t$,

$$\int_{\{(v-c(t,x)) \cdot n_x < 0\}} k(t,x,v,w) \frac{|(v-c(t,x)) \cdot n_x|}{(w-c(t,x)) \cdot n_x} dv = 1$$

and

$$\int_{\{(w-c(t,x)) \cdot n_x \ge 0\}} k(t,x,v,w) M_{T_p}(w-c(t,x)) dw = M_{T_p}(v-c(t,x))$$

Link to DG Lemma

2

The model

The time evolution of f is hence governed by the following PDE :

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f = 0 \qquad (t, x, v) \in (0, T) \times \Omega^t \times \mathbb{R}^\ell$$

with $T = \min(T_1, T_2)$,

• with normalized non-negative initial data

$$f(0, x, v) = \begin{cases} f^{\text{in}}(x, v) & \text{if } (x, v) \in \Omega^0 \times \mathbb{R}^{\ell} \\ 0 & \text{otherwise} \end{cases}$$

where $f^{\text{in}} \in L^{\infty}(\Omega^0 \times \mathbb{R}^{\ell}), ||f^{\text{in}}||_{L^1(\Omega^0 \times \mathbb{R}^{\ell})} = 1$

• and boundary conditions :

$$f(t,x,v) = \int_{\{(w-c(t,x)) \cdot n_x \ge 0\}} k(t,x,v,w) f(t,x,w) dw \, \mathbf{1}_{\{(v-c(t,x)) \cdot n_x < 0\}},$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Extension of Darrozes-Guiraud's Lemma

Lemma (Sonne)

For F stricly convex, f a solution of the previous system

$$-\int_{\mathbb{R}^l} [v - c(t, x)] \cdot n_x M_{T_p}(v - c(t, x)) F\left(\frac{f}{M_{T_p}(\cdot - c(t, x))}\right)(v) dv \le 0$$

In particular for $F(s) = s^2$ we get

$$-\int_{\mathbb{R}^{l}} [v - c(t, x)] \cdot n_{x} e^{\frac{|v - c(t, x)|^{2}}{2T_{p}}} f^{2}(v) dv \le 0$$

Proof

Jensen inequality and properties of the kernel k link.

Existence result

Theorem

Let $c \in L^{\infty}((0,T) \times \Omega)$ and let $f^{\text{in}} \geq 0$ for a.e. $(x,v) \in \Omega^0 \times \mathbb{R}^{\ell}$, such that $e^{\frac{|v|^2}{T_p}} f^{\text{in}} \in L^{\infty}(\Omega^0 \times \mathbb{R}^{\ell})$. Then there exists one non-negative weak solution $f \in L^{\infty}((0,T) \times \Omega^t \times \mathbb{R}^{\ell})$ of the initial-boundary value problem.

Backward interaction time

The backward interaction time $\tau_{\Omega^t}(x, v)$ for a particle starting from $x \in \Omega^t$ in the direction $v \in \mathbb{R}^l$, is defined as

$$\tau_{\Omega^t}(x,v) = \inf\{\theta > 0 : x - \theta v \in \Gamma^{t-\theta} \cup \partial D\}.$$

If the set $\Theta := \{\theta > 0 \ : \ x - \theta v \in \Gamma^{t-\theta} \cup \partial D\}$ is empty, then $\tau_{\Omega^t}(x, v) = +\infty$.

< ロ > < 同 > < 回 > < 回 > < □ > <

Existence result

Strategy of the proof

• Consider the auxiliary problem for the function g : $\mathbb{R}^+ \times \Omega^t \times \mathbb{R}^\ell \to \mathbb{R}$

$$\begin{cases} \frac{\partial g}{\partial t} + v \cdot \nabla_x g = 0, & (t, x, v) \in \mathbb{R}^+ \times \Omega^t \times \mathbb{R}^\ell, \\ g(0, x, v) = f^{\text{in}}(x, v) \mathbf{1}_{\{\Omega^0 \times \mathbb{R}^\ell\}}(x, v) \\ g(t, x, v) = \Phi(t, x, v) & \text{for a.e. } x \in \partial \Omega^t, \, (v - c(t, x)) \cdot n_x < 0 \end{cases}$$

where $\Phi \in L^{\infty}((0,T) \times (\partial \Omega^t \times \mathbb{R}^l))$. The problem has a unique weak solution, given by

$$g(t, x, v) = f^{\text{in}}(x - vt, v) \mathbf{1}_{\{\tau_{\Omega^t}(x, v) > t\}} + \Phi(t, x^*, v) \mathbf{1}_{\{\tau_{\Omega^t}(x, v) < t\}},$$

where $x^* = x - \tau_{\Omega^t}(x, v)v$, and

 $\|g\|_{L^{\infty}((0,T)\times\Omega^{t}\times\mathbb{R}^{\ell})} \leq \max\{\|f^{\mathrm{in}}\|_{L^{\infty}(\Omega^{0}\times\mathbb{R}^{\ell})}, \|\Phi\|_{L^{\infty}((0,T)\times(\partial\Omega^{t}\times\mathbb{R}^{\ell}))}\}.$

Existence result

Strategy of the proof

• We now construct a sequence $\{f_n\}_{n\in\mathbb{N}}$, such that

$$f_1(t, x, v) = 0$$
 for a.e. $(t, x, v) \in [0, T) \times \overline{\Omega}^t \times \mathbb{R}^\ell$

and, for all $n \in \mathbb{N}$, $n \ge 2$, f_n is the solution of the previous problem with the boundary condition : for $x \in \partial \Omega^t$:

$$f_n(t,x,v) = \int_{\{(w-c(t,x)) \cdot n_x \ge 0\}} k(t,x,v,w) f_{n-1}(t,x,w) dw \, \mathbf{1}_{\{(v-c(t,x)) \cdot n_x < 0\}},$$

• Then we can proove that for a.e. $(t, x, v) \in (0, T) \times \Omega^t \times \mathbb{R}^l$,

$$0 \le f_n \le C \|f^{\text{in}} e^{\frac{|v|^2}{T_p}}\|_{L^{\infty}(\Omega^0 \times \mathbb{R}^l)}$$

 $h_n := f_{n+1} - f_n \ge 0$ for a.e. $(t, x, v) \in (0, T) \times \Omega^t \times \mathbb{R}^\ell$.

Numerical strategy

Particle method

 $f(t^n,\cdot,\cdot)$ is approached by

$$f_{\varepsilon,N_m}^n(x,v) = \sum_{k=1}^{N_m} \omega_k \,\varphi_\varepsilon(x - X_k^n) \,\varphi_\varepsilon(v - V_k^n),\tag{1}$$

- $(X_k^n)_{1 \le k \le N_m}$ and are the positions of the "numerical molecules" at time t^n ,
- $(V_k^n)_{1 \le k \le N_m}$ are their velocities
- ω_k their weight,
- φ_{ε} a smooth shape function.
- Initially $(X_k^0)_{1 \le k \le N_m}$ and $(V_k^0)_{1 \le k \le N_m}$ are sampled according to the initial density $f^{ini}(x, v)$.

Numerical strategy

At each time step

We compute

- the free flow of the particles in the absence of any interaction, mathematically represented by the transport operator $v \cdot \nabla$;
- the time evolution of the set of dust particles.
- the boundary conditions
 - the specular reflexion of the gas particles at the boundary ∂D ;
 - the diffuse reflexion between gas particles and spherical dust particles by computing the intersection of the trajectories of molecules and dust particles.
 - Iteration in the time $[t^n, t^n + \Delta t]$ to obtain positions and velocities of molecules at time t^{n+1} .

イロト 不得 トイヨト イヨト

Physical quantities

$$f^{\rm in}(x,v) = \frac{n_0 m}{2\pi k_B T^{\rm in}} e^{-\frac{m|v-\mathbf{u}_{\mathbf{g}}|^2}{2k_B T^{\rm in}}},$$

with $\mathbf{u}_{\mathbf{g}} = (-2u_d, 0)$ or $\mathbf{u}_{\mathbf{g}} = (0, 0)$.

$$\lambda \qquad K_n \qquad T^{\rm in} \qquad M_a \qquad u_d = a \, M_a$$
$$2 \cdot 10^{-3} \, {\rm m} \qquad 10 \qquad 293 \, {\rm K} \qquad 0.1 \qquad 34.41 \, {\rm m/s}$$

Particles :

• radius
$$r = 10^{-5}m$$

• $T_p = 500$ K.

Scenario 1

Evolution of a system of two particles with translational velocities $u_1 = (0, u_d)$ and $u_2 = (0, -1.5u_d)$, with $u_d = 2u^{\text{in}}$, and no rotational velocities.

F. Charles

Scenario 2

Time evolution of the mean temperature of the gas with a motionless particle

$$\langle T(t) \rangle = \int_{\Omega^t} T(t, x) dx$$

F. Charles

Scenario 3

Time evolution of the mean temperature of the gas with a motionless particle at temperature $T_p = 100$ K.

Scenario 4

Time evolution of the mean temperature of the gas with a particle at temperature $T_p = 100$ K; the spherical dust particle has a rotational velocity equal to $2\pi \times 10^6$ rad· s⁻¹.

Futur prospects

- Addition of the evolution of temperature in dust particles
- Numerical simulations with an ellipsoidal dust, with more particles...