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Abstract. In this article we prove local-in-time existence and uniqueness of solution to a non-
isothermal cross-diffusion system with Maxwell-Stefan structure.

1. Introduction

The Maxwell-Stefan diffusion equations provide an accurate description of diffusive phenomena
in gaseous mixtures. Despite its wide use in applied contexts (see [13, 11]), the mathematical study
of the Maxwell-Stefan system is quite a recent subject (we refer to [7, 2, 10, 3, 6, 12, 4, 5, 9] and
the references therein).

Usually, the derivation of the Maxwell-Stefan diffusion equation starting from the Boltzmann
system for mixtures has been obtained by supposing the absence of advective phenomena and with
uniform and constant temperature [4, 5, 9]. However, applications often require us to take into
account the effects of the fluctuations in temperature on the diffusive behaviour of gaseous mixtures.
In a previous note [8], we derived a system which models diffusive phenomena in a non-isothermal
context, whose precise form is the following:

(1)



∂tci +∇x · Ji = 0 in (0,∞)× Ω, i = 1, . . . , n

∇x (ciT ) = −
∑
j 6=i

kij (cjJi − ciJj) in (0,∞)× Ω, i = 1, . . . , n

n∑
i=1

Ji = −α∇ctot in (0,∞)× Ω,

for the unknown concentrations ci(t, x), i = 1, . . . , n and for the unknown fluxes Ji(t, x), i =
1, . . . , n. The spatial domain Ω ⊂ Rd with d ∈ N is assumed to be bounded and with regular
boundary (at least of class C1). The coefficients kij ∈ R are strictly positive for i 6= j, i, j = 1, . . . , n
and are symmetric, i.e. kij = kji. Note that the diagonal elements kii for i = 1, . . . , n do not play
any role in the flux-gradient relations in (1). The coefficient α ∈ R is strictly positive. The function
T (t, x) represents the unknown local temperature of the system and by ctot(t, x) we denote the total
concentration of the mixture, i.e.

ctot(t, x) :=
n∑
i=1

ci(t, x).

This model will be supplemented with suitable initial conditions (cin1 , . . . , c
in
n ), T in(x), and with

homogeneous Neumann boundary conditions:

∇ci(t, x) · n(x) = 0, (t, x) ∈ (0,∞)× ∂Ω, i = 1, . . . , n.
1
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In [8], we have shown that it is possible to formally decouple the behaviour of the unknown quan-
tities ctot(t, x) and T (t, x) from system (1): they satisfy the coupled system (see [8, Lemma 2])

∂tctot − α∆ctot = 0 in (0,∞)× Ω,(2)

∂tT −
(

2

3
∂t log ctot

)
T −

(
5α

3
∇ log ctot

)
· ∇T = 0 in (0,∞)× Ω,(3)

with initial conditions

ctot(0, x) = cintot(x) :=
n∑
i=1

cini (x); T (0, x) = T in(x) x ∈ Ω,

for i = 1, . . . , n.
In the decoupled system (2)-(3), the evolution of the total concentration field is governed by Fickian
diffusion and the temperature field satisfies an advection equation where the temperature field is
being advected by the gradients of the concentration field. As the advective field is of zero normal
flux on the boundary ∂Ω, we do not need to impose any type of boundary data for the temperature
field. In the regime described by the above decoupled model, the variations of temperature with
respect to space and time are completely driven by the variations of the total concentration field.
We borrow the following result from [8] about the coupled system (2)-(3):

Proposition 1. Suppose the initial data (cintot, T
in) to the evolution equations (2)-(3) are non-

negative and satisfy

0 < cmin ≤ cintot(x) ≤ cmax <∞; 0 < Tmin ≤ T in(x) ≤ Tmax <∞.
Then

cmin ≤ ctot(t, x) ≤ cmax (t, x) ∈ [0,∞)× Ω.

Furthermore

T (t, x) = T in(X(0; t, x))e
2
3

t∫
0

∂t(log ctot)(s,X(s;t,x)) ds
for (t, x) ∈ [0,∞)× Ω,(4)

where X(s; t, x) is the flow associated with the vector field V(t, x) := −5α
3 ∇ log ctot.

The n mass balance equations in (1) can be compactly written as

∂tc + divx J = 0(5)

where we have used the following notations:

Concentration vector: c = (c1, . . . , cn)> ∈ Rn; Flux matrix: J = (J1, . . . , Jn)> ∈ Rn×d.
The operation of divergence on the matrix J should be understood as taking divergence of each
row vector of J, thus the end result divx J ∈ Rn. Next, consider the flux-gradient relations in (1).
Define matrices D ∈ Rn×d and F ∈ Rn×n as

Dij :=
∂(ciT )

∂xj
i = 1, . . . , n j = 1, . . . , d; Fij :=


kijci for j 6= i, i, j = 1, . . . , n.

−
∑
r 6=i

kircr for j = i = 1, . . . , n.

Then, the flux-gradient relations in (1) can be compactly written as

D = FJ.(6)
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Note that Ker(F>) = span{1} with 1 = (1, . . . , 1)> ∈ Rn, because of the symmetry kij = kji for all
i, j = 1, . . . , n. The linear dependence of the flux-gradient relations in (1) implies that the columns
of D belong to {span{1}}⊥. Fredholm Alternative, thus, implies that we can solve for J in terms
of D. With regard to inverting the relation (6), we shall follow the lead in [2, 10] and apply the
Perron-Frobenius theory to the quasi-positive matrix F. Next, we record some spectral properties
of the matrix F adapted from [10] (we refer to [10, Lemma 2.1 and Lemma 2.2 on pp.2426-2427]
for detailed proof).

Lemma 1. Let δ := cmin mini,j=1,...,n, i 6=j kij > 0 and let η := 2cmax
∑n

i,j=1,j 6=i kij. Then the
spectrum of −F satisfies

σ(−F) ⊂ {0} ∪
[
δ, η
)
.

Let F̃ := F
∣∣
im(F)

. Then, F̃ is invertible on the image im(F). Furthermore, the spectrum of −F̃
satisfies

σ(−F̃) ⊂
[
δ, η
)
.

The next result gives a parabolic problem (reduced in dimension) which is equivalent to the
Maxwell-Stefan model (1).

Theorem 2. Let c,J be the solution to the non-isothermal Maxwell-Stefan diffusion model (1) and
let ctot, T be the known solution to the associated decoupled system. Let c′ := (c1, . . . , cn−1)

> and
let J′ := (J1, . . . , Jn−1)

>. Then we have

J′ = −T F−10 ∇c
′ − F−10 c′ ⊗∇T − αF−10 c̃′ ⊗∇ctot(7)

where the matrix F0 ∈ R(n−1)×(n−1) has the elements

(8) [F0]ij :=


− (kij − kin) ci i 6= j, i, j = 1, . . . , n− 1∑

j 6=i
(kij − kin) cj + ctotkin i = j = 1, . . . , n− 1

and c̃′i = kinci for i = 1, . . . , (n − 1). Furthermore, solving the Maxwell-Stefan system (1) is
equivalent to solving the following quasi-linear parabolic system for the concentration vector c′(t, x):

∂tc
′ − div

(
T B∇c′

)
= r(c′)(9)

where B := F−10 and the lower order term

r(c′) = div
(
B
(
c′ ⊗∇T

))
+ α div

(
B
(
c̃′ ⊗∇ctot

))
− ∂tctot.(10)

Proof. From Lemma 1, we have that the matrix F in the flux-gradient relation (6) can be inverted
on im(F) = {span{1}}⊥. Note, however, that the column vectors of the flux matrix J in (6) do not
belong to {span{1}}⊥ (unless ctot is constant, i.e. in the standard Maxwell-Stefan case) because
of the closure relation in (1): in terms of the matrix elements we have

n∑
i=1

Jij + α∂jctot = 0 for each j = 1, . . . , n.

Next, define a matrix

J̃ :=
(
J̃1, . . . , J̃n

)>
with the vectors J̃i :=

{
Ji for i 6= n

Jn + α∇ctot otherwise.
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Observe that, by construction, the columns of the new matrix J̃ belong to {span{1}}⊥. We are
essentially going to rewrite the flux-gradient relation (6) as

D̃ := D + FA = FJ̃(11)

where the matrix A := J̃− J. The characterization of im(F) and the definition of D̃ also suggest
that the columns of the matrix D̃ belong to {span{1}}⊥. Following the work of Jüngel and Stelzer
[10, p. 2428], we eliminate the nth component in the concentration vector. We reduce the system
of n components, into a system of n − 1 components. To that end, define the matrix X and its
inverse with the elements

Xij :=


1 i = j = 1, . . . , n

−1 i = n, j = 1, . . . , n− 1

0 otherwise.

X−1ij :=


1 i = j = 1, . . . , n

1 i = n, j = 1, . . . , n− 1

0 otherwise.

Acting X−1 on the left of D̃ and J̃ yields

X−1D̃ =

(
∇(c′T ) + α c̃′ ⊗∇ctot

0

)
; X−1J̃ =

(
J′

0

)
where c̃′ ∈ Rn−1 with elements c̃′i = kinci for i = 1, . . . , (n− 1). A computation also yields

X−1FX =

(
−F0 c̃′

0 0

)
with the matrix F0 given by (8). Using the similarity between the blockwise upper-triangular
matrix −X−1FX and −F, we can deduce that F0 is invertible using Lemma 1 (see Lemma 2 for
further details). Next, we act X−1 on the left of the modified flux-gradient relation (11) yielding

X−1D̃ =

(
∇(c′T ) + α c̃′ ⊗∇ctot

0

)
= X−1FXX−1J̃ =

(
−F0 c̃′

0 0

)(
J′

0

)
from which we deduce the relation (7). Now, act X−1 on the left of the continuity equation (5)
yielding

∂tc
′ + divJ′ = 0.

Substituting (7) for J′ in the above equation yields the quasi-linear parabolic equation (9). �

2. Local existence and uniqueness result

Our strategy to prove well-posedness of the model problem (1) is to prove that a unique solution
exists for the reduced quasi-linear parabolic system (9) (see Theorem 2 which shows that these two
systems are equivalent). To this end, we need the notion of an operator being normally elliptic.
Next, we give the definition of this notion. For further details, we suggest the book chapter [1]. We
shall then apply some well-known results for quasi-linear parabolic systems based on Lp-maximal
regularity.

Definition 1 (Normally Elliptic). A linear second order operator Au := −∂j(ajk(t, x)∂ku + bju)

on Ω ⊂ Rd is said to be normally elliptic if the associated principal symbol aπ(x, ξ) := ajkξ
jξk for

ξ ∈ Sd−1 has a spectrum away from zero, i.e.

(12) σ (aπ(x, ξ)) ⊂ {z ∈ C s.t. Rez > 0} .
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Remark 1. In the quasi-linear setting, i.e. when the coefficients ajk(t, x, u) in the differential
operator depends on the solution u(t, x), the notion of normal ellipticity should be interpreted as
follows: the associated principal symbol has a spectrum away from zero – i.e. to satisfy (12) – for
each u ∈ E where E is the space in which we look for solutions to the given quasi-linear problem.

Our next task is to prove local (in time) existence-uniqueness result for the reduced system (9).
For readers’ convenience, we shall recall the notion of strong solutions to the quasi-linear problem
(9) in the Lp-sense.
Definition 2. A function v(t, x) defined on [0, `)× Ω is said to be a strong solution to (9) if

v ∈ C([0, `); [L1(Ω)]n−1) ∩ [L∞([0, `− τ ]× Ω)]n−1, ∀τ ∈ (0, `),

∀p ∈ [1,∞), ∂tv, ∂xkv, ∂
2
xkxl

v ∈ [Lp((τ, `− τ)× Ω)]n−1 ∀k, l ∈ {1, . . . , d}
and v(t, x) solves (9) a.e. in (0, `)× Ω.

Thanks to the strict positivity of δ and η (see Lemma 1 for their definitions), an immediate
consequence of [10, Lemma 2.3 on p. 2428], concerning the spectrum of the matrix B := F−10 is
Lemma 2. The matrix F0 given in (8) is invertible with spectra

σ (F0) ⊂ [δ, η); σ
(
F−10

)
⊂ (η−1, δ−1].

Note that Lemma 2 implies that the matrix TB has a spectrum away from zero as the temper-
ature field T (t, x) is bounded away from zero – see Proposition 1. Next, note that the spectrum
associated with the principal symbol of the quasi-linear operator in the reduced system (9) is
nothing but the spectrum of the matrix TB. This implies that the quasi-linear operator in (9) is
normally elliptic. As the coefficients in the reduced system (9) are all bounded, the local-in-time
existence of solution follows. We record the main result of this note below.
Theorem 3. Let the domain Ω ⊂ Rd be a bounded domain with smooth boundary. Let the initial
data (cin1 , . . . , c

in
n−1) to the quasi-linear problem (9) be non-negative measurable functions such that

n−1∑
i=1

cini (x) ≤ cmax

where cmax is the upper bound for the total concentration. Then, there exists a unique local-in-time
solution – in the Lp-sense (see Definition 2) – to the system (9).

Theorem 2 proves that the non-isothermal Maxwell-Stefan system (1) and the reduced quasi-
linear system (9) are equivalent. Hence we have the following

Corollary 3.1. Let cin1 , . . . , c
in
n be n non-negative functions belonging to L∞(Ω) such that

n∑
i=1

cini (x) ≤ cmax.

Let T in ∈ L∞(Ω) be a non-negative initial temperature field. Then, with (cin1 , . . . , c
in
n ) and T in

as initial datum, there exists a unique local-in-time solution to the non-isothermal Maxwell-Stefan
system (1).
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