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Abstract. In this paper we study the decay to the equilibrium state for
the solution of a generalized version of the Goldstein-Taylor system, posed in
the one-dimensional torus T = R/Z, by allowing that the nonnegative cross
section σ can vanish in a subregion X := {x ∈ T |σ(x) = 0} of the domain

with meas (X) ≥ 0 with respect to the Lebesgue measure.
We prove that the solution converges in time, with respect to the strong L2-

topology, to its unique equilibrium with an exponential rate whenever meas (T\
X) ≥ 0 and we give an optimal estimate of the spectral gap.

1. Introduction

The investigation about explicit rates of approach to equilibrium in large time,
for kinetic equations, is an active field of research and many results have been
obtained, both in the linear and in the non linear case.

An important concept, in this context, is hypocoercivity. This property appears
in many evolution equations which have a conservative part and a dissipative one.
Even if the conservative part alone does not induce relaxation and the dissipative
one is not sufficient to induce convergence to equilibrium, sometimes the combina-
tion of the two parts leads to relaxation. When this situation occurs, the equation
is said to be hypocoercive.

For kinetic equations, the conservative term is usually the free transport opera-
tor, which mixes the space and the velocity variables, whereas the dissipative part
is a collision operator, whose null space does not depend on the space variable.

Furthermore, the key ingredient of many proofs is based upon the independence
of the null space of the dissipative operator on the space variable. This allows indeed
a local control of the dissipative properties of the equation, and hence the solution
is locally “attracted” everywhere toward its local equilibrium (see, for instance,
[11, 7, 5, 16]).

The situation is, however, quite different in the degenerate case, i.e. when the
collision operator can vanish in the spatial domain of the problem (even if the
degeneracy happens only at isolated points). In the region of degeneracy, indeed,
the null space of the collision operator becomes trivial.

This problem has been studied for the first time by Desvillettes and the second
author in [4]. In this article, they proved, under very stringent hypotheses on the
degeneracy of the cross section, that the solution of the linear Boltzmann equation
and the solution of a reduced two-velocity model, namely the generalized Goldstein-
Taylor system, converge in time to their equilibrium with (at least) polynomial
speed. They also conjectured that some explicit rate should still exist even in more
general degenerate situations.

The deep reason of this conjecture is based on the fact that the hypocoercivity
properties, which are locally lost in the regions of degeneracy, can be recovered
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at a global level, through the action of the mixing term, here the free transport
operator.

However, at least in more than one space dimension, the decay rate to equilibrium
cannot be – in general – exponential, as shown by a counterexample of the authors
in [2].

Indeed, we proved that the linear Boltzmann equation on the torus Td, d ≥ 2,
with velocities on the sphere Sd−1, has, for a wide class of cross sections in L∞, a
L2-distance to equilibrium that cannot decay faster than t−1/2.

The exponential rate can be recovered only by assuming an additional hypothesis
on the geometrical structure of the cross section.

This additional requirement has been introduced by the authors in [3] and has
been called the geometrical condition, as a reminiscence of the Bardos-Lebeau-
Rauch condition that guarantees the exponential stabilization of the telegrapher’s
equation [1]. We proved that the geometrical condition is necessary and sufficient
to recover the exponential decay in time to equilibrium. However, our proof in [3]
is not constructive because it is based on a compactness argument.

Hence, the problem of finding an explicit exponential rate for the linear Boltz-
mann equation, with cross sections satisfying the geometrical condition, is still an
open problem. Likewise, finding the best convergence rate to equilibrium in the
general case is still open.

The aim of this article is to go beyond the actual state-of-the-art and give a
quantitative study of the spectral gap in the degenerate case. Here we will restrict
ourselves to consider the simplest possible degenerate kinetic equation.

We prove that the convergence to equilibrium for the generalized Goldstein-
Taylor system proposed in [4] is exponential in time and, moreover, we can exactly
characterize the convergence rate. The geometrical condition of [3] is automatically
fulfilled here, since the spatial domain is one-dimensional. Consequently, our result
agrees with the general theory.

The proof is based on the equivalent formulation of the problem in terms of the
telegrapher’s equation, by following a trick by Kac [8], and on a careful estimate
of the time decay of the energy for the non-homogeneous telegrapher’s equation,
proved by Rauch and Taylor in [13, 14] (see also [9]).

In this paper we completely characterize the spectral gap of the degenerate
Goldstein-Taylor system, with general degenerate cross section, in terms of the
geometrical properties of the cross section itself.

Because of the peculiar situation of the one-dimensional Euclidean space, all
uniformly bounded cross sections that differ from the null function (in L1 sense)
satisfy the geometrical condition, and hence they generate hypocoercive effects in
agreement with our general result in [3].

Our result is optimal and provides the definitive answer to the estimation of the
spectral gap of the Goldstein-Taylor model.

Part of the proof heavily depends on the fact that the set of admissible velocities
is discrete.

In the case of a continuous set of velocities, a similar result would need new
techniques of proof because the set of the moment equations is no longer closed.

The paper is organized as follows: in Section 2 we precisely state our problem
and then, in Section 3, we prove our main theorem about the long-time behaviour
of the problem.

2. The problem and its basic properties

We consider a simplified one-dimensional version of the linear Boltzmann equa-
tion in which only two velocities are allowed.
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It is a variant of the well-known Goldstein-Taylor model [6, 15]. It describes
the behaviour of a gas composed of two kinds of particles moving parallel to the
x-axis with constant speeds, of equal modulus c = 1, the first one in the positive
x-direction with density u := u(x, t), the other one in the negative x-direction
with density v := v(x, t). Both types of particles experience switches in velocity,
distributed under a Poisson law. The corresponding system of equations is:

(2.1)


∂u

∂t
+

∂u

∂x
= σ(x)(v − u)

∂v

∂t
− ∂v

∂x
= σ(x)(u− v),

where x ∈ T = R/Z and t ≥ 0.
Such set of equations will satisfy the initial conditions

(2.2) u(0, x) = uin(x), v(0, x) = vin(x).

We will suppose henceforth that (uin, vin) ∈ H1(T)×H1(T).
The cross section σ describes possible anisotropy effects. In what follows, we will

suppose that

(2.3) σ ∈ L∞ (T) , with σ ≥ 0 a.e. and

∫
T
σ(x) dx > 0.

We now state our main result:

Theorem 2.1. Let (uin, vin) ∈ H1(T) × H1(T) be nonnegative functions and let
σ ∈ L∞(T) satisfy (2.3). Denote also

u∞ :=
1

2

∫
T
(uin + vin) dx.

Then, there exists a positive constant A∗, depending on ||uin||H1(T), ||vin||H1(T) and
||σ||L∞(T), such that the solution (u, v) of the Goldstein-Taylor model (2.1)-(2.2)
satisfies the inequality

(2.4) H(t) := ∥u− u∞∥2L2(T) + ∥v − u∞∥2L2(T) ≤ A∗ exp (−αt) ,

where

α = 2∥σ∥L1(T).

Moreover, the decay rate α is optimal in the following sense:

α = sup
{
β ≥ 0 : ∀t ≥ 0, ∀(uin, vin) ∈ H1(T)×H1(T), H(t) ≤ A∗e

−βt
}
.

3. Proof of the main result

We now prove the main result of this article, namely the exponential decay in
time of the solution (u, v) of the generalized Goldstein-Taylor system (2.1)-(2.2) to
the stationary state (u∞, u∞).

The proof is based on the fact that the quantity

H(t) :=

∫
T
[(u− u∞)2 + (v − u∞)2] dx,

already defined in Theorem 2.1, is a Lyapunov functional of the system and is
controlled by the energy of the telegrapher’s equation (defined in (3.7) below). A
quantitative estimate on the long-time decay of H will give directly the asymptotic
behaviour of the L2 distance between the solution of (2.1)-(2.2) and the stationary
state.

Finally, the optimality of our result will be tested on a particular solution of the
generalized Goldstein-Taylor equations (2.1)-(2.2).
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We underline that the results presented below need different regularity require-
ments.

For this reason, we will write explicitly the hypotheses on the regularity of the
initial conditions and of the cross section in the statement of the corresponding
theorems.

3.1. A priori estimates. In order to make the paper self-consistent, we summarize
here some basic properties of the generalized Goldstein-Taylor system (2.1)-(2.2).
The first result concerns the well-posedness of the problem.

Proposition 3.1. Consider the Goldstein-Taylor model (2.1)-(2.2) with nonnega-
tive initial data (uin, vin) ∈ L1(T)× L1(T) and with cross section σ ∈ L∞ (T) such
that σ ≥ 0 a.e.. Then there exists a unique (generalized) nonnegative solution (u, v)
of this system in C(R+;L1(T))2.

Proof. The result is immediate since the collision term can be treated as a bounded
perturbation of the transport operator [12]. �

We then give some a-priori estimates of the Cauchy problem (2.1)-(2.2). The
following lemma holds:

Lemma 3.2. Let (u, v) be the solution of the generalized Goldstein-Taylor system
(2.1)-(2.2), with nonnegative initial data (uin, vin) ∈ L∞(T) × L∞(T) and with
nonnegative cross section σ ∈ L∞ (T). Then, for any smooth convex function φ(r),
r ≥ 0, we have

(3.1)

∫
T
[φ(u(t, x)) + φ(v(t, x))] dx ≤

∫
T

[
φ(uin(x)) + φ(vin(x))

]
dx

for all t > 0.
In particular, the conservation of mass and the maximum principle hold, i.e.

∥u(t, · ) + v(t, · )∥L1(T) = ∥uin + vin∥L1(T)

and
max{∥u(t, · )∥L∞(T) , ∥v(t, · )∥L∞(T)} ≤ ∥uin + vin∥L∞(T).

Proof. We apply the strategy of [10]. Let φ(r), r ≥ 0, a smooth convex function.
We multiply the first equation of (2.1) by φ′(u) and the second one by φ′(v). We
integrate on T and, by summing the two equations, we obtain

d

dt

∫
T
[φ(u) + φ(v)] dx = −

∫
T
σ(x)(u− v) [φ′(u)− φ′(v)] dx.

Since φ ∈ C2(Ω) is a convex function, then φ′ is monotone. Hence

σ(x)(u− v)[φ′(u)− φ′(v)] ≥ 0

because σ is nonnegative and then, for all t > 0,∫
T
[φ(u(t, x)) + φ(v(t, x))] dx ≤

∫
T

[
φ(uin(x)) + φ(vin(x))

]
dx.

By choosing φ(r) = r, we obtain the conservation of mass:

(3.2)

∫
T
[u(t, x) + v(t, x)] dx =

∫
T

[
uin(x) + vin(x)

]
dx.

By taking φ(r) = rp for all p ≥ 1, we obtain the boundedness of any Lp-norm∫
T
[u(t, x)p + v(t, x)p] dx ≤

∫
T

[
uin(x)p + vin(x)p

]
dx.

Moreover, when p → +∞, the lemma implies also the L∞ bound:

(3.3) 0 ≤ u(t, x), v(t, x) ≤ ∥uin + vin∥L∞(T).
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�

We give here a result, whose proof is similar to Proposition 3.1 of [4], showing
that the H1-regularity of the solution of the problem (2.1)-(2.2) is preserved in
time.

This result will be needed in the proof of our main theorem, which is based on
the use of Poincaré-type inequalities.

Proposition 3.3. Let (uin, vin) ∈ H1(T)×H1(T). Then, there exists a constant γ
(depending explicitly on ||uin||H1 , ||vin||H1 and ||σ||L∞) such that the solution (u, v)
of system (2.1)-(2.2) satisfies the bound

sup
t≥0

∫
T

(
(∂tu)

2 + (∂xu)
2

)
dx ≤ γ,

sup
t≥0

∫
T

(
(∂tv)

2 + (∂xv)
2

)
dx ≤ γ.

Proof. We differentiate the equations of system (2.1) with respect to the variable t,
and multiply the result by 2∂ u/∂t and 2∂ v/∂t respectively. After integrating with
respect to x ∈ T, we end up with

(3.4)
d

dt

∫
T

[(
∂ u

∂t

)2

+

(
∂ v

∂t

)2
]
dx = −2

∫
T
σ(x)

[
∂ u

∂t
− ∂ v

∂t

]2
dx ≤ 0.

We finally observe that

∂xu = −∂tu+ σ(v − u), ∂xv = ∂tv + σ(v − u).

Hence, using the bound above and the fact that σ ∈ L∞, we can conclude the proof
of Proposition 3.3. �

We define the macroscopic density

ρ(t, x) := u(t, x) + v(t, v), t > 0, x ∈ T,

and the flux

j(t, x) := u(t, x)− v(t, v), t > 0, x ∈ T.
From (2.1), it is easy to show that (ρ, j) verifies

(3.5)

 ∂tρ+ ∂xj = 0,

∂tj + ∂xρ = −2σj,
(t, x) ∈ R+ × T

with initial conditions ρ(0, x) = uin(x) + vin(x) and j(0, x) = uin(x)− vin(x).
By using a trick that comes back to Kac, it can be shown that j is the solution

of the telegrapher’s equation.
We have indeed the following result [8].

Proposition 3.4. Let j = u− v be the flux corresponding to the Goldstein-Taylor
system (2.1)-(2.2). Then j is the solution of the telegrapher’s equation
(3.6)

∂2
ttj − ∂2

xxj + 2σ∂tj = 0,

j(0, x) = uin(x)− vin(x),

∂tj(0, x) = 2σ(x)[vin(x)− uin(x)]− ∂xu
in(x)− ∂xv

in(x),

(t, x) ∈ R+ × T.
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In [14], the exponential decay in time to zero of the energy

(3.7) E(t) := ∥∂tj(t, · )∥L2(T) + ∥∂xj(t, · )∥L2(T)

of the telegrapher’s equation (3.6) has been proved, and explicit estimates have
been provided on the decay rate [14, 13]. More precisely, the following result holds
(see [9], Theorem 2):

Proposition 3.5. Let j be the solution of the telegrapher’s equation (3.6), posed
in the periodic torus T.

Then, there exists a positive constant C∗, depending on the initial data and on
σ, such that

E(t) =

∫
T
[(jt)

2 + (jx)
2] dx ≤ C∗e

−αt,

where
α = 2∥σ∥L1(T).

Moreover, the decay rate α is optimal in the following sense:

α = sup
{
β ≥ 0 : ∀t ≥ 0, ∀(uin, vin) ∈ H1(T)×H1(T), E(t) ≤ C∗e

−βt
}
.

3.2. A Lyapunov functional. The proof concerning the relationships between H
and the energy of the telegrapher’s equation E will be performed in several steps.
The first one concerns a bound on the weighted L2-norm of the flux.

Lemma 3.6. There exists a constant B ≥ 0 such that∥∥j√σ
∥∥2
L2(T) ≤ BE(t),

where
B = 2∥uin + vin∥L2(T).

Proof. We recall that
∂tj + ∂xρ = −2σj.

Multiplying both sides of the equality above by j and integrating in x ∈ T, we
obtain immediately that∫

T
j∂tj dx−

∫
T
ρ∂xj dx = −2

∫
T
σj2 dx.

The previous equation implies that∫
T
2σj2 dx ≤

∣∣∣∣∫
T
j∂tj dx

∣∣∣∣+ ∣∣∣∣∫
T
ρ∂xj dx

∣∣∣∣ .
By Cauchy-Schwarz’s inequality, the inequality above leads to

2

∫
T
σj2 dx ≤ ∥∂tj∥L2(T) ∥j∥L2(T) + ∥ρ∥L2(T) ∥∂xj∥L2(T)

or

2

∫
T
σj2 dx ≤

(
∥j∥L2(T) + ∥ρ∥L2(T)

)
E(t).

By Lemma 3.2, ∫
T
σj2 dx ≤ BE(t)

with

(3.8) B := 2
∥∥uin + vin

∥∥
L2(T) .

This ends the proof of the lemma. �

The next result gives a bound of the full L2-norm of the flux j, which will be
evaluated in terms of the energy E.
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Lemma 3.7. There exists a constant C > 0 such that

∥j∥2L2(T) ≤ CE(t).

Moreover we have

C =
2

∥
√
σ∥2L1(T)

[
B +

2

π2

(
∥
√
σ∥2L1(T) + ∥σ∥L1(T)

)]
.

Proof. First, we introduce the notation

β :=

∫
T

√
σ(x)dx.

Notice that
√
σ/β is a unit measure on T. Keeping that in mind, we have

(3.9)

∥j∥2L2(T) =

∫
T
(j)

2
dx

=

∫
T

(
j − 1

β

∫
T
j
√
σ dy +

1

β

∫
T
j
√
σ dy

)2

dx

≤ 2

∫
T

(
j − 1

β

∫
T
j
√
σ dy

)2

dx+
2

β2

(∫
T
j
√
σ dx

)2

.

By Jensen’s inequality and Lemma 3.6, we have

(3.10)

2

β2

(∫
T
j
√
σ dx

)2

≤ 2

β2

∫
T
j2σ dx

=
2

β2

∥∥j√σ
∥∥2
L2(T)

≤ 2B

β2
E(t)

where B is defined in (3.8).
Since

√
σ/β is a unit measure on T, the first term in the right-hand of the

inequality gives(
j − 1

β

∫
T
j
√
σ dx

)2

=

(
j −

∫
T
j(x) dx− 1

β

∫
T

√
σ(x)

(
j −

∫
T
j(y) dy

)
dx

)2

≤ 2

(
j −

∫
T
j(x) dx

)2

+
2

β2

(∫
T

√
σ(x)

(
j −

∫
T
j(y) dy

)
dx

)2

.

Thus, by Cauchy-Schwarz’s inequality and Poincaré-Wirtinger inequality,

(3.11)

∫
T

(
j − 1

β

∫
T
j
√
σ dx

)2

dx ≤ 2

π2

(
1 +

1

β2
∥σ∥L1(T)

)
E(t).

Hence we obtain the result by applying inequalities (3.11) and (3.10) in inequality
(3.9). �

Our last preliminary result is the control of the L2-norm of the spatial derivative
of the macroscopic density ρ in terms of the energy E.

Lemma 3.8. There exists a constant K > 0 such that

∥∂xρ∥2L2(T) ≤ KE(t).

with

K := 2 + 8 ∥σ∥2L∞(T) C,

where C is defined in Lemma 3.7.
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Proof. We recall that

∂tj + ∂xρ = −2σj.

Therefore we have:

|∂xρ|2 ≤ 2 |∂tj|2 + 8 ∥σ∥2L∞(T) |j|
2
.

Integrating both sides of the inequality above, we obtain

∥∂xρ∥2L2(T) ≤ 2 ∥∂tj∥2L2(T) + 8 ∥σ∥2L∞(T) ∥j∥
2
L2(T)

thus, by Lemma 3.7, there exists K > 0 such that

∥∂xρ∥2L2(T) ≤ KE(t).

�

3.3. Conclusion. We are now ready to prove Theorem 2.1.

Proof. Assume that uin, vin ∈ H1 (T) . Since u∞ is constant and nonnegative, from
the definition of H given in (2.4), we obtain an equivalent formulation in terms of
the macroscopic quantities ρ and j:

(3.12) H(t) =
1

2

(
∥ρ− 2u∞∥2L2 + ∥j∥2L2

)
.

By the conservation of the mass, given in Lemma 3.2, for each t > 0 we have∫
T
ρ(t, x) dx = 2u∞.

Poincaré-Wirtinger’s inequality hence assures that

∥ρ− 2u∞∥2L2 ≤ ∥∂xρ∥2L2 .

Using the inequality above in equality (3.12) implies

H(t) ≤ 1

2

(
∥∂xρ∥2L2 + ∥j∥2L2

)
.

Consequently by Lemma 3.7 and Lemma 3.8 there exists a constant A > 0 such
that

H(t) ≤ AE(t).

Thee constant A can be explicitly computed. Indeed

A :=
1

2
(C +K),

where C and K are defined in Lemma 3.7 and Lemma 3.8. Proposition 3.5 allows
to conclude that the inequality in Theorem 2.1 holds for every solution with uin,
vin ∈ H1 (T), with A∗ = AC∗.

In order to prove the optimality of the decay rate we consider an exact solution of
the Goldstein-Taylor model (2.1)-(2.2), with initial data and cross section satisfying
the hypotheses of Theorem 2.1. Then we check that its decay rate to equilibrium
is exactly the rate α prescribed by the same theorem.

The procedure used for obtaining an exact solution of (2.1)-(2.2) is based on an
explicit solution of the telegrapher’s equation. We impose, via Theorem 3.6, that
this particular solution of the telegrapher’s equation corresponds to the flux of the
Goldstein-Taylor model (2.1)-(2.2) for a well chosen initial datum and a suitable
cross section.

It is easy to prove, by direct inspection, that the function

j(t, x) = e−k∗t sin(2πx), k∗ > 0, x ∈ T and t ≥ 0

solves the telegrapher’s equation

∂2
ttj − ∂2

xxj + 2k∗∂tj = 0
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in the torus T, with initial conditions

j(0, x) = sin(2πx) ∂tj(0, x) = −k∗ sin(2πx),

if and only if k∗ = 2π.
Then, we consider (2.1)-(2.2), with constant cross section σ = 2π, and impose

that its flux satisfies the telegrapher’s equation written above, i.e. we suppose that
u and v verify

j(t, x) = u(t, x)− v(t, x) = e−2πt sin(2πx).

This means that we impose that u and v solve the system of uncoupled first order
partial differential equations

(3.13)


∂u

∂t
+

∂u

∂x
= σ(x)(v − u) = −2πe−2πt sin(2πx)

∂v

∂t
− ∂v

∂x
= σ(x)(u− v) = 2πe−2πt sin(2πx),

x ∈ T and t ≥ 0.
We now choose the particular initial conditions

(3.14)


uin(x) =

1

2

[
sin(2πx) + cos(2πx)

]
+ η

vin(x) =
1

2

[
cos(2πx)− sin(2πx)

]
+ η,

with η ≥ 2 in order to have uin and vin nonnegative almost everywhere.
By direct integration of (3.13), with initial data (3.14), we hence obtain that

u(t, x) =
e−2πt

2

[
sin(2π(x−t))(cos(2πt)−sin(2πt))+cos(2π(x−t))(cos(2πt)+sin(2πt))

]
+η

and

v(t, x) =
e−2πt

2

[
sin(2π(x+t))(sin(2πt)−cos(2πt))+cos(2π(x+t))(cos(2πt)+sin(2πt))

]
+η.

By direct inspection and by Theorem 3.1, we can verify that u and v are the unique
solution of the problem (2.1)-(2.2), with initial conditions (3.14) and constant cross
section σ = 2π, for all x ∈ T. Moreover, the functions u and v are nonnegative
because the Goldstein-Taylor model preserves the sign of the initial data. The flux
j = u− v solves the telegrapher’s equation (3.4) with initial conditions

j(0, x) = sin(2πx) ∂tj(0, x) = −2π sin(2πx).

We can now compute an accurate lower bound of H for the particular problem
(3.13)-(3.14): we notice that∫

T
j2 dx = e−4πt

∫
T
sin2(2πx) dx =

1

2
exp

(
−2∥σ∥L1(T)t

)
and, consequently, the estimate∫

T
j2 dx =

∫
T
(u− v)2 dx ≤ 2H(t)

for all t ≥ 0 allows us to prove the optimality of the decay rate and, hence, the
complete characterization of the spectral gap. �

Remark 3.9. We do not exclude that, for some well chosen initial conditions and
cross sections, the decay rate can be better than the rate indicated in Theorem 2.1.
This fact does not contradict Theorem 2.1, whose result is uniform for any choices
of the initial data.
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For example, if we consider the two functions

u = 1 + e−kt v = 1− e−kt, k ∈ R+, t ≥ 0,

it is easy to prove, by direct inspection, that they solves problem (2.1)-(2.2), with
initial conditions

uin = 2 vin = 0, for all x ∈ T
and constant cross section σ = k/2 for all x ∈ T.

The asymptotic equilibrium solution is given by

u∞ =
1

2

∫
T
(uin + vin) dx = 1

and hence

H(t) = ∥u− u∞∥2L2(T) + ∥v − u∞∥2L2(T) = 2e−2kt = 2 exp
(
−4∥σ∥L1(T)t

)
.

On the other hand,

E(t) = ∥∂tj(t, · )∥L2(T) + ∥∂xj(t, · )∥L2(T) = 4k2e−2kt = 4k2 exp
(
−4∥σ∥L1(T)t

)
.

The decay rate obtained here is hence better than the forecasts of Theorem 2.1
and Proposition 3.5. However, this behaviour is a consequence of the spatially
homogeneous character of the solution. A simple Fourier analysis of the solution of
the telegrapher’s equation shows, indeed, that the spatial derivative in the equation
is responsible of a degradation of the convergence speed to equilibrium with respect
to the spatially homogeneous case.
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(É. B.) Institut Géographique National, Laboratoire de Recherche en Géodésie, Uni-
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