
GPU-ACCELERATED NUMERICAL SIMULATIONS OF

THE KNUDSEN GAS ON TIME-DEPENDENT DOMAINS

FLORIAN DE VUYST AND FRANCESCO SALVARANI

Abstract. We consider the long-time behaviour of a free-molecular gas
in a time-dependent vessel with absorbing boundary, in any space di-
mension. We first show, at the theoretical level, that the convergence
towards equilibrium heavily depends on the initial data and on the time
evolution law of the vessel. Subsequently, we describe a numerical strat-
egy to simulate the problem, based on a particle method implemented on
general-purpose graphics processing units (GPGPU). We observe that
the parallelization procedure on GPGPU allows for a marked improve-
ment of the performances when compared with the standard approach
on CPU.

1. Introduction

In this paper we consider an ideal rarefied gas contained in a deformable
vessel with absorbing boundary, kept at a uniform temperature.

When the mean free path of the gas molecules has the same order of
magnitude of a characteristic macroscopic length (for example, the size of
the vessel), continuum fluid dynamics is not valid, and we need to use a
kinetic description, as described, for example, in [5, 6].

However, since kinetic equations are defined on the phase space of the
system, the number of independent variables makes, from a computational
point of view, their numerical simulation much more expensive than the
numerical computations of standard fluid mechanics.

A popular strategy for the numerical study of kinetic equations is the
particle method, which has been declined in a number of interesting variants,
such as, for example, the Bird method [4] and the Nanbu-Babowski method
[7, 2].

The particle method is based on the physical ground that leads to write
the equations (and not on the equations themselves); among the main quan-
tities used in the simulations, indeed, one can find the mean free path be-
tween collisions, the particle free flow and the collision frequency.

In practice, the particle method simulates a gas, composed by a number
of particle that is not far from the Avogadro number, by a reduced set
of particles (whose number can be handled by a computing machine) that
simulate the global behaviour of the whole gas.

It is clear that such a method can obtain great benefits from a paralleliza-
tion procedure.

Date: September 14, 2012.
Key words and phrases. Transport equation, Particle methods, GPGPU, moving

domains.

1

2 F. DE VUYST AND F. SALVARANI

Indeed, the evolution of the particles is caused by the free flow (which can
be treated in a completely parallel way) and, in the case of collisional gases,
by the mutual interactions between particles, which are instantaneous in
time, local in space, and involving only a pair of particles in each collision.

In the situation studied in the paper, we consider the case where the gas
is so rarefied that the interaction between the gas molecules is neglected.
Such a gas is called the free-molecular gas or the Knudsen gas and, in the
case of moving domains, exhibits a variety of different behaviours in what
concerns its long-time evolution.

After a theoretical analysis of the long-time asymptotics of the Knudsen
gas in a moving vessel, we implement a simulation algorithm of the prob-
lem suitable to run on a general purpose GPU (GPU-based architecture
dedicated to high performance computing).

GPUs today reach a performance up to 3 TFLOPS at a fraction of the
cost of CPU-based architectures of similar performance. The use of this
kind of hardware architectures allows one to handle a greater number of
numerical particles (up to 108 per board) and hence to noticeably improve
both the speed and the precision of the numerical results.

Finally, we notice that, the free transport equation being the first step of
a splitting method concerning the numerical simulation of the Boltzmann
equation, the results presented here can be useful in the simulation on GPU
of the full Boltzmann equation on moving domains.

The paper is organized as follows: in the next section we provide the
theoretical background of the problem; then, in Section 3, we explain the
numerical method. Finally, in Section 4, we show and analyse our numerical
simulations.

2. Basic mathematical properties of the problem

In order to give a solid benchmark framework for our computations, we
first set up the theoretical aspects of the problem, and prove the main results
that we will reproduce in the numerical simulations.

Consider an open bounded domain Ω0 ⊂ R
d, d ∈ N, with a regular

boundary Γ0 = ∂Ω0, at least of class C1, which evolves with respect to
time.

The deformation of Ω0 that leads to the domain Ωt ⊂ R
d, t ∈ R

+ is
described by a function

Φ : R+ × R
d → R

d.

In other words, for any x0 ∈ Γ0, the vector xt0 = Φ(t, x0) defines the
surface Γt = ∂Ωt, which is the boundary of the domain of the problem at
time t.

We suppose that Φ is regular, at least of class C1, and moreover that
‖∂tΦ(t, x0)‖Rd ≤ c (c > 0), uniformly for all x0 ∈ Ω0 and for all t ∈ R

+. In
other words, we suppose that the velocity of the boundary is finite.

The problem considered in the paper consists in studying the time evolu-
tion of a collisionless gas, described by the classical transport equation

(2.1)
∂f

∂t
+ v · ∇xf = 0, (t, x, v) ∈ R

+ × Ωt × R
d,

GPU-ACCELERATED NUMERICAL SIMULATIONS OF THE KNUDSEN GAS 3

where f := f(t, x, v) is the density of particles which at time t and point x
move with velocity v.

The problem is supplemented with the initial and boundary conditions

(2.2) f(0, x, v) = f in(x, v) ∈ Lp(Ω0 × R
3), f(t, x, v)|x∈Γt = 0

where 1 ≤ p ≤ +∞.
Restrictions on the regularity of the initial data and on the properties

of the domain Ωt will be consider later on, when focusing on some special
features of the problem.

A crucial tool in studying Equation (2.1) is the forward exit time for a
particle starting from x ∈ Ω0 in the direction v ∈ R

d, defined as

τΩt(x, v) = inf{t > 0 : x+ tv ∈ Γt}.

In what follows, we denote by Bq(s) the ball centred in s ∈ R
d of radius

q ∈ R
+ and its volume by meas(Bq(s)), that is

meas(Bq(s)) =
πd/2

Γ(n/2 + 1)
.

The proof of the following theorem is immediate:

Theorem 2.1. Suppose that ‖∂tΦ(t, x0)‖Rd ≤ c uniformly for all x0 ∈ Ω0

and for all t ∈ R
+. Then, Problem (2.1)-(2.2) admits a unique solution for

any p ∈ [1,+∞] and for all t ∈ R
+. Moreover, the only stationary solution

of this problem in the class of Lp-functions is f = 0.

Proof. The unique explicit solution of the problem is

(2.3) f(t, x, v) = f in(x− vt, v)1τΩt (x,v)>t,

as shown by the method of characteristics.
It is finally straightforward to prove that the only possible stationary

solution of Equation (2.1), with vanishing boundary condition is f = 0,
since the stationary version of equation (2.1) reduces to v · ∇xf = 0.

Hence the theorem is fully proven.
�

Another important feature of the problem is its long-time asymptotics.
The situation is more complex than the corresponding problem in a fixed

domain, and a variety of behaviours occurs: sometimes the convergence to
zero is achieved in a finite time, in some other cases the speed of convergence
is algebraic, sometimes there is no convergence towards equilibrium.

We point out that the possibility of algebraic convergence is not surpris-
ing, as shown by Bernard and Salvarani in [3] for the linear transport equa-
tion and by Aoki and Golse [1] for the Knudsen gas in a vessel whose wall
is kept at a uniform and constant temperature, assuming diffuse reflection
on the vessel wall.

We have the following result:

Theorem 2.2. Let us consider the initial-boundary value problem (2.1)-
(2.2). The following behaviours concerning the long-time asymptotics of the

problem are possible:

4 F. DE VUYST AND F. SALVARANI

1) If Ωt is uniformly bounded for all t ∈ R
+ by an hypersphere BR(0),

with R > 0, and there exists V > 0 such that supp (f in) ⊂ Ω0× (Rd \
BV (0)), then the extinction time of the solution f is finite.

2) If Ωt is uniformly bounded for all t ∈ R
+ by an hypersphere BR(0),

with R > 0, and f in ∈ L∞(Ω0 × R
d), the solution converges to zero.

Moreover, we have the following estimate on the speed of convergence

towards the asymptotic state:

‖f(t, · , ·)‖L1(Ωt×Rd) ≤ meas(BR(0))‖f
in‖L∞(Ω0×Rd)

(

4R

t

)d

.

3) If Ωt is not uniformly bounded by an hypersphere BR(0), with R > 0,
then it may exist no stationary state.

Proof. The strategy of proof is different in the three cases.

1) Since Ωt is uniformly bounded for all t ∈ R
+ by the hypersphere

BR(0), and v ∈ (Rd \ BV (0)), by looking at the explicit solution
(2.3) we can deduce that the worst forward exit time is τBR(0)(x, v) ≤
2R/V , and hence the extinction time is finite.

2) We use a technique based on an upper solution of the problem, de-
fined on a fixed hypersphere BR(0), with R > 0 (which is such that
Ωt ⊂ BR(0) uniformly for all t ∈ R

+ by hypothesis).
We hence consider the function g, solution of the problem

∂g

∂t
+ v · ∇xg = 0, (t, x, v) ∈ R

+ ×BR(0) ×R
d,

with the initial conditions g(0, x, v) = f in(x, v) when x ∈ Ω0 and
g(0, x, v) = 0 when x ∈ BR(0) \ Ω0, and with absorbing boundary
data

g(t, x, v)|x∈∂BR(0) = 0.

It is straightforward to prove that

g(t, x, v) = f in(x− vt, v)1τBR(0)(x,v)>t,

and that g ≥ f for a.e. (t, x, v) ∈ R
+ ×Ωt ×R

d. In general, we have
that

‖g(t, · , ·)‖L1(BR(0)×Rd) ≤ ‖f in‖L1(Ω0×Rd).

We now suppose that t > 0. Thanks to the explicit form of g and
the fact that its domain of definition is fixed, we have that

‖g(t, · , ·)‖L1(BR(0)×Rd) ≤

∫

BR(0)×Rd

f in(x, v)1x∈Ω0 dxdv ≤

‖f in‖L∞(Ω0×Rd)

∫

BR(0)

∫ 2R/t

−2R/t
. . .

∫ 2R/t

−2R/t
dxdv1 . . . dv1dvd =

Vol(BR(0))‖f
in‖L∞(Ω0×Rd)

(

4R

t

)d

,

which is the desired result.

GPU-ACCELERATED NUMERICAL SIMULATIONS OF THE KNUDSEN GAS 5

3) We give the following counterexample: Ωt = B1+2t(0) and f in =
1‖v‖

Rd
≤1 on B1(0) × R

d. The explicit form (2.3) of the solution

implies that
∫

Rd×Rd

fdxdv = meas(B1(0))
2

for all time t > 0, and hence there exists no extinction time.

�

Remark 2.3. The situations listed on Theorem 2.2 are not exhaustive nor

optimal. They depend, indeed, on the geometry of the moving domain, to-

gether with the functional form of the initial conditions.

3. The numerical strategy

The basic point of a particle method is the discretization of the unknown
function f by means of a sum of Dirac masses, centred in (xk(t), vk(t))1≤k≤N ,
which represent a set composed by N ∈ N macro-particles that evolve in the
phase space of a system.

More precisely, our working hypothesis is the approximation

f =

N
∑

k=1

ωk δ(x− xk(t)) δ(v − vk(t)),

where ωk is the weight of the k-th particle.
Once the number N of numerical particles has been chosen, we initialize

the problem by approximating the initial condition f in by means of

f in(x, v) =

N
∑

k=1

ωk δ(x− x0k) δ(v − v0k),

and then the time evolution of the system is obtained by deducing the time
evolution of the macro-particles on the characteristic curves of the problem
(2.1)-(2.2). In our case, we obtain the following evolution rule for the free
flow of the numerical particles:

x′k(t) = vk(t),

v′k(t) = 0,

under the initial conditions (xk(0), vk(0)) = (x0k, v
0
k), for all 1 ≤ k ≤ N .

The method is naturally conservative and highly parallelizable. In the
next section, we shall give the details of the numerical strategy.

4. Implementation and benchmarks

We have produced two different codes, the first one is a classical sequential
code, and the second one is based on a thread-based GPU parallelization
technique.

The numerical tests on the long-time asymptotics of the problem al-
low to evaluate the mean GPU speedup factor compared to a sequential
monothread CPU computation.

6 F. DE VUYST AND F. SALVARANI

Figure 1. Evolution of the L1-norm of the discrete distri-
bution generated by the initial condition f in

1 into the sphere
Br(t)(0).

The speedup factor is evaluated as a function of the number of particles N .
The hardware being used is a PC with an Intel Xeon CPU E56202.40 GHz

and a nVIDIA GPGPU TESLA C2070, 448 cores with 6 GB memory, 14 mul-
tiprocessors, 510 Gflop/s in double precision and 960 Gflop/s in single pre-
cision.

All the computations presented here have been performed in single preci-
sion. The nVIDIA CUDA toolkit 4.1 is used.

In all computations, we have considered a three-dimensional spatial prob-
lem, i.e., all positions and velocities of the particles belong to a subset of R3.
This means that each particle is individuated at each time instant t by a set
of six independent variables in the phase-space R

3 × R
3.

We have then performed three numerical tests which represent the three
prototypes of the behaviours described in Theorem 2.2.

Let x = (x1, x2, x3) ∈ R
3 and v = (v1, v2, v3) ∈ R

3. We first consider the
sphere Br(0), where the radius r = r(t) is given by

r2(t) = e−t + 2(1 − e−t), t ≥ 0.

We numerically studied the time evolution of the problem with two different
initial data,

f in
1 = 1{(x,v)∈R3×R3 : |xi|≤1/2, 1/4≤vi≤1, i=1,2,3}

and

f in
2 = 1{(x,v)∈R3×R3 : |xi|≤1/2, |vi|≤1, i=1,2,3},

by using 220 = 1, 048, 576 numerical particles, and for t ∈ [0, 10].
We observe the finite in time extinction of the solution for the initial con-

dition f in
1 (Figure 1) and the extinction with time rate t−3 for the initial

condition f in
2 , as expected, the latter plotted both in linear and in logarith-

mic scale (Figures 2 and 3).

GPU-ACCELERATED NUMERICAL SIMULATIONS OF THE KNUDSEN GAS 7

Figure 2. Evolution of the L1-norm of the discrete distri-
bution generated by the initial condition f in

2 into the sphere
Br(t)(0) (linear scale).

Figure 3. Evolution of the L1-norm of the discrete distri-
bution generated by the initial condition f in

2 into the sphere
Br(t)(0) (logarithmic scale).

In this case we have also computed the numerical decay rate with a least
square methods on the time interval t ∈ [6, 10]. The numerical decay rate is
equal to 2.98, a value which is very close to the theoretical one, d = 3.

We finally consider the domain B1+3t/5(0), with initial data f in
1 . In Fig-

ure 4 we recover the behaviour predicted by the third point in Theorem 2.2,
namely the absence of an asymptotic equilibrium state (which should have
L1-norm equal to zero). Again, in the simulation shown in Figure 4 we have
used 220 numerical particles.

8 F. DE VUYST AND F. SALVARANI

Figure 4. Evolution of the L1-norm of the discrete distri-
bution generated by the initial condition f in

1 into the sphere
B1+3t/5(0).

In all cases, the GPU results are identical to the CPU ones up to the
rounding error.

On each time step the particles are moved according to their velocity. The
particle weight is set to zero once a particle leaves the sphere of interest.

In the parallelized code, this task is done in parallel on the GPU. For each
discrete instant, we also compute the L1-norm of the distribution according
to the discrete formula:

‖f(t, · , ·)‖L1(R3×R3) =
1

N

N
∑

i=1

1(‖xi(t)‖≤r(t)) .

This GPU parallel reduction requires particular attention for performance
purpose. Actually we use the GPU shared memory for partial reduction
on each CUDA block. We based our implementation from the CUDA GPU

Computing SDK 4.1, reduction example. The numerical complexity of a
reduction operation (sum, max, . . .) on an array of size N over P proces-
sors is known to be O(N/P + log(N)).

The CUDA kernel function of the particle positions and the weight update
are given by the following instructions:

dim3 grid(448, 1, 1);

dim3 block(512, 1, 1);

k = (float)0.0;

while (k<Tmax)

{

k += dt;

c = (float)exp(-1.0*k)*1.0 + (1.0-exp(-1.0*k))*2.0;

//

xupdate<<<grid, block>>> (dev_x1, dev_x2, dev_x3, dev_v1,

dev_v2, dev_v3, dev_weight, c);

reduce<float>(N, numThreads, numBlocks, whichKernel,

GPU-ACCELERATED NUMERICAL SIMULATIONS OF THE KNUDSEN GAS 9

dev_weight, d_odata);

//

// sum partial sums from each block on CPU

// copy result from device to host

// (of size numBlocks*sizeof(float))

cudaMemcpy(h_odata, d_odata, numBlocks*sizeof(float),

cudaMemcpyDeviceToHost);

gpu_result = (float)0.0;

// small loop

for (int i=0; i<numBlocks; i++) {gpu_result += h_odata[i];

}

This has to be compared with the C code of the time loop including the call
of the particle update kernel and the reduction kernel for the computation
of the L1-norm:

__global__ void xupdate(float *x1, float *x2, float *x3,

float *v1, float *v2, float *v3,

float *weight, float c) {

int tid = threadIdx.x + blockIdx.x * blockDim.x;

while (tid < N) {

x1[tid] += dt * v1[tid];

x2[tid] += dt * v2[tid];

x3[tid] += dt * v3[tid];

weight[tid] *= (x1[tid]*x1[tid] + x2[tid]*x2[tid] +

x3[tid]*x3[tid] < c);

tid += blockDim.x * gridDim.x;

}

}

We have then compared the results of the parallel code with respect to a
standard C sequential code.

The GPU parallel code does not take into account the reduction of the
active particles due to the absorbing moving boundary.

Indeed, a dynamical particle table would require many memory accesses
to be managed, that would lead either to a loss of performance with respect
to the code without particle reduction or a strong implementation effort,
requiring high GPU programming skills.

On the other hand, the sequential code can be easily optimized by remap-
ping the particles with positive weight and by eliminating the particles that
are absorbed by the boundary.

The algorithm that reduces the current number N of active particles has
been implemented in C language as follows:

j=0;

for(i=0;i<N;i++)

{

if (weight[i] > 0.0)

{

x1[j] = x1[i];

v1[j] = v1[i];

x2[j] = x2[i];

10 F. DE VUYST AND F. SALVARANI

v2[j] = v2[i];

x3[j] = x3[i];

v3[j] = v3[i];

weight[j]= weight[i];

j=j+1;

}

}

N=j;

In what follows, we consider only the simulation generated by the initial
condition f in

2 into the sphere Br(t)(0). The other tests give very similar
results, and hence they are not reported here.

On Table 1, we give the mean speedup factor obtained on the C2070

board, where the number of particles N varies from N = 219 = 524, 288 to
N = 223 = 33, 554, 432 particles, with t ∈ [0, 4]. In all tests, the number of
particles with positive weight at the final time t = 4 is only the 6.37% of
the initial particles.

One can observe a speedup factor of over 25 for N = 225 particles. For
relatively small numbers of particles, the speedup varies between 17 and 25.
This behaviour is certainly due to a stronger rate of memory communication.

Nb of particles N GPU time (sec) GPU/CPU speedup factor

219 0.99 17.6

220 = 1, 048, 576 1.96 18.0

221 3.89 18.7

222 7.37 22.6

223 14.78 24.4

224 29.60 24.7

225 = 33, 554, 432 60.39 26.3

Table 1. Total GPU time computation and speedup factor
relatively to a sequential (optimized) CPU computation.

We would like to end this section with a general comment and a deep
question about code comparability.

It is, of course, difficult to define an absolute measure of performance
speedup between a sequential code and a GPU-accelerated one.

It has indeed been shown that code optimizations which may be done
on the sequential code are not always relevant for GPU implementations:
the constraints on the algorithm are strongly depending on the physical
behaviour of the problem and some strategies, that are very efficient in a
sequential code, can be counter-productive on a parallel code (for example,
when they would imply a lot of memory rearrangement).

GPU-ACCELERATED NUMERICAL SIMULATIONS OF THE KNUDSEN GAS 11

An example of this behaviour can be seen when compared the sequential
code that we used here with the same code without particle reduction: we
found that the speedup factors are very sensitive to the initial condition, on
the evolution law of the moving domain and the on time interval.

By using as initial condition f in
2 into the sphere Br(t)(0), with 105 parti-

cles, the code with particle reduction is 1.45 times faster than the code with-
out reduction when the simulation covers the time interval [0,5], whereas the
code without reduction is twice faster than the code with reduction when
the simulation covers the time interval [0,1].

Moreover, because CPU are generally made of 4 or 6 cores, researchers
are disputing the fact that performance speedup should be measured from
a monothread computation rather than a multithreaded run (using openMP

for example).
For that reason, it is of course of paramount importance to clearly specify

the comparison methodology.

5. Conclusions

We have presented an implementation of a GPU-accelerated particle method
to numerically simulate a Knudsen gas in a vessel with moving boundary
with absorbing boundary conditions.

After proving some possible dynamics of convergence to equilibrium, we
have recovered, in the numerical simulations, the theoretical results.

The parallelized code gives a considerable improvement of the perfor-
mances of the code (up to a factor 26) and allows us to handle a greater
number of numerical particles than those allowed by standard sequential
programming. Since the free transport step is also an essential part of any
particle method for space-inhomogeneous kinetic system, this improvement
of the performances will be useful also for the simulation of collisional gases.

Acknowledgements

The authors would like to thank nVIDIA for the TESLA equipment Grant

in 2011 that made this work possible.

References

[1] Kazuo Aoki and François Golse. On the speed of approach to equilibrium for a colli-
sionless gas. Kinet. Relat. Models, 4(1):87–107, 2011.

[2] H. Babovsky. On a simulation scheme for the Boltzmann equation. Math. Methods

Appl. Sci., 8(2):223–233, 1986.

[3] Étienne Bernard and Francesco Salvarani. On the convergence to equilibrium for de-
generate transport problems, 2012.

[4] G. A. Bird. Molecular gas dynamics and the direct simulation of gas flows, volume 42
of Oxford Engineering Science Series. The Clarendon Press Oxford University Press,
New York, 1995. Corrected reprint of the 1994 original, With 1 IBM-PC floppy disk
(3.5 inch; DD), Oxford Science Publications.

[5] Carlo Cercignani. Rarefied gas dynamics. Cambridge Texts in Applied Mathematics.
Cambridge University Press, Cambridge, 2000. From basic concepts to actual calcula-
tions.

[6] Carlo Cercignani, Reinhard Illner, and Mario Pulvirenti. The mathematical theory of

dilute gases, volume 106 of Applied Mathematical Sciences. Springer-Verlag, New York,
1994.

12 F. DE VUYST AND F. SALVARANI

[7] Kenichi Nanbu. Direct simulation scheme derived from the Boltzmann equation I.
monocomponent gases. J. Phys. Soc. Japan, 49(5):2042–2049, 1980.

F.D.V: Centre de Mathématiques et de leurs Applications, UMR 8536, École

Normale Supérieure de Cachan, 61 avenue du Président Wilson, 94235 Cachan

France

E-mail address: devuyst@cmla.ens-cachan.fr

F.S.: Dipartimento di Matematica F. Casorati, Università degli Studi di

Pavia, Via Ferrata 1, I-27100 Pavia, Italy

E-mail address: francesco.salvarani@unipv.it

