TECHNISCHE UNIVERSITÄT WIEN

Short- and long-time behavior in (hypo)coercive ODE-systems and Fokker-Planck equations

Anton ARNOLD

with Franz Achleitner, Eric Carlen; Beatrice Signorello, Christian Schmeiser

Rome, November 2019

Goals \& strategies

- Given an evolution eq: $\frac{\mathrm{d}}{\mathrm{d} t} f=-L f, t \geq 0 ; \quad L \ldots$ const-in- t operator
- Assume L has a unique steady state: $L f_{\infty}=0$

Goals \& strategies

- Given an evolution eq: $\frac{\mathrm{d}}{\mathrm{d} t} f=-L f, t \geq 0 ; \quad L \ldots$ const-in- t operator
- Assume L has a unique steady state: $L f_{\infty}=0$

1) optimal long-time decay estimate:

- exponential decay: $\left\|f(t)-f_{\infty}\right\| \leq c e^{-\mu t}\left\|f(0)-f_{\infty}\right\|, t \geq 0$
- possibly with sharp (= maximum) rate $\mu>0$ and minimal $c \geq 1$ [uniform for all $f(0)$]

Goals \& strategies

- Given an evolution eq: $\frac{\mathrm{d}}{\mathrm{d} t} f=-L f, t \geq 0 ; \quad L \ldots$ const-in- t operator
- Assume L has a unique steady state: $L f_{\infty}=0$

1) optimal long-time decay estimate:

- exponential decay: $\left\|f(t)-f_{\infty}\right\| \leq c e^{-\mu t}\left\|f(0)-f_{\infty}\right\|, t \geq 0$
- possibly with sharp (= maximum) rate $\mu>0$ and minimal $c \geq 1$ [uniform for all $f(0)$]

2) short-time decay estimate:

- $\left\|f(t)-f_{\infty}\right\| \leq\left[1-c t^{a}+\mathcal{O}\left(t^{a+1}\right)\right]\left\|f(0)-f_{\infty}\right\|, \quad t \rightarrow 0+$
- relation of a to hypocoercivity index of L
- for (nonsymmetric) ODEs $\dot{x}=-\mathbf{C} x$
- for (nonsymmetric) Fokker-Planck equations with linear drift
\rightarrow find their connection

Outline:
(1) hypocoercive ODEs
(2) long-time decay of Fokker-Planck equations

0 short-time decay of Fokker-Planck equations

Long-time decay for nonsymmetric ODEs

$$
\begin{equation*}
\dot{x}=-\mathbf{C} x, \quad t \geq 0, x(t) \in \mathbb{C}^{n} \tag{1}
\end{equation*}
$$

Definition: \mathbf{C} is coercive if $x^{T} \mathbf{C} x \geq \kappa\|x\|^{2} \forall x$ (for some $\kappa>0$).

Long-time decay for nonsymmetric ODEs

$$
\begin{equation*}
\dot{x}=-\mathbf{C} x, \quad t \geq 0, x(t) \in \mathbb{C}^{n} \tag{1}
\end{equation*}
$$

Definition: \mathbf{C} is coercive if $x^{T} \mathbf{C} x \geq \kappa\|x\|^{2} \forall x$ (for some $\kappa>0$).
ex: $\mathbf{C}=\left(\begin{array}{cc}1 & -1 \\ 1 & 0\end{array}\right), \lambda_{\mathbf{C}}=\frac{1}{2} \pm i \frac{\sqrt{3}}{2} \Rightarrow$ decay rate $=\frac{1}{2}$ for (1).

- C not coercive \Rightarrow no decay of $\|x(t)\|_{2}$ by trivial energy method!
- But decay of modified norm $\|x(t)\|_{\mathbf{P}}:=\sqrt{x^{\top} \mathbf{P} x} ; \mathbf{P}:=[2-1 ;-12]$

How to find \mathbf{P} / the Lyapunov functional?
hypocoercive ODEs

$$
\dot{x}=-\mathbf{C} x, \quad t \geq 0, x(t) \in \mathbb{C}^{n}
$$

Definition: C is hypocoercive ($=$ positive stable) if $\exists \mu>0$ such that:

$$
\Re\left(\lambda_{j}\right) \geq \mu, \quad j=1, \ldots, n .
$$

If all eigenvalues of \mathbf{C} are non-defective:

$$
\exists c \geq 1: \quad\|x(t)\|_{2} \leq c\|x(0)\|_{2} e^{-\mu t}, \quad t \geq 0
$$

- always: $\mu \geq \kappa:=\max _{x} \frac{x^{\top} \mathbf{C} x}{\|x\|^{2}} \quad$ (i.e. spectral gap \geq coercivity)
hypocoercive ODEs

$$
\dot{x}=-\mathbf{C} x, \quad t \geq 0, x(t) \in \mathbb{C}^{n}
$$

Definition: C is hypocoercive ($=$ positive stable) if $\exists \mu>0$ such that:

$$
\Re\left(\lambda_{j}\right) \geq \mu, \quad j=1, \ldots, n .
$$

If all eigenvalues of \mathbf{C} are non-defective:

$$
\exists c \geq 1: \quad\|x(t)\|_{2} \leq c\|x(0)\|_{2} e^{-\mu t}, \quad t \geq 0
$$

- always: $\mu \geq \kappa:=\max _{x} \frac{x^{T} \mathbf{C} x}{\|x\|^{2}} \quad$ (i.e. spectral gap \geq coercivity)

Conditions for hypocoercivity:
(1) $\mathbf{C}=\mathbf{C}_{1}+\mathbf{C}_{2} \in \mathbb{C}^{n \times n} ; \quad \mathbf{C}_{1}^{*}=-\mathbf{C}_{1}, \mathbf{C}_{2}^{*}=\mathbf{C}_{2} \geq 0$ (w.l.o.g.)
(2) No (non-trivial) subspace of $\operatorname{ker} \mathbf{C}_{2}$ is invariant under \mathbf{C}_{1}

Hypocoercivity index

Conservative-dissipative system:
$\dot{x}=-\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right) x, \quad \mathbf{C}_{1} \in \mathbb{C}^{n \times n} \ldots$ anti-Hermitian; $\mathbf{C}_{2} \geq 0$ Hermit. (2)

Definition 1 (Achleitner-AA-Carlen 2018)
The hypocoercivity index of $\mathbf{C}=\mathbf{C}_{1}+\mathbf{C}_{2}$ is the smallest integer $m_{H C} \in \mathbb{N}_{0}$, such that $\sum_{j=0}^{m_{H C}} \mathbf{C}_{1}^{j} \mathbf{C}_{2}\left(\mathbf{C}_{1}^{*}\right)^{j}>0$.

- \mathbf{C} is coercive $\Leftrightarrow \mathbf{C}_{2}>0 \Leftrightarrow m_{H C}=0$
- \mathbf{C} is hypocoercive $\Leftrightarrow m_{H C}<\infty$
- If \mathbf{C} is hypocoercive: $\frac{n-\operatorname{rank} \mathbf{C}_{2}}{\operatorname{rank} \mathbf{C}_{2}} \leq m_{H C} \leq n-\operatorname{rank} \mathbf{C}_{2}$
- $m_{H C}$ describes the structural complexity of (2).

Hypocoercivity index for $\dot{x}=-\left(\mathbf{C}_{1}+\mathbf{C}_{2}\right) x$
ex: $\mathbf{C}_{2}=\operatorname{diag}(0,0,1,1)$
(a) $\mathbf{C}_{1}=\left(\begin{array}{cccc}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0\end{array}\right)$,

HC index $=1$ (direct connection)
(b) $\mathbf{C}_{1}=\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$,

HC index $=2$ (indirect connection)

Short-time decay / hypocoercivity index for $\dot{x}=-\mathbf{C} x$

Lemma 1 (Achleitner-AA-Carlen 2019)
Let \mathbf{C} be conservative-dissipative. Then its $H C$-index is $m_{H C} \in \mathbb{N}_{0}$ iff

$$
\left\|e^{-\mathbf{C} t}\right\|_{2}=1-c t^{2 m_{H C}+1}+\mathcal{O}\left(t^{2 m_{H C}+2}\right), \quad t \rightarrow 0+
$$

with some $c>0$.

Short-time decay / hypocoercivity index for $\dot{x}=-\mathbf{C} x$

Lemma 1 (Achleitner-AA-Carlen 2019)

Let \mathbf{C} be conservative-dissipative. Then its $H C$-index is $m_{H C} \in \mathbb{N}_{0}$ iff

$$
\left\|e^{-\mathbf{C} t}\right\|_{2}=1-c t^{2 m_{H C}+1}+\mathcal{O}\left(t^{2 m_{H C}+2}\right), \quad t \rightarrow 0+
$$

with some $c>0$.
ex: 2-velocity BGK model, 1D (Goldstein-Taylor model) for $f(x, t)=\binom{f_{+}(x, t)}{f_{-}(x, t)}$ corresponding to $v= \pm 1$:

$$
\partial_{t} f_{ \pm}=\mp \partial_{x} f_{ \pm} \pm \frac{1}{2}\left(f_{-}-f_{+}\right)=:-L f_{ \pm}, \quad t \geq 0, \quad 2 \pi-\text { periodic in } x
$$

- $\left\|e^{-L t}\right\|_{\mathcal{B}\left(L^{2}\right)}$ decays like $1-t^{3} / 3+o\left(t^{3}\right)$ [Miclo-Monmarché '13]; via x-modal decomposition: $\frac{d}{d t} u_{k}=-\left(\begin{array}{cc}0 & i k \\ i k & 1\end{array}\right) u_{k} ; m_{H C}=1$ for $k \neq 0$

Outline:

- hypocoercive ODEs
(2) long-time decay of Fokker-Planck equations

0 short-time decay of Fokker-Planck equations

degenerate Fokker-Planck equations

$$
\begin{equation*}
f_{t}=\operatorname{div}\left(\mathbf{D} \nabla f+\mathbf{C}_{x} f\right)=:-L f, \quad x \in \mathbb{R}^{d} \tag{3}
\end{equation*}
$$

with degenerate $0 \leq \mathbf{D} \in \mathbb{R}^{d \times d}$ is degenerate parabolic; (symmetric part of) L is not coercive.

degenerate Fokker-Planck equations

$$
\begin{equation*}
f_{t}=\operatorname{div}(\mathbf{D} \nabla f+\mathbf{C} \times f)=:-L f, \quad x \in \mathbb{R}^{d} \tag{3}
\end{equation*}
$$

with degenerate $0 \leq \mathbf{D} \in \mathbb{R}^{d \times d}$ is degenerate parabolic; (symmetric part of) L is not coercive.

Definition 2 (Villani 2009)

Consider L on Hilbert space H with $\mathcal{K}=\operatorname{ker} L$; let $\tilde{H} \hookrightarrow \mathcal{K}^{\perp}$ (densely) (e.g. $H \ldots$ weighted $L^{2}, \tilde{H} \ldots$ weighted H^{1}).
L is called hypocoercive on \tilde{H} if $\exists \lambda>0, c \geq 1$:

$$
\left\|\mathrm{e}^{-L t} f\right\|_{\tilde{H}} \leq c \mathrm{e}^{-\lambda t}\|f\|_{\tilde{H}} \quad \forall f \in \tilde{H}
$$

- typically $c>1$

hypocoercive Fokker-Planck equation

$$
f_{t}=\operatorname{div}(\mathbf{D} \nabla f+\mathbf{C} \times f)
$$

can be normalized such that $\mathbf{D}=\mathbf{C}_{s}$ (from now assumed). Then $f_{\infty}(x)=(2 \pi)^{-d / 2} e^{-|x|^{2} / 2} ; \mathcal{H}:=L^{2}\left(f_{\infty}^{-1}\right)$.

hypocoercive Fokker-Planck equation

$$
f_{t}=\operatorname{div}(\mathbf{D} \nabla f+\mathbf{C} \times f)
$$

can be normalized such that $\mathbf{D}=\mathbf{C}_{s} \quad$ (from now assumed). Then $f_{\infty}(x)=(2 \pi)^{-d / 2} e^{-|x|^{2} / 2} ; \mathcal{H}:=L^{2}\left(f_{\infty}^{-1}\right)$.

Condition A for hypocoercivity:
(1) No (nontrivial) subspace of ker \mathbf{D} is invariant under \mathbf{C}^{\top}. (equivalent: L is hypoelliptic.)
(2) Let $\mathbf{C}_{s} \in \mathbb{R}^{d \times d} \geq 0$.
$\Rightarrow \mathbf{C}$ is positive stable (i.e. $\Re \lambda_{C}>0$).
\exists confinement potential; drift towards $x=0$.

- hypoelliptic + confinement $=$ hypocoercive (for FP eq.)

typical decay of degenerate Fokker-Planck equation

 decay of $e(t):=\left\|f(t)-f_{\infty}\right\|_{L^{2}\left(f_{\infty}^{-1}\right)}^{2}$:
degenerate FP eq. with $\mathbf{D} \geq 0$: $e(t)$ is not convex; $e^{\prime}(t)=0$ for some $f \neq f_{\infty}$

decay estimates for Fokker-Planck equations

Goal 1: best exponential decay $\left\|f(t)-f_{\infty}\right\|_{\mathcal{H}} \leq c e^{-\lambda t}\left\|f(0)-f_{\infty}\right\|_{\mathcal{H}}$

decay estimates for Fokker-Planck equations

Goal 2: find exact PDE-propagator norm $\left\|e^{-L t}-\Pi_{0}\right\|_{\mathcal{B}(\mathcal{H})} \Rightarrow$ Goal 1

propagator norm of (normalized) Fokker-Planck equation

$$
f_{t}=\operatorname{div}(\mathbf{D} \nabla f+\mathbf{C} \times f)=:-L f, \quad \mathbf{D}=\mathbf{C}_{s}
$$

main Theorem 1 (AA-Signorello-Schmeiser 2019)

Let L satisfy Condition A (i.e. L is hypocoercive). Then

$$
\left\|e^{-L t}-\Pi_{0}\right\|_{\mathcal{B}(\mathcal{H})}=\left\|e^{-\mathbf{C} t}\right\|_{2}, \quad t \geq 0
$$

$\Pi_{0} \ldots$ projection on $\operatorname{span}\left[f_{\infty}\right]$
propagator norm of (normalized) Fokker-Planck equation

$$
f_{t}=\operatorname{div}(\mathbf{D} \nabla f+\mathbf{C} \times f)=:-L f, \quad \mathbf{D}=\mathbf{C}_{s}
$$

main Theorem 1 (AA-Signorello-Schmeiser 2019)

Let L satisfy Condition A (i.e. L is hypocoercive). Then

$$
\left\|e^{-L t}-\Pi_{0}\right\|_{\mathcal{B}(\mathcal{H})}=\left\|e^{-\mathbf{C} t}\right\|_{2}, \quad t \geq 0
$$

$\Pi_{0} \ldots$ projection on $\operatorname{span}\left[f_{\infty}\right]$
ex: [Gadat-Miclo '13] $f_{t}=-v f_{x}+a x f_{v}+(v f)_{v}+f_{v v} ; f_{\infty}(x, v)=c e^{-\frac{a}{2} x^{2}-\frac{v^{2}}{2}}$ normalized Fokker-Planck: $\mathbf{C}_{a}=\left(\begin{array}{cc}0 & -\sqrt{a} \\ \sqrt{a} & 1\end{array}\right), \quad a>0$

$$
\left\|e^{-L t}-\Pi_{0}\right\|_{\mathcal{B}(\mathcal{H})}=C_{a}(t) \exp \left(-\frac{1-\sqrt{(1-4 a)_{+}}}{2} t\right)
$$

$C_{a}(t)=\mathcal{O}(1)$ for $a \neq \frac{1}{4}, \quad C_{1 / 4}(t)=\mathcal{O}(t), t \rightarrow \infty$
sharp long-time decay of (normal.) Fokker-Planck equation

$$
\begin{equation*}
f_{t}=\operatorname{div}(\mathbf{D} \nabla f+\mathbf{C} \times f)=:-L f, \quad \mathbf{D}=\mathbf{C}_{s} \tag{4}
\end{equation*}
$$

Corollary 1 (of main Theorem)

Let $\mathbf{C} \in \mathbb{R}^{d \times d}$ be non-defective and satisfy Condition A (i.e. \mathbf{C} is hypocoercive). Let $\left(c_{1}, \mu\right)$ be the optimal constants for $\dot{x}=-\mathbf{C} x$ in estimate

$$
\|x(t)\|_{2} \leq c_{1} e^{-\mu t}\left\|x_{0}\right\|, \quad t \geq 0
$$

Then, they are optimal for (4):

$$
\left\|f(t)-f_{\infty}\right\|_{\mathcal{H}} \leq c_{1} e^{-\mu t}\left\|f_{0}-f_{\infty}\right\|_{\mathcal{H}}, \quad \int_{\mathbb{R}^{d}} f_{0}(x) d x=1
$$

sharp long-time decay of (normal.) Fokker-Planck equation

$$
\begin{equation*}
f_{t}=\operatorname{div}(\mathbf{D} \nabla f+\mathbf{C} \times f)=:-L f, \quad \mathbf{D}=\mathbf{C}_{s} \tag{4}
\end{equation*}
$$

Corollary 1 (of main Theorem)

Let $\mathbf{C} \in \mathbb{R}^{d \times d}$ be non-defective and satisfy Condition A (i.e. \mathbf{C} is hypocoercive). Let $\left(c_{1}, \mu\right)$ be the optimal constants for $\dot{x}=-\mathbf{C} x$ in estimate

$$
\|x(t)\|_{2} \leq c_{1} e^{-\mu t}\left\|x_{0}\right\|, \quad t \geq 0
$$

Then, they are optimal for (4):

$$
\left\|f(t)-f_{\infty}\right\|_{\mathcal{H}} \leq c_{1} e^{-\mu t}\left\|f_{0}-f_{\infty}\right\|_{\mathcal{H}}, \quad \int_{\mathbb{R}^{d}} f_{0}(x) d x=1
$$

ex: For $d=2, \Re \lambda_{1}^{\mathbf{C}}=\Re \lambda_{2}^{\mathbf{C}}: \quad c_{1}=\sqrt{\operatorname{cond}(\mathbf{P})}$
$\underline{\text { Rem: }}$ For \mathbf{C} defective (in eigenvalues with $\Re \lambda=\mu$): \quad rate $=p(t) e^{-\mu t}$

Outline:

- hypocoercive ODEs
(2) long-time decay of Fokker-Planck equations

0 short-time decay of Fokker-Planck equations

short-time decay of Fokker-Planck equation

ex: [Gadat-Miclo '13] $f_{t}=-v f_{x}+a x f_{v}+(v f)_{v}+f_{v v}:=-L_{a} f$
normal. Fokker-Planck: $\mathbf{C}_{a}=\left(\begin{array}{cc}0 & -\sqrt{a} \\ \sqrt{a} & 1\end{array}\right)$, hypocoercivity index =1

$$
\text { for } a \geq \frac{1}{4}: \quad\left\|e^{-L t}-\Pi_{0}\right\|_{\mathcal{B}(\mathcal{H})}=1-\frac{a}{6} t^{3}+o\left(t^{3}\right), t \rightarrow 0+
$$

Conjecture: Decay "power 3 should be seen as an order of the hypocoercivity of the operator L_{a}."

short-time decay of Fokker-Planck equation

ex: [Gadat-Miclo '13] $f_{t}=-v f_{x}+a x f_{v}+(v f)_{v}+f_{v v}:=-L_{a} f$
normal. Fokker-Planck: $\mathbf{C}_{a}=\left(\begin{array}{cc}0 & -\sqrt{a} \\ \sqrt{a} & 1\end{array}\right)$, hypocoercivity index =1

$$
\text { for } a \geq \frac{1}{4}: \quad\left\|e^{-L t}-\Pi_{0}\right\|_{\mathcal{B}(\mathcal{H})}=1-\frac{a}{6} t^{3}+o\left(t^{3}\right), t \rightarrow 0+
$$

Conjecture: Decay "power 3 should be seen as an order of the hypocoercivity of the operator L_{a}."

GOAL: Make this connection concrete, not just for one example.

short-time decay of Fokker-Planck equation

$$
\begin{equation*}
f_{t}=\operatorname{div}\left(\mathbf{D} \nabla f+\mathbf{C}_{\times f}\right), \quad \mathbf{D}=\mathbf{C}_{s} \tag{5}
\end{equation*}
$$

Definition 3

The hypocoercivity index of (5) is the smallest integer $m_{H C} \in \mathbb{N}_{0}$, such that $\sum_{j=0}^{m_{H C}} \mathbf{C}_{A H}^{j} \mathbf{D}\left(\mathbf{C}_{A H}^{*}\right)^{j}>0$.
(Also valid for (5) not normalized, i.e. $\mathbf{D} \neq \mathbf{C}_{s}$.)

short-time decay of Fokker-Planck equation

$$
\begin{equation*}
f_{t}=\operatorname{div}(\mathbf{D} \nabla f+\mathbf{C} \times f), \quad \mathbf{D}=\mathbf{C}_{s} \tag{5}
\end{equation*}
$$

Definition 3

The hypocoercivity index of (5) is the smallest integer $m_{H C} \in \mathbb{N}_{0}$, such that $\sum_{j=0}^{m_{H C}} \mathbf{C}_{A H}^{j} \mathbf{D}\left(\mathbf{C}_{A H}^{*}\right)^{j}>0$.
(Also valid for (5) not normalized, i.e. $\mathbf{D} \neq \mathbf{C}_{s}$.)
Corollary 4 (of main Theorem: $\left\|e^{-L t}-\Pi_{0}\right\|_{\mathcal{B}(\mathcal{H})}=\left\|e^{-\mathbf{C} t}\right\|_{2}$)
The HC-index of (5) is $m_{H C}$ iff

$$
\left\|e^{-L t}-\Pi_{0}\right\|_{\mathcal{B}(\mathcal{H})}=1-c t^{2 m_{H C}+1}+\mathcal{O}\left(t^{2 m_{H C}+2}\right), \quad t \rightarrow 0+
$$

with some $c>0$.
proof: HC-index of $(5)=$ HC-index of ODE $(\dot{x}=-\mathbf{C} x)$,

short-time decay of Fokker-Planck: second interpretation

$$
f_{t}=\operatorname{div}(\mathbf{D} \nabla f+\mathbf{C} \times f)=:-L f, \quad \text { with } H C \text {-index } m_{H C} \in \mathbb{N}_{0}
$$

- Then: short-time regularization:

Theorem 5 ([Villani '09] for Hörmander rank; [AA-Erb '14] for HCl)

$$
\begin{equation*}
\left\|\nabla \frac{f(t)}{f_{\infty}}\right\|_{L^{2}\left(f_{\infty}\right)} \leq c t^{-\left(m_{H C}+\frac{1}{2}\right)}\left\|\frac{f_{0}}{f_{\infty}}-1\right\|_{L^{2}\left(f_{\infty}\right)}, \quad 0<t \leq \delta \tag{6}
\end{equation*}
$$

short-time decay of Fokker-Planck: second interpretation

$$
f_{t}=\operatorname{div}(\mathbf{D} \nabla f+\mathbf{C} x f)=:-L f, \quad \text { with HC-index } m_{H C} \in \mathbb{N}_{0}
$$

- Then: short-time regularization:

Theorem 5 ([Villani '09] for Hörmander rank; [AA-Erb '14] for HCl)

$$
\begin{equation*}
\left\|\nabla \frac{f(t)}{f_{\infty}}\right\|_{L^{2}\left(f_{\infty}\right)} \leq c t^{-\left(m_{H C}+\frac{1}{2}\right)}\left\|\frac{f_{0}}{f_{\infty}}-1\right\|_{L^{2}\left(f_{\infty}\right)}, \quad 0<t \leq \delta \tag{6}
\end{equation*}
$$

- For Fokker-Planck eq. this is equivalent to the short time decay:

Proposition 1 (AA-Schmeiser-Signorello '19)

$$
\left\|e^{-L t}-\Pi_{0}\right\|_{\mathcal{B}(\mathcal{H})}=1-c t^{a}+o\left(t^{a}\right), \quad t \rightarrow 0+
$$

iff regularization (6) holds with rate $t^{-a / 2}$.

Proof of main result (step 1)

main Theorem 2 (AA-Schmeiser-Signorello 2019)

Let $L=-\operatorname{div}(\mathbf{D} \nabla \cdot+\mathbf{C} x \cdot)$ satisfy Condition A (i.e. L is hypocoercive). Then

$$
\left\|e^{-L t}-\Pi_{0}\right\|_{\mathcal{B}(\mathcal{H})}=\left\|e^{-\mathbf{C} t}\right\|_{2}, \quad t \geq 0
$$

$\Pi_{0} \ldots$ projection on $\operatorname{span}\left[f_{\infty}\right], f_{\infty}=c e^{-|x|^{2} / 2}$

- L ... nonsymmetric. Still, \exists a partially orthogonal decomposition:

$$
\begin{gathered}
\mathcal{H}:=L^{2}\left(f_{\infty}^{-1}\right)=\bigoplus_{m \in \mathbb{N}_{0}}^{\perp} V^{(m)} ; \quad V^{(m)}=\operatorname{span}\left[g_{\alpha}(x):=(-1)^{|\alpha|} \nabla^{\alpha} f_{\infty},|\alpha|=m\right] \\
\sigma(L)=\left\{\sum_{j=1}^{d} \alpha_{j} \lambda_{j}, \alpha \in \mathbb{N}_{0}^{d}\right\} ; \quad \lambda_{j} \ldots \text { eigenvalues of } \mathbf{C} \in \mathbb{R}^{d \times d}
\end{gathered}
$$

main proof (step 2): evolution in subspaces $V^{(m)}$
$d_{\alpha}(t) \ldots$ coefficient of $g_{\alpha}(x), \alpha \in \mathbb{N}_{0}^{d}, x \in \mathbb{R}^{d}$
ex. $d=2$:

- $m=1: \frac{\mathrm{d}}{\mathrm{d} t}\binom{d_{(1,0)}}{d_{(0,1)}}=-\mathbf{C}\binom{d_{(1,0)}}{d_{(0,1)}}$
main proof (step 2): evolution in subspaces $V^{(m)}$ $d_{\alpha}(t) \ldots$ coefficient of $g_{\alpha}(x), \alpha \in \mathbb{N}_{0}^{d}, x \in \mathbb{R}^{d}$ ex. $d=2$:
- $m=1: \frac{\mathrm{d}}{\mathrm{d} t}\binom{d_{(1,0)}}{d_{(0,1)}}=-\mathbf{C}\binom{d_{(1,0)}}{d_{(0,1)}}$
- $m=2$: $\left(\begin{array}{l}d_{(2,0)} \\ d_{(1,1)} \\ d_{(0,2)}\end{array}\right) \ldots$ impractical !
better: $D^{(2)}(t):=\left(\begin{array}{cc}d_{(2,0)} & d_{(1,1)} / 2 \\ d_{(1,1)} / 2 & d_{(0,2)}\end{array}\right)(t) \in \mathbb{R}^{2 \times 2}$

$$
\frac{\mathrm{d}}{\mathrm{~d} t} D^{(2)}=-\left(\mathbf{C} D^{(2)}+D^{(2)} \mathbf{C}^{T}\right)
$$

main proof (step 2): evolution in subspaces $V^{(m)}$
$d_{\alpha}(t) \ldots$ coefficient of $g_{\alpha}(x), \alpha \in \mathbb{N}_{0}^{d}, x \in \mathbb{R}^{d}$
ex. $d=2$:

- $m=1: \frac{\mathrm{d}}{\mathrm{d} t}\binom{d_{(1,0)}}{d_{(0,1)}}=-\mathbf{C}\binom{d_{(1,0)}}{d_{(0,1)}}$
- $m=2:\left(\begin{array}{l}d_{(2,0)} \\ d_{(1,1)} \\ d_{(0,2)}\end{array}\right) \ldots$ impractical !

$$
\text { better: } \begin{aligned}
D^{(2)}(t):= & \left(\begin{array}{cc}
d_{(2,0)} & d_{(1,1)} / 2 \\
d_{(1,1)} / 2 & d_{(0,2)}
\end{array}\right)(t) \in \mathbb{R}^{2 \times 2} \\
& \frac{\mathrm{~d}}{\mathrm{~d} t} D^{(2)}=-\left(\mathbf{C} D^{(2)}+D^{(2)} \mathbf{C}^{T}\right)
\end{aligned}
$$

- $m \geq 3$: $D^{(m)}(t) \ldots$ symmetric m-order tensor

$$
\frac{\mathrm{d}}{\mathrm{~d} t} D^{(m)}(t)=-m \operatorname{Sym}(\underbrace{\mathbf{C} \odot D^{(m)}(t)}_{\text {mult. on 1st index }}) \quad \ldots \quad \text { tensored drift ODE }
$$

main proof (step 2): evolution in subspaces $V^{(m)}$ $d_{\alpha}(t) \ldots$ coefficient of $g_{\alpha}(x), \alpha \in \mathbb{N}_{0}^{d}, x \in \mathbb{R}^{d}$ ex. $d=2$:

- $m=1: \frac{\mathrm{d}}{\mathrm{d} t}\binom{d_{(1,0)}}{d_{(0,1)}}=-\mathbf{C}\binom{d_{(1,0)}}{d_{(0,1)}}$
- $m=2:\left(\begin{array}{l}d_{(2,0)} \\ d_{(1,1)} \\ d_{(0,2)}\end{array}\right) \ldots$ impractical !

$$
\text { better: } \begin{aligned}
D^{(2)}(t):= & \left(\begin{array}{cc}
d_{(2,0)} & d_{(1,1)} / 2 \\
d_{(1,1)} / 2 & d_{(0,2)}
\end{array}\right)(t) \in \mathbb{R}^{2 \times 2} \\
& \frac{\mathrm{~d}}{\mathrm{~d} t} D^{(2)}=-\left(\mathbf{C} D^{(2)}+D^{(2)} \mathbf{C}^{T}\right)
\end{aligned}
$$

- $m \geq 3$: $D^{(m)}(t) \ldots$ symmetric m-order tensor

$$
\frac{\mathrm{d}}{\mathrm{~d} t} D^{(m)}(t)=-m \operatorname{Sym}(\underbrace{\mathbf{C} \odot D^{(m)}(t)}_{\text {mult. on 1st index }}) \quad \ldots \quad \text { tensored drift ODE }
$$

$\Rightarrow \mathrm{FP}=2$ nd quantization of ODE in Bosonic Fock space of $\mathbb{R}_{\underline{\underline{2}}}^{2}$

evolution in subspaces $V^{(m)}$

- ingredient for evolution equation in $V^{(m)}$:
rank-1 decomposition of order- m tensors:

$$
\begin{equation*}
D^{(m)}=\sum_{k=1}^{s} \mu_{k} v_{k}^{\otimes m}, \quad \mu_{k} \in \mathbb{R}, v_{k} \in \mathbb{R}^{d} \tag{7}
\end{equation*}
$$

Lemma 2

Let (7) be the decomposition of $D^{(m)}(0)$. Then, the evolution in $V^{(m)}$ is given by

$$
D^{(m)}(t)=\sum_{k=1}^{s} \mu_{k}\left[v_{k}(t)\right]^{\otimes m}, \quad \dot{v}_{k}=-\mathbf{C} v_{k}
$$

main proof (step 3): decay in subspaces $V^{(m)}$

Lemma 3
Let $h(t):=\left\|e^{-\mathbf{C} t}\right\|_{2}$, in particular $h(t) \leq 1$.

$$
\Rightarrow \quad\left\|D^{(m)}(t)\right\|_{F} \leq h(t)^{m}\left\|D^{(m)}(0)\right\|_{F}, \quad t \geq 0, m \in \mathbb{N}
$$

main proof (step 3): decay in subspaces $V^{(m)}$

Lemma 3

Let $h(t):=\left\|e^{-\mathbf{C} t}\right\|_{2}$, in particular $h(t) \leq 1$.

$$
\Rightarrow \quad\left\|D^{(m)}(t)\right\|_{F} \leq h(t)^{m}\left\|D^{(m)}(0)\right\|_{F}, \quad t \geq 0, m \in \mathbb{N}
$$

- partial Parseval's identity:

$$
\begin{aligned}
&\left\|f(t)-f_{\infty}\right\|_{\mathcal{H}}^{2}=\sum_{m \in \mathbb{N}} m!\left\|D^{(m)}(t)\right\|_{F}^{2} \\
& \Rightarrow \quad\left\|e^{-L t}-\Pi_{0}\right\|_{\mathcal{B}(\mathcal{H})}=h(t), \quad t \geq 0
\end{aligned}
$$

- I.e., decay behavior determined only by 1st subspace!

Conclusion

- Hypocoercivity index characterizes the short-time decay of ODEs ($\dot{x}=-\mathbf{C} x)$ and Fokker-Planck equations: $f_{t}=\operatorname{div}(\mathbf{C}[\nabla f+x f])$; subsequently implies the regularization rate in Fokker-Planck equations.
- Optimal decay estimates of (drift) ODEs carry over to Fokker-Planck equations.

Conclusion

- Hypocoercivity index characterizes the short-time decay of ODEs ($\dot{x}=-\mathbf{C} x)$ and Fokker-Planck equations: $f_{t}=\operatorname{div}(\mathbf{C}[\nabla f+x f])$; subsequently implies the regularization rate in Fokker-Planck equations.
- Optimal decay estimates of (drift) ODEs carry over to Fokker-Planck equations.

References

- F. Achleitner, A. Arnold, E. Carlen: The hypocoercivity index for the short and large time behavior of ODEs, preprint 2019.
- A. Arnold, C. Schmeiser, B. Signorello: Propagator norm and sharp decay estimates for Fokker-Planck equations with linear drift, preprint 2019.

