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Motivation
Normally, the immune system
• identifies the difference between foreign cells and our own cells;
• protects against germs, like bacteria and viruses;
• recognizes foreign invaders and sends out cells to attack them.

An autoimmune disease is a condition in which our immune system
wrongly attacks our own cells.

In many cases, it is chronic, and patients alternate
periods of relapse having suffering symptoms, with
periods of remittance in which symptoms are absent.



Our objective

To construct a mathematical model of kinetic type in order to
describe the immune system interactions in the context of
autoimmune disease.



State of the art

It is well known that the immune system can be regarded, at the
cellular level, as a system constituted by a large number of cells,
belonging to several interacting populations.

Cellular interactions can modify the behaviour or activity of cells and
can also modify the size of populations.

The behaviour can be modelled within a kinetic theory approach in
terms of the statistical distribution of all states possessed by each cell
population.



State of the art
After the pioneering work

Jager & Segel (1992), for population of social organisms,
Kinetic modelling approaches have been used to describe
tumor-immune system interactions and immune competition

Bellomo & Forni (1994)
Arlotti & Bellomo (1995)
Arlotti & Lachowicz & Latrach (1996)
Arlotti & Bellomo & Latrach (1999)
Delitala (2002)
Kolev (2003, 2005)
Kolev & Nikolova (2007)
Angelis & Lods (2008)
Bellouquid & Angelis (2011)
Conte & Groppi & Spiga (2018)



Cell populations
We consider three interacting populations in the autoimmune competition

(SAPCs) Self Antigen Presenting Cells (A)

(SRTCs) Self Reactive T cells (R)

(ISCs) Immunosupressive Cells (S)

SRTCs are activated when they en-
counter a SAPC that has digested a
self-antigen.

(ISCs) regulate the activity of
SRTCs and SAPCs.



Assumptions
• Only binary interactions between cells are significant.
• Interactions are instantaneous and homogeneous in space.
• The functional state of each population is described by the

biological activity variable, u ∈ [0, 1];
• Interactions can be conservative, proliferative and destructive.

Cellular activity
The behaviour of cells is described by distribution functions

fi : [0,∞]× [0, 1]→ R+, i = 1, 2, 3

and the expected number of cells of the i-population at time t is given by

ni(t) =
∫ 1

0
fi(t, u) du, i = 1, 2, 3. (1)



Cellular activity (meaning)
(SAPCs) Self Antigen Presenting Cells

their activity u is the ability to stimulate and activate SRTCs

u=0 means that
the simulation by SAPCs does not activate SRTCs
does not induce an autoimmune response



Cell activity
(SRTCs) Self Reactive T cells

their activity u is the secretion of cytokines

u = 0 means that the SRTCs do not produce cytokines
SRTCs are tolerant to SAPCs
no inflammatory process is triggered



Cell activity
(ISCs) Immunosupressive Cells

their activity u is the ability to inhibit the autoimmune response
suppressing the activity of SAPCs and SRTCs
or eliminating SAPCs and SRTCs



Kinetic equations
∂fi
∂t (t, u) = Gi [f ](t, u)− Li [f ](t, u) + Si [f ](t, u) , i = 1, 2, 3,

where

f = (f1, f2, f3)
and

• Gi [f ](t, u)− Li [f ](t, u) corresponds to conservative interactions

• Si [f ](t, u) corresponds to proliferative or destructive interactions



The cellular interaction terms have the structure

Gi [f ](t, u) =
3∑

j=1

∫ 1

0

∫ 1

0
ηij(v ,w)ψij(v ,w ; u)fi(t, v)fj(t,w)dvdw

Li [f ](t, u) = fi(t, u)
3∑

j=1

∫ 1

0
ηij(u, v)fj(t, v)dv

Si [f ](t, u) = fi(t, u)
3∑

j=1

∫ 1

0
sij(u, v)fj(t, v)dv

where

ηij(v ,w) ≥ 0 is the encounter rate of a conservative interaction

sij(u, v) is the proliferation or destruction rate

ψij(v ,w ; u) ≥ 0 is the transition probability density

and satisfies∫ 1

0
ψij(v ,w ; u)du = 1 , i , j = 1, 2, 3 , v ,w ∈ [0, 1]



Cellular interactions (from biological considerations)

Conservative interactions
Interactions SAPCs–ISCs decrease the activity of SAPCs
Interactions SRTCs–ISCs decrease the activity of SRTCs
Interactions SAPCs–SRTCs increase the activity of SAPCs
and also that of SRTCs

Proliferative interactions
Interactions SRTCs–SAPCs increase the number of SRTCs
and also the number of SAPCs (autoimmune cascade)
Interactions SAPCs–ISCs increase the number of ISCs

Destructive interactions
Interactions ISCs–SAPCs result in the elimination of SAPCs
Interactions ISCs–SRTCs decrease the number of SRTCs



Cellular interactions (from biological considerations)

In proliferative interactions, we consider that
the newborn cells inherit the same aggressive state as the mother cells
the proliferation rates are constant

In destructive interactions, we consider that
the destructive rates are constant

For the population of ISCs, we consider that
the distribution function is independent of its functional state



The kinetic equations are given by
Population p1 of SAPCs

• ∂f1
∂t (t, u) = 2c12

∫ u

0
(u − v)f1(t, v)dv

∫ 1

0
f2(t,w)dw

−c12(u − 1)2f1(t, u)
∫ 1

0
f2(t,w)dw

+2c13f3(t)
∫ 1

u
(v − u)f1(t, v)dv − c13u2f1(t, u)f3(t)

+p12f1(t, u)
∫ 1

0
f2(t,w)dw

−d13f1(t, u)f3(t)



Populations p2 of SRTCs and populations p3 of ISCs

• ∂f2
∂t (t, u) = 2c21

∫ u

0
(u − v)f2(t, v)dv

∫ 1

w?
f1(t,w)dw

−c21(u − 1)2f2(t, u)
∫ 1

0
f1(t,w)dw

+2c23f3(t)
∫ 1

u
(v − u)f2(t, v)dv − c23u2f2(t, u)f3(t)

p21f2(t, u)
∫ 1

0
f1(t,w)dw − d23f2(t, u)f3(t)

• df3
dt (t) = p31f3(t)

∫ 1

0
f1(t,w)dw

w? is a parameter related to tolerance of SRTCs to SAPCs
For this system, we consider the following initial data

f1(0, u)= f 0
1 (u), f2(0)= f 0

2 (u), f3(0)= f 0
3 , with f 0

i > 0, for i =1, 2, 3.



The macroscopic equations
From the kinetic equations we formally derive balance equations
for the cellular density of each population.

Integrating over the biological activity variable, u ∈ [0, 1], we obtain

ṅ1(t) = p12n1(t)n2(t)− d13n1(t)n3(t)

ṅ2(t) = p21n2(t)n1(t)− d23n2(t)n3(t)

ṅ3(t) = p31n3(t)n1(t)

As usual, we loose the effects of conservative interactions.

For this system, we consider the following initial data

n1(0)=n0
1, n2(0)=n0

2, n3(0)=n0
3, with n0

i > 0, for i =1, 2, 3.



Wellposedeness of the IVP (kinetic)
A result of paper [1], for ηij and ψij real valued, measurable and
uniformly bounded, implies

Theorem 1 (local existence)
Assume initial data fi(0) in L1[0, 1].
Then, there exists T0>0 such that a unique positive solution
to the Cauchy problem for our kinetic system exists in L1[0, 1],
for t∈ [0,T0].

[1] L. Arlotti, N. Bellomo, K. Latrach. Mathl. Comput. Modelling, 30, 15–40 (1999).



Kinetic versus macro
Thanks to a result of paper [2],
• the boundedness of the solution to the macroscopic system

implies the boundedness of the solution to the kinetic system
• if the solution to the macroscopic system blows up then

so does the solution to the kinetic system

The basic assumptions are
• constant destruction and proliferation rates
• cloned cells (proliferative encounters) inherit the

same aggressive state as their mother cells

Therefore, the basic information about our kinetic system can be
“extracted” from the corresponding macroscopic equations.

[2] L. Arlotti, M. Lachowicz, Mathl. Comput. Modelling, 23, 11–29 (1996).



Positivity of the existing solution

Theorem 2
If (n1(t), n2(t), n3(t)) is a solution to the Cauchy problem for the
macroscopic equations defined on the time interval [0,T ], with
0<T <∞, then this solution is positive, that is

n1(t) > 0 , n2(t) > 0 , n3(t) > 0 , t ∈ [0,T ] .



Existence, uniqueness and asymptotic behaviour

Theorem 3
If the proliferative rates p21, p31 are such that p21 < p31, then the
Cauchy problem for the macroscopic equations has a unique global
solution

(
n1(t), n2(t), n3(t)

)
defined on all R+.

This solution is bounded and

lim
t→∞

n1(t) = 0,

lim
t→∞

n2(t) = 0,

lim
t→∞

n3(t) = α < +∞,

whatever are the corresponding initial data.



Numerical tests
Simulations
We solve numerically the kinetic system, by discretizing the
equations in the activation variable and using a quadrature
rule (trapezoidal).

Objective
Investigate the influence of certain parameters on the behaviour
of the solution.

Idea
Which trends or reactions typical in autoimmune diseases can be
reproduced by our kinetic model?



Numerical scheme
The discretization of the activation state variable u, combined with
quadrature approximations, leads to a system of 2(m+1)+1 ODEs,
df k

1
dt

(t) = 2c13f3(t)
(
Qm

k [vf1(t, v)]− ukQm
k [f1(t, v)]

)
− c13u2

k f k
1 (t)f3(t)

+c12
[
2
(

ukQk
0 [f1(t, v)]−Qk

0 [vf1(t, v)]
)
− (uk − 1)2f k

1 (t)
]
Qm

0 [f2(t, v)]

+p12f k
1 (t)Qm

0 [f2(t, v)]− d13f k
1 (t)f3(t), k = 0, . . . , m,

df k
2

dt
(t) = 2c23f3(t)

(
Qm

k [vf2(t, v)]− ukQm
k [f2(t, v)]

)
− c23u2

k f k
2 (t)f3(t)

+c21
[
2
(

ukQk
0 [f2(t, v)]−Qk

0 [vf2(t, v)]
)
Qm

` [f1(t, v)]− (uk − 1)2f k
2 (t)Qm

0 [f1(t, v)]
]

+p21f k
2 (t)Qm

0 [f1(t, v)]− d23f k
2 (t)f3(t), k = 0, . . . , m,

df3
dt

(t) = p31f3(t)Qm
0 [f1(t, v)].



Numerical tests

Trending to illness
ISCs are unable to regulate the autoimmune reaction.
The result is a full autoimmune cascade and trending to illness.

Mass proliferation of very active SRTCs
due to insufficient regulation by ISCs
or insufficient destruction of SRTCs and
SAPCs by ISCs or low tolerance of
SRTCs to self-antigens.
p12=20, p21=19, p31=20,
d13=0.35, d23=0.025, w?=1/30.



Numerical tests

Immunosupression
ISCs are efficient in aborting the autoimmune reaction.
The result is the suppression of the autoimmune reaction.

Very low proliferation of active SRTCs
due to an efficient regulation by ISCs

SAPCs are less efficient in increasing the
activity of SRTCs
p12=20, p21=19, p31=22,
d13=0.35, d23=0.025, w?=1/30.



Numerical tests

Immunotolerance
SRTCs become more tolerant to SAPCs
The result is a lowering effect on the number of SRTCs with high activity

Very low proliferation of active SRTCs

SRTCs become more tolerant to SAPCs
p12=20, p21=19, p31=20,
d13=0.35, d23=0.025, w?=5/6.



Perspectives

Work in progress
• An immunotherapy treatment was introduced in the description

• A fourth population of Interleukin-2 (IL-2) is considered to induce the
proliferation of ISCs

• An artificial inlet representing an external drug therapy is introduced

Future work
• Other biological relevant populations can be introduced in the model

• A time delay can be included in the model to describe the chronicity
of the autoimmune disease.



Thank you for your attention!


