
NUMERICAL SIMULATIONS OF DEGENERATETRANSPORT PROBLEMSFLORIAN DE VUYST AND FRANCESCO SALVARANIAbstrat. We onsider in this artile the monokineti linear Boltz-mann equation in two spae dimensions with degenerate ross setionand produe, by means of a �nite-volume method, numerial simulationsof the large-time asymptotis of the solution.The numerial omputations are performed in the 2Dx− 1Dv phasespae on Cartesian grids and deal with both ross setions satisfying thegeometrial ondition and ross setions that do not satisfy it.The numerial simulations on�rm the theoretial results on the long-time behaviour of degenerate kineti equations for ross setions satisfy-ing the geometrial ondition. Moreover, they suggest that, for generalnon-trivial degenerate ross setions whose support ontains a ball, thetheoretial upper bound of order t
−1/2 for the time deay rate (in L

2-sense) an atually be reahed.1. IntrodutionThis paper aims to give some numerial experiments in order to larify anopen question onerning the mathematial theory of the linear Boltzmannequation.The linear Boltzmann equation is a model, whose expliit form will bepresented in the next setion, that desribes at the simplest possible levelthe dynamis of an ensemble of partiles (for example, neutrons or photons)at the mesosopi sale, by taking into aount the e�ets of an host mediumon the partile population. The interations between partiles and mediumare represented by a non-negative funtion � the ross setion � whih takesinto aount all the absorption, emission or sattering phenomena.The linear Boltzmann equation is widely used in reator physis and radi-ation hydrodynamis and many textbooks are devoted to explain the mainproperties of the equation (see, for example, [4, 10, 11℄).However, at the mathematial level, the linear Boltzmann equation is notyet ompletely understood, although many properties are already known anda wide quantity of papers prove the interest in the subjet.In partiular, the long-time behaviour of the solution of the linear Boltz-mann equation is well known only when the ross setions are bounded frombelow by a stritly positive onstant: in suh a situation the solution expo-nentially deays in time to the unique equilibrium state of the system [16℄and an expliit upper bound on the spetral gap has been obtained, by meansof the hypooerivity method, by Mouhot and Neumann in [12℄.Date: February 6, 2014.Key words and phrases. Linear Boltzmann equation, Convergene to equilibrium, de-generate ross setions. 1



2 F. DE VUYST AND F. SALVARANIThe aforementioned results have, however, no obvious extension in thease of ross setions vanishing in a portion of the domain. Indeed, in theregions where the ross setion is zero nether absorption nor sattering areallowed: the problem is loally redued to the free transport equation, whihdoes not admit any equilibrium state, unless the initial datum is an absoluteonstant.Suh a transport problem is said to be degenerate, and the omplete har-aterization of the onvergene to equilibrium is still an open problem, evenif partial answers have been reently provided.In partiular, Desvillettes and Salvarani studied a speial situation, byonsidering ross setions that vanish at a �nite number of points [6℄, andproved an (at least) polynomial speed of onvergene to equilibrium, withexpliit rates.Subsequently, Bernard and Salvarani onsidered in [1℄ a situation whenthe ross setion vanishes on a set of non-zero measure and gave a oun-terexample on the exponential onvergene to equilibrium by showing thatthe L2 distane to equilibrium annot deay faster than t−1/2 in general.The same authors sueeded, some time later, in haraterizing the ondi-tion on the ross setions that allows an exponential time deay to the equi-librium state, by means of a non onstrutive argument and hene withoutindiating any quantitative estimate of the spetral gap [2℄. Suh onditionhas been alled the geometrial ondition. Physially, a ross setion satis�esthe geometrial ondition if and only if there exists a positive onstant T0suh that, for any point (x, v) of the phase spae, the harateristi urve
t 7→ x + tv, t ≥ 0, intersets the support of the ross setion before thetime instant t = T0. In partiular, the geometrial ondition ensures thenon-existene of in�nite hannels in whih the partiles move freely.The analogous result, for unbounded veloity sets, has subsequently beenobtained by Han-Kwan and Léautaud in the presene of a fore deriving froma potential [8℄.The quantitative estimate of the spetral gap is very hard to obtain in thease of degenerate problems. Up to now, the only result, whih allows toobtain an optimal onvergene rate for degenerate ross setions, has beenobtained in [3℄ for the two-veloity one-dimensional ariature of the linearBoltzmann equation, also known as the Goldstein-Taylor model [7, 15℄.It is therefore natural to investigate from a numerial point of view thelong-time behaviour of the degenerate linear Boltzmann equation.In partiular, in this artile we will quantify:(1) the spetral gap for a ross setion satisfying the geometrial ondi-tion given in [2℄, and(2) the exponent of the polynomial onvergene rate for degenerate rosssetions that do not satisfy the geometrial ondition.The numerial method adopted in the artile, whose preise desription isgiven in Setion 3, is based on a �nite-volume strategy in the phase spae.The hoie of the numerial algorithm is very deliate. Indeed, sine thetheoretial behaviour of the equation is partially unknown and the numerialsimulations should suggest a mathematial property of the equation, the



NUMERICAL SIMULATIONS OF DEGENERATE TRANSPORT PROBLEMS 3guarantee that the numerial proedure is adequate to the problem is ofparamount importane.In partiular, we need a proedure whih is exempted from numerialdi�usion e�ets in large time, sine we need to apture a long-time relaxationto equilibrium whih is not neessarily exponential.Other numerial strategies are, of ourse, possible, suh as a partilemethod, in the same spirit as in [5℄ and [13℄. However, sine the evalua-tion of the onvergene in large-time requires the omputation of an integralin the phase spae, a huge number of numerial partiles is requested in orderto have a reasonable auray and the omputation would be muh heavierin omparison with the �nite volume method adopted here.The struture of the artile is the following. In the next setion we statethe problem and summarise the known features of the model. Then, inSetion 3 we desribe the numerial algorithm and, in Setion 4, we showand analyse our numerial simulations. Finally, in a short Appendix, we willgive some details about the auray of the quadrature rule.2. The state-of-the-art on the degenerate linear BoltzmannequationLet f := f(t, x, v) be the solution of the linear Boltzmann equation withisotropi sattering in a periodi box, that is(2.1) 









∂f

∂t
+ v · ∇xf = σ(x) (f̄ − f), (t, x, v) ∈ R+ × T

d × V

f(0, x, v) = f0(x, v) (x, v) ∈ T
d × V,where T

d := R
d/Zd, (d ∈ N, d ≥ 2). The unknown f represents the densityof point partiles (usually neutrons or photons) whih at time t ∈ R

+ andpoint x ∈ T
d move at speed v ∈ V .Here V an denote either the unit sphere in R

d (when dealing with amonokineti gas) or the spherial shell individuated by the two radii 0 <
vm < vM : that is V = S

d−1 or V = {v ∈ R
d : vm ≤ |v| ≤ vM}.Moreover,

f̄(t, x) =
1

|V |

∫

V
f(t, x, v) dv,where |V | is the total measure of V .In what onerns the initial onditions, we assume that f0 ∈ L∞(Td ×V )and that f0 ≥ 0 for a.e. (x, v) ∈ T

d × V .The nonnegative funtion σ(x) designates the ross setion. We will al-ways suppose that(1) σ ∈ L∞(Td) and σ(x) ≥ 0 for a.e. x ∈ T
d;(2) ‖σ‖L1(Td) > 0.It is easy to prove that onstants are steady solutions of Equation (2.1)and that

f∞ =
1

|V |

∫

Td×V
f0(x, v) dxdvis the unique onstant solution with the same total mass (i.e. partile num-ber) as the initial data.



4 F. DE VUYST AND F. SALVARANIIn what follows, we will often use a speial family of ross setions, whihare well suitable when studying degenerate ross setion. For this reason,for all r ∈ (0, 1/2) we introdue the periodi open set
Zr = {x ∈ R

d : dist(x,Zd) > r}together with the assoiated fundamental domain Yr = Zr/Z
d.In [1℄ the exponential onvergene in time to equilibrium � for generalross setions satisfying the previous assumptions � has been exluded, asstated in the following theorem:Theorem 2.1. (Bernard, Salvarani). Let V = S

d−1. For all r ∈ (0, 1/2),there exists an initial ondition f0 ∈ L∞(Td × V ) satisfying f0(x, v) ≥ 0for a.e. (x, v) ∈ T
d × V and suh that, for eah ross setion σ ∈ L∞(Td)satisfying σ(x) ≥ 0 for a.e. x ∈ T

d and σ(x) = 0 for a.e. x ∈ Yr, thesolution f of the Cauhy problem (2.1) satis�es
E(t) := ‖f − f∞‖L2(Td×V ) ≥

C√
tfor eah t > r1−d, where C is a positive onstant.However, there exists a lass of ross setions that have a nier behaviourin what onerns the relaxation to equilibrium.The properties satis�ed by σ that lead to an exponential onvergene ratein time to the stationary solution have been individuated by Bernard andSalvarani in [2℄.De�nition 2.2. The ross setion σ ≡ σ(x) is said to verify the geometrialondition if and only if there exist T0 and C > 0 suh that(2.2) ∫ T0

0
σ (φx,v(s)) ds ≥ C a.e. in (x, v) ∈ T

d × V,where φx,v designates the linear �ow starting at x ∈ T
d in the diretion

−v ∈ V :
φx,v : t 7→ x− tv.The main result of [2℄ is the proof that the exponential onvergene is adiret onsequene of the geometrial ondition:Theorem 2.3. (Bernard, Salvarani). Let σ ∈ L∞

(

T
d
) be a non-negativeross setion satisfying the geometrial ondition (2.2). Then there exist twoonstants M > 0 and α > 0 suh that the solution f of the Cauhy problem

(2.1) satis�es the inequality(2.3) ∥

∥

∥

∥

f −
∫

Td×V
f0 (x, v) dxdv

∥

∥

∥

∥

L1(Td×V )
≤ Me−αt

∥

∥f0
∥

∥

L1(Td×V )for all t ∈ R+. Conversely, if the solution of the Cauhy problem (2.1)onverges uniformly in L1 to its equilibrium state at an exponential rate (i.e.satis�es (2.3)), then σ must satisfy the geometrial ondition (2.2).



NUMERICAL SIMULATIONS OF DEGENERATE TRANSPORT PROBLEMS 53. The numerial disretizationIn what follows, we will restrit ourselves to the 2D (in spae) monokinetiase, i.e. we will suppose that x ∈ T
2 = (0, 1)2, v ∈ S

1 and that f satis�esthe equation(3.1)
∂f

∂t
+ v · ∇xf = σ(x)

[
∫ 2π

0
f(t, x, ω)

dω

2π
− f

]

x ∈ T
2, ω ∈ [0, 2π), t > 0,where v = v(ω) = (cosω, sinω). Initially, the distribution is known: f =

f0 ∈ L∞(T2 × S
1), periodi in the phase spae, with ‖f0‖L1(T2×S1) = 1.We will assume periodi boundary onditions for both spatial and anglevariables. Denoting by

ρ(x, t) =
1

2π

∫ 2π

0
f(t, x, ω) dωthe marginal probability density funtion for the spae variable, the followingonservative equation holds

∂tρ+∇ ·
[

1

2π

∫ 2π

0
f(t, x, ω)v(ω) dω

]

= 0.Then it is expeted that ‖f(t, · , · )‖L1(T2×S1) = 1 for all time t.We �rst onsider the time disretization. Let us denote fn(x, ω) an ap-proximate value of f(t = tn, x, ω). Consider a onstant time step ∆t > 0and let tn+1 = tn + ∆t. For time advane, it is onvenient to onsider herea frational step approah, by handling transport and sattering separatelyand sequentially. We shall use the well-known seond-order Strang splittingsheme.Let R∆t denote the operator suh that the distribution f = R∆tf0 is theexat solution at time ∆t of the pure sattering problem with f0 as initialdata:
∂f

∂t
= σ(x)

[
∫ 2π

0
f(t, x, ω)

dω

2π
− f

]

x ∈ T
2, ω ∈ [0, 2π), t > 0,(3.2)

f(t = 0, x, ω) = f0(x, ω).(3.3)Let T ∆t the transport operator over a time step ∆t:
T

∆tf0(x, ω) = f0(x+ v(ω)∆t, ω).Then a seond order aurate solution (in ∆t) of the solution of the wholesattering problem is given by the Strang splitting approximation:(3.4) f(∆t, · ) ≈ R
∆t/2

T
∆t

R
∆t/2f0.This leads to the disrete time advane sheme(3.5) fn+1 = R

∆t/2
T

∆t
R

∆t/2fn.For reovering the full disretization, we now have to approximate bothtransport and sattering operators.In what follows, we will need working with the omponents of the vetors xand v. We will hene denote x = (x̄, ȳ) ∈ T
2.



6 F. DE VUYST AND F. SALVARANILet
i ∈ {1, . . . , I}, j ∈ {1, . . . , I}, k ∈ {1, . . . ,K}.We will denote by fn

ijk (or fn
i,j,k for readability purposes) an approximatevalue of f(tn, x̄i, ȳj , ωk) onsidering a Cartesian spatial grid of onstant meshsize h = 1/I,

x̄i =

(

i− 1

2

)

h, ȳj =

(

j − 1

2

)

h, ωk =
2π

K

(

k − 1

2

)

.We will also use the notations
xij = (x̄i, ȳj), σij = σ(xij), vk = v(ωk) = (cos(ωk), sin(ωk)).3.1. Sattering step. For the full disretization of the pure sattering prob-lem, we have to onsider a quadrature formula of the integral term and aseond order aurate time advane sheme. It has been shown by Kurganovand Rauh [9℄ that the trapezoidal rule atually provides spetral auray.For the interested reader, in the short Appendix A we reall some of theresults proved in [9℄. The trapezoidal rule on periodi funtions gives(3.6) 1

2π

∫ 2π

0
f(tn, xij , ω) dω ≈ 1

K

K
∑

k=1

f(tn, xij , ωk).This quadrature formula is then used into the seond order preditor-orretortime advane sheme:
f
n+1/2,⋆
ijk = fn

ijk +
∆t

4
σij

[

1

K

K
∑

ℓ=1

fn
i,j,ℓ − fn

ijk

]

,(3.7)
f
n+1/2
ijk = fn

ijk +
∆t

2
σij

[

1

K

K
∑

ℓ=1

f
n+1/2,⋆
i,j,ℓ − f

n+1/2,⋆
ijk

]

.(3.8)We naturally ful�l the onservation property at the disrete level(3.9) K
∑

k=1

f
n+1/2
ijk =

K
∑

k=1

fn
ijk.3.2. Transport step. We propose a simple seond order aurate (in bothspae and time) onservative Eulerian solver for the K pure transport prob-lems

∂tfk + vk · ∇xfk = 0,(3.10)
fk(t = 0) = f0

k .(3.11)We have to take are of possible spurious osillations for low-regularitysolutions adding numerial visosity and, at the same time, to avoid arti�ialdi�usive e�ets in the large-time behaviour. We propose to use a onservative�nite-volume sheme ombining a Lax-Wendro� seond-order visosity term(for seond-order time auray) and an arti�ial visosity term involvingslope reonstrutions and slope limiters.



NUMERICAL SIMULATIONS OF DEGENERATE TRANSPORT PROBLEMS 7The onservative sheme reads
fn+1
ijk = fn

ijk −
∆t

h

[

Φ
n+1/2
i+1/2,j,k − Φ

n+1/2
i−1/2,j,k

]

− ∆t

h

[

Φ
n+1/2
i,j+1/2,k − Φ

n+1/2
i,j−1/2,k

]with onvetive �uxes Φ
n+1/2
i+1/2,j,k and Φ

n+1/2
i,j+1/2,k in the x̄ and ȳ diretions,respetively. The numerial �ux in the x̄-diretion is given by(3.12)

Φ
n+1/2
i+1/2,j,k =

fn
i,j,k + fn

i+1,j,k

2
cos(ωk)

−1

2

∆t

h
| cos(ωk)|(fn

i+1,j,k − fn
i,j,k)−

1

2
| cos(ωk)|(f̃−,n

i+1,j,k − f̃+,n
i,j,k)with the interpolated states at the x̄-interfaes(3.13) f̃±,n

i,j,k = fn
i,j,k ±

1

2
minmod(fn

i+1,j,k − fn
i,j,k, f

n
i,j,k − fn

i−1,j,k),where the last term in the right-hand-side of (3.13) is the lassial minmodslope limiter funtion:
minmod(a, b) = sign (a)1(ab>0) min(|a|, |b|).The numerial �uxes in the ȳ diretion are onstruted in the same way.Beause of its expliit feature, the �nite-volume sheme is onditionallystable, subjet to a Courant-Friedrihs-Lewy (CFL) ondition. Sine the dis-rete veloities vk are all unit vetors, we will use the time step orrespondingto CFL number �one-half�(3.14) ∆t

h
=

1

2setting the time step value. By onstrution, the whole numerial sheme isseond-order aurate on both spae and time. The quadrature formula usedfor the angle integrals into the sattering term has the spetral auray (seeappendix A) and so it will be aurate for su�iently smooth solutions.3.3. Remarks on the free transport. It is well known that the numeri-al approximation of free transport phenomena in periodi domains is verydeliate when dealing with a �nite disretization on the veloity set [14℄.Indeed, non physial plateaux of order of t∆v an appear in the solution andin�uene the numerial result.It is apparent that a orret treatment of the free transport is ruial inour ase, sine the lak of exponential onvergene to equilibrium is a onse-quene of the existene of in�nite hannels in whih only the free transportis allowed, as explained in the Introdution.In partiular, if the disrete veloity set would not inlude the diretionsof the in�nite free hannels, the disretization would arti�ially remove thedegeneray of the problem: after a possibly large but �nite time interval, allthe numerial optial paths would interset the sattering region, and henean exponential-like onvergene ould be observed.On the other hand, if the numerial set of veloities inludes the diretionof an in�nite hannel, denoted as ω̄k, the numerial proedure indues anoverpopulation of suh diretions, sine all the optial paths whose dire-tions belong to the interval [ω̄k − π/K, ω̄k +π/K] will be identi�ed with the



8 F. DE VUYST AND F. SALVARANI

Figure 1. Cross setions σ1 (left), σ2 (entre) and σ3 (right).The white region shows the points of T2 where the ross se-tions vanish.diretion of the in�nite hannel itself. In this ase, the numerial simulationswill underestimate the deay, espeially in large time.However, the method desribed here is su�iently aurate for our pur-poses, as shown in the next Setion.4. Numerial evidene of large-time behaviourConsider the problem on the unit spatial square domain T
2 = [0, 1]2, withperiodi spatial boundary onditions and with initial ondition f0 suh that

‖f0‖L1(T2×S1) = 1. By the mass onservation, we have that the steady stateis f∞ = 1. We will evaluate the time evolution for the squared L2-norm ofthe deviation to the steady state f∞, i.e. the time evolution of the quantity(4.1) E2(t) := ‖f(t, · , · )− f∞‖2L2(T2×S1),for di�erent types of ross setions.For the numerial disretization, unless otherwise spei�ed, we onsidera h-uniform Cartesian spatial grid omposed of 256 × 256 points. For theangle variable disretization, we also use a uniform grid ωk = 2π(k−1/2)/K,
k = 1, . . . ,K with K = 256. So this disrete problem is omposed of 2563 =
16, 777, 216 grid points.We also show two numerial experiments with di�erent disretizations ofthe domain, in order to show how the grid in�uenes the numerial results.We use a �xed time step, as presribed by (3.14). In all simulations, theomputational time window is t ∈ [0, T ], with T = 12.4.1. A irular degenerate ross setion. We onsider here the spei�ross setion σ : T2 → R de�ned, in the fundamental domain T

2, by
σ = σ1 := 20× 1T2\Y1/4

,(see Figure 1, left), and the initial ondition is
f0(x, ω) =

1

2π

1− 1T2\Y1/4

‖1− 1T2\Y1/4
‖L1

∀x ∈ T
2, ω ∈ [0, 2π].By onstrution, ‖f0‖L1(T2×S1) = 1. Note that the ross setion (whih doesnot satisfy the geometrial ondition) and the initial ondition are, up to anormalization fator, the same used for proving Theorem 2.1 in [1℄. Hene,



NUMERICAL SIMULATIONS OF DEGENERATE TRANSPORT PROBLEMS 9we an ompare the numerial simulations to a theoretial result that givesan upper bound on the L2-distane between the solution at time t and theequilibrium.
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Figure 2. Time evolution of 1/E2(t), with ross setion σ1with two di�erent disertizations in veloity. The behaviouris linear in time.Our numerial experiments show that 1/E2(t) inreases in time like tfaithfully. At �rst instants, between the initial time and roughly time t = 3,the disrepany dereases at a lower rate, then the linear �t beomes almostperfet after time t = 3. It is observed on Figure 2 that
E2(t) ≃ C

t
, t ≥ 3for a onstant C > 0.We note moreover that the simulation with 256 × 256 × 512 grid pointsand the simulation with 2563 grid points give very similar result.Finally, for information purposes, we also plot on Figures 3 and 4 theontour of the disrete marginal distribution

x 7→
∫ 2π

0
f(tn, x, ω) dω.at t0 = 0 and at di�erent disrete instants tn respetively.We remark that the disrete solution does not lead to strong hanges ofgradient and that the slope limiter of the transport solver does not generate�rst-order numerial di�usion and O(h) errors.Our numerial simulations hene suggest that the theoretial large-timelower bound behaviour on E of order t−1/2 is the exat deay rate.4.2. A squared degenerate ross setion. Let (x̄, ȳ) ∈ T

2. We onsiderhere the spei� ross setion σ : T
2 → R de�ned, in the fundamental
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Figure 3. Contour of the marginal spatial distribution (withross setion σ1): initial ondition.domain T
2, by

σ = σ2 :=

{

20 0.1 ≤ x̄ ≤ 0.9 and 0.1 ≤ ȳ ≤ 0.9
0 otherwise(see Figure 1, entre). This ross setion does not satisfy either the geo-metrial ondition, hene we annot expet, by Theorem 2.3, an exponentialonvergene to equilibrium. Moreover, it does not exist any ball of radius

r < 1/2 suh that the support of σ2 is embedded into the ball. Hene, theestimate of Theorem 2.1 � based on the geometrial properties of a irularsupport of the sattering region � annot be applied here.The initial ondition here is given by
f0(x, ω) =

1

2π

1− 1{(x̄,ȳ)∈T2, 0.1≤x̄≤0.9 and 0.1≤ȳ≤0.9}

‖1− 1{(x̄,ȳ)∈T2, 0.1≤x̄≤0.9 and 0.1≤ȳ≤0.9}‖L1

,

x ∈ T
2, ω ∈ [0, 2π]. By onstrution ‖f0‖L1(T2×S1) = 1.This numerial experiment is the most deliate one, sine the region ofdegeneray overs a small portion of the domain and, at the same time,it inludes two in�nite hannels. We an hene expet that oarse gridsgenerate bad results.In Figure 5 we have superposed three plots. The �rst one has been ob-tained by using an uniform grid with 1283 points in the phase spae. Thisnumerial simulation is very poor, espeially after t = 5.The seond plot refers to an uniform grid with 2563 points in the phasespae, suh that the diretions of the in�nite hannels oinide with somedisretized veloity diretions. It shows that 1/E2(t) inreases in time like tup to t = 10, and then the onvergene speed to equilibrium slightly degradesfor 10 ≤ t ≤ 12.In the third numerial experiment, obtained by working in a phase-spaegrid with 256× 256× 512 points, the quantity 1/E2(t) inreases in time like

t up to t = 12, without showing any degradation of the trend to equilibrium.The di�erenes between the two last experiments an be explained interms of the sensitivity of the proedure with respet to the disretizationof the veloities whose diretions are lose to the diretion of the in�nite
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a) b)
) d)
e) f)Figure 4. Contours of the marginal spatial distribution,with ross setion σ1, for six di�erent instants: a) t = 0.08,b) t = 0.62, ) t = 1.00, d) t = 1.50, e) t = 1.80 and f)

t = 3.50.hannels, as disussed in Subsetion 3.3. The overall qualitative behaviourof the plots provides a numerial evidene of the onvergene of the method.4.3. A degenerate ross setion satisfying the geometrial ondi-tion. We �nally tested the situation of a ross setion that satis�es the ge-ometrial ondition. In this ase, Theorem 2.3 gives a result of onvergeneto equilibrium of exponential type with respet to the L1-norm.Let (x̄, ȳ) ∈ T
2. We onsider the ross setions σ3 : T2 → R de�ned as(4.2) σ = σ3 :=

{

20 0.45 ≤ x̄ ≤ 0.55, or 0.45 ≤ ȳ ≤ 0.55
0 otherwise(see Figure 1, right).The initial ondition here is given by

f0(x, ω) =
1

2π

1− 1{(x̄,ȳ)∈T2, 0.45≤x̄≤0.55 or 0.45≤ȳ≤0.55}

‖1− 1{(x̄,ȳ)∈T2, 0.45≤x̄≤0.55 or 0.45≤ȳ≤0.55}‖L1

,
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Figure 5. Time history of 1/E2(t), with ross setion σ2and with three di�erent disretizations of the phase spae.
x ∈ T

2, ω ∈ [0, 2π]. By onstrution ‖f0‖L1(T2×S1) = 1.The numerial simulation agrees with the theoretial result, and an expo-nential onvergene in L1-norm has been numerially observed (see Figure6).

Figure 6. Time evolution of log10 (‖f − f∞‖L1(T×S1)

) withross setion σ3. The behaviour is exponential in time.We �nally show, in Figure 7, the time deay of E. Indeed, we are in-terested in omparing, with respet to the same metris, the di�erent timedeays obtained with di�erent ross setions. Again in this ase, we obtainexponential onvergene to equilibrium.



NUMERICAL SIMULATIONS OF DEGENERATE TRANSPORT PROBLEMS 13This result gives a numerial on�rmation of the su�ieny of the geo-metrial ondition for obtaining an exponential deay to equilibrium.
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Figure 7. Time evolution of 2 log10(E(t)) with ross setion
σ3. The behaviour of E(t) is exponential in time.Appendix A. Quadrature formula for periodi funtionsWe give here some omments about the hoie of the quadrature formulafor the angle variable integration and we mainly refer to a note by Kurganovand Rauh [9℄. Denote by W r,p

per the Banah spae of periodi funtions on Rwhose derivatives up to order r belongs to Lp
per(R). The trapezoidal rule

∫ 2π

0
f(ω) dω ≈ TK(f) :=

2π

K

K
∑

k=1

f(ωk), ωk =
2π

K

(

k − 1

2

)

, k = 1, . . . ,K,appears to be relevant beause of the periodiity and the invariane by trans-lation. The quadrature error is equal to
EN (f) = TN (f)−

∫ 2π

0
f(ω) dω.Sine f is periodi in ω, it an be written as a Fourier series:

f(x) =
∑

n∈Z

cne
inω, cn =

1

2π

∫ 2π

0
f(ω)e−inω dω.Let P(m) be the set of all trigonometri polynomials of degree at most m.Summing �nite geometri series shows that TK(einω) = 0 for 0 < |n| < K:hene TK is an exat quadrature formula for trigonometri polynomials ofdegree K − 1. For any P ∈ P(K − 1), we then have

EK(f) = EK(f − P ) = TN (f − P )−
∫ 2π

0
(f(ω)− P (ω)) dω
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|EK(f)| ≤ 4π inf

P∈P(K−1)
‖f − P‖L∞ .The trapezoidal rule thus provides spetral auray beause of the rapiddeay of the Fourier oe�ients for in�nitely smooth funtions f . Kurganovand Rauh [9℄ were able to show that, for f ∈ W r,1

per and 1 < r, the error ofthe trapezoidal quadrature rule satis�es
|EK(f)| ≤ C

Kr
‖f (r)‖L1([0,2π]), C := 2

∞
∑

k=1

1

kr
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