Derivation of quantum drift-diffusion equations for a spin-orbit 2D electron gas

Luigi Barletti

Dipartimento di Matematica e Informatica "Ulisse Dini", Università di Firenze, Italy

RECENT ADVANCES IN KINETIC EQUATIONS AND APPLICATIONS

Rome, Italy, 11 November - 15 November 2019

In collaboration with

Philipp Holzinger - T.U. Wien

Outline

Physics

Mathematical modelling

Transport picture

Quantum drift-diffusion equations

Semiclassical drift-dffusion equations

Conclusions

Spintronics (not to be confused with quantum computing)

The Rashba effect

The Rashba effect

Effective Field $\Omega=\alpha_{R}\left(\boldsymbol{p} \times \boldsymbol{e}_{3}\right)$

The Rashba effect

The Rashba Hamiltonian

$$
H_{R}=\left(-\frac{\hbar^{2}}{2 m} \Delta+V\right) I-i \hbar \alpha\left(\begin{array}{cc}
0 & i \partial_{2}-\partial_{1} \\
i \partial_{2}+\partial_{1} & 0
\end{array}\right)
$$

$\alpha=$ Rashba constant.
$V=$ external (e.g. gate) potential

$$
\partial_{1} \equiv \frac{\partial}{\partial x_{1}}, \partial_{2} \equiv \frac{\partial}{\partial x_{2}}
$$

Diffusive models of spin-orbit transport

	Spin structure	Dynamics	Collisions
EI Hajj (2008) - CMS (2014)	BIPOLAR/FULL	CLASSICAL	BGK
Barletti-Méhats JMP (2010)	BIPOLAR	QUANTUM	(Q)BGK
Negulescu-Possanner, KRM (2011)	FULL	CLASSICAL	DETAILED
This work	FULL	QUANTUM	(Q)BGK

Fundamental tool: the Wigner transform

$$
a(x, p)=\frac{1}{(2 \pi \hbar)^{d}} \int_{\mathbb{R}^{d}} \rho_{A}\left(x+\frac{\xi}{2}, x-\frac{\xi}{2}\right) \mathrm{e}^{-i \xi \cdot p / \hbar} d \xi
$$

Provides a 1-1 correspondence \mathcal{W} between a QM operator A (with formal kernel $\rho_{A}(x, y)$) and a phase-space function $a(x, p)$

$$
a=\mathcal{W}(A)
$$

Moyal product - definition

The operator algebra is transferred to phase-space functions, which defines the Moyal product:

$$
a \# b=\mathcal{W}(A B)
$$

(where $a=\mathcal{W}(A)$ and $b=\mathcal{W}(B))$.

Moyal product - semiclassical expansion

The Moyal product can be semiclassically expanded as follows:

$$
\begin{gathered}
a \# b=\sum_{k=0}^{\infty} \hbar^{k} a \#_{k} b, \\
a \#_{k} b=\frac{1}{(2 i)^{k}} \sum_{|\alpha|+|\beta|=k} \frac{(-1)^{|\alpha|}}{\alpha!\beta!}\left(\nabla_{x}^{\alpha} \nabla_{p}^{\beta} a\right)\left(\nabla_{p}^{\alpha} \nabla_{x}^{\beta} b\right) .
\end{gathered}
$$

In particular,

$$
a \#_{0} b=a b, \quad a \#_{1} b=\frac{i}{2}\{a, b\} .
$$

Wigner equation - 1

By applying the Wigner transform to the Schrödinger equation

$$
i \hbar \partial_{t} \psi=H_{R} \psi
$$

we obtain the Wigner equation for our system

$$
\left\{\begin{array}{l}
\partial_{t} w_{0}+p \cdot \nabla w_{0}+\alpha \nabla^{\perp} \cdot \vec{w}-\Theta[V] w_{0}=0 \\
\partial_{t} \vec{w}+p \cdot \nabla \vec{w}+\alpha \nabla^{\perp} w_{0}+-\Theta[V] \vec{w}-\frac{2 \alpha}{\hbar} p^{\perp} \times \vec{w}=0
\end{array}\right.
$$

where w_{0} and $\vec{w}=\left(w_{1}, w_{2}, w_{3}\right)$ are the Pauli components of the Wigner matrix w

$$
w=w_{0} I+\vec{w} \cdot \vec{\sigma}=\mathcal{W}\left(\psi \psi^{*}\right)
$$

Wigner equation - 2

We have used the following notations:

$$
\begin{gathered}
p^{\perp}:=p \times e_{3}=\left(p_{2},-p_{1}, 0\right) \\
\nabla^{\perp}:=\nabla \times e_{3}=\left(\partial_{2},-\partial_{1}, 0\right), \\
\Theta[V]:=\frac{1}{i \hbar}\left[V\left(x+\frac{i \hbar}{2} \nabla_{p}\right)-V\left(x-\frac{i \hbar}{2} \nabla_{p}\right)\right]
\end{gathered}
$$

(Scaled) Wigner-BGK equation

Add a BGK-like collisional term and rescale variables:

$$
\left\{\begin{array}{l}
\partial_{t} w_{0}+p \cdot \nabla w_{0}+\epsilon \alpha \nabla^{\perp} \cdot \vec{w}-\Theta[V] w_{0}=\frac{g_{0}-w_{0}}{\tau} \\
\partial_{t} \vec{w}+p \cdot \nabla \vec{w}+\epsilon \alpha \nabla^{\perp} w_{0}-\Theta[V] \vec{w}-2 \alpha p^{\perp} \times \vec{w}=\frac{\vec{g}-\vec{w}}{\tau}
\end{array}\right.
$$

$\epsilon=$ scaled Planck constant
$\tau=$ scaled collision time

Quantum equilibrium

"Quantum Maxwellian":

$$
g=\mathcal{E x p}\left(-h_{R}+a\right)=\mathcal{W}\left[\exp \left(-H_{R}+A\right)\right]
$$

$a=$ matrix of Lagrange multipliers
Constraint of assigned density:

$$
\langle g\rangle:=\int g(x, p) d p=n
$$

Assumption of small polarization regime:

$$
n=n_{0} I+\epsilon \vec{n} \cdot \vec{\sigma}
$$

Chapman-Enskog expansion

In this part we consider the diffusive limit

$$
\tau \ll 1
$$

in the fully-quantum regime

$$
\epsilon \sim 1
$$

We rewrite the Wigner-BGK equation in the concise form

$$
\tau \partial_{t} \boldsymbol{w}+\tau \boldsymbol{T}_{\epsilon} \boldsymbol{w}=g-w
$$

Note that this is not a diffusive scaling.

Chapman-Enskog expansion: standard case

Usually the C-E expansion works as follows:

$$
\tau^{2} \partial_{t} w+\tau T w=g-w, \quad w=w^{(0)}+\tau w^{(1)}+\tau^{2} w^{(2)}+\cdots
$$

Then:

$$
w^{(0)}=g, \quad w^{(1)}=-T g, \quad \ldots
$$

and, by integration w.r.t. p,

$$
\tau \partial_{t} n=-\langle T g\rangle+\tau\langle T T g\rangle
$$

which is only compatible with $\langle T g\rangle=0$ (the equilibrium carries no current).

Chapman-Enskog expansion: quantum case

Theorem

Let g be the quantum Maxwellian (depending on the Lagrange multipliers a and subject to the density constraint $\langle g\rangle=n$). Then

$$
\langle T g\rangle=-i[a, n]=2 \vec{a} \times \vec{n} \cdot \vec{\sigma}
$$

Then, in the non-commutative case, the equilibrium state does carry a nonvanishing current.

That is why a change of the scaling is required.

Quantum DD equations

Our modified C-E method leads to

$$
\partial_{t} n=-\left\langle T_{\epsilon} g\right\rangle+\tau\left\langle T_{\epsilon} T_{\epsilon} g\right\rangle-\tau\left\langle T_{\epsilon} \frac{\delta g}{\delta n} \partial_{t}^{(0)} n\right\rangle
$$

Explicitly yields the quantum DD equations (QDDE):

$$
\begin{aligned}
\partial_{t} n_{0}= & \tau \partial_{j}\left[n_{0} \partial_{j}\left(a_{0}+V\right)+\epsilon^{2} \vec{n} \cdot \partial_{j} \vec{a}\right]-2 \tau \epsilon^{2} \alpha \nabla^{\perp} \cdot(\vec{a} \times \vec{n}) \\
\partial_{t} \vec{n}= & 2 \epsilon \vec{a} \times \vec{n}+\tau \epsilon \partial_{j}\left[\vec{n} \partial_{j}\left(a_{0}+V\right)+n_{0} \partial_{j} \vec{a}-2 \vec{a} \times\left\langle p_{j} \vec{g}\right\rangle\right] \\
& -2 \tau \epsilon \alpha \nabla^{\perp}\left(a_{0}+V\right) \times \vec{n}-2 \tau \epsilon \alpha\left(\nabla^{\perp} \times \vec{a}\right) n_{0} \\
& +2 \tau \alpha\left\langle p^{\perp} \cdot \vec{g}\right\rangle \vec{a}-2 \tau \alpha\left\langle\left(\vec{a} \cdot p^{\perp}\right) \vec{g}\right\rangle
\end{aligned}
$$

Drawbacks

Remember that a depend on n through the constraint

$$
\left\langle\mathcal{E x p}\left(-h_{R}+a\right)\right\rangle=n
$$

- very implicit
- very non-local
- few numerical methods available [Gallego-Méhats (2005),
B.-Méhats-Negulescu-Possanner (2015)]

Expansion of equilibrium state: method

We now assume $\epsilon \ll 1$ and perform a semiclassical expansion of the quantum Maxwellian $g=\mathcal{E x p}\left(-h_{R}+a\right)$.

This can be computed by using

$$
g(\beta):=\mathcal{E x p}\left(-\beta\left(h_{R}+a\right)\right)
$$

so that

$$
\partial_{\beta} g(\beta)=-\left(h_{R}-a\right) \# g(\beta), \quad g(0)=I
$$

or, for the Laplace transform $\hat{g}(z)$,

$$
\hat{g}(z)-I=-\left(h_{R}-a\right) \# \hat{g}(z)
$$

Expansion of equilibrium state: method

Now we expand

$$
h_{R}=h_{0}+\epsilon h_{1}
$$

(where $h_{0}=\frac{|p|^{2}}{2}+V$ and $h_{1}=\alpha p^{\perp} \times \vec{\sigma}$)

$$
\begin{aligned}
& \#=\#_{0}+\epsilon \#_{1}+\epsilon^{2} \#_{2}+\cdots \\
& g=g^{(0)}+\epsilon g^{(1)}+\epsilon^{2} g^{(2)}+\cdots
\end{aligned}
$$

and substitute into the equation for $\hat{g}(z)$.

Expansion of equilibrium state: method

We obtain in this way

$$
\hat{g}^{(0)}(z)=R(z):=\frac{1}{z+\frac{|p|^{2}}{2}+V-a_{0}}
$$

and (omitting z)

$$
\hat{g}^{(1)}=R h_{1} R+R h_{0} \#_{1} R
$$

$$
\hat{g}^{(2)}=R\left[R^{2} h_{1}^{2}+h_{1} \#_{1} R+h_{0} \#_{1}\left(R^{2} h_{1}\right)+h_{0} \#_{2} R\right]
$$

Expansion of equilibrium state: result

Computations yield:

$$
\begin{aligned}
& g_{0}^{(0)}=\mathrm{e}^{-\frac{p^{2}}{2}-V+a_{0}} \\
& \vec{g}^{(0)}=\overrightarrow{0} \\
& g_{0}^{(1)}=0 \\
& \vec{g}^{(1)}=\mathrm{e}^{-\frac{p^{2}}{2}-V+a_{0}}\left(\vec{a}-\alpha p^{\perp}\right) \\
& g_{0}^{(2)}=\frac{\mathrm{e}^{-\frac{p^{2}}{2}-v+a_{0}}}{2}\left[\left|\vec{a}-\alpha p^{\perp}\right|^{2}-\frac{1}{2}\left(p_{i} p_{j} \partial_{i} \partial_{j} a_{0}-\left|\nabla a_{0}\right|^{2}-3 \Delta a_{0}\right)\right] \\
& \vec{g}^{(2)}=0
\end{aligned}
$$

Expansion of the Lagrange multipliers

$$
\begin{aligned}
& a_{0}^{(0)}=\log \left(\frac{n_{0}}{c}\right) \\
& \vec{a}^{(0)}=\frac{\vec{n}}{n_{0}} \\
& a_{0}^{(1)}=0 \\
& \vec{a}^{(1)}=0 \\
& a_{0}^{(2)}=-\left(\alpha^{2}+\frac{1}{2} \frac{|\vec{n}|^{2}}{n_{0}^{2}}+\frac{1}{6} \frac{\Delta \sqrt{n_{0}}}{\sqrt{n_{0}}}\right)
\end{aligned}
$$

($\vec{a}^{(2)}$ is not needed)

Substituting into the QDDE yields the following

$\mathcal{O}\left(\epsilon^{2}\right)$ DD equations

$$
\left\{\begin{aligned}
\partial_{t} n_{0}= & \tau \partial_{j}\left(\partial_{j} n_{0}+n_{0} \partial_{j} V\right)-\tau \epsilon^{2} \frac{1}{6} n_{0} \partial_{j} \frac{\Delta \sqrt{n_{0}}}{\sqrt{n_{0}}} \\
\partial_{t} \vec{n}= & \tau \epsilon \partial_{j}\left(\partial_{j} \vec{n}+\vec{n} \partial_{j} V\right)-2 \tau \epsilon \alpha^{2} \vec{n} \\
& -2 \tau \epsilon \alpha\left(2 \nabla^{\perp}+\nabla^{\perp} V-\frac{\nabla^{\perp} n_{0}}{n_{0}}\right) \times \vec{n}
\end{aligned}\right.
$$

- drift-diffusion
- Bohm potential
- D'yakonov-Perel' spin decoherence
- spin-orbit coupling and gate control

Summary

- QDD equation for spin-orbit electrons
- $\mathcal{O}\left(\epsilon^{2}\right)$-DD approximation
- assumption of small polarization regime
- previous models arising as particular cases

Future work

- drop the small polarization assumption
- proceed with HD
- extend to other spin-orbit Hamiltonians

Thank you!

