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Abstract. We study in this paper a few simple examples of
hypocoercive systems in which the coercive part is degenerate. We
prove that the (completely explicit) speed of convergence is at least
of inverse power type (the power depending on the features of the
considered system).

1. Introduction

We consider non-homogeneous (in space) transport equations of the
type

(1)
∂f

∂t
+ v · ∇xf = σ(x) (f̄ − f),

where f := f(t, x, v) is the density of particles which at time t and
point x move with velocity v. Here f̄(t, x) =

∫

V
f(t, x, v) dv, where

V is a bounded set (of R
d) of velocities of measure 1. The right-

hand side of Equation (1) describes a process of isotropization of the
velocities of the particles. This process has an intensity σ(x) which
is not necessarily bounded below by a strictly positive constant (in
the vocabulary of radiative transfer, this would correspond to regions
which are completely transparent).

For the sake of simplicity, we shall systematically consider that the
solutions are periodic (of period 1) in all components of x, that is
x ∈ T

d := R
d/Z

d, and nonnegative times t ∈ R+.
We finally introduce initial data

(2) f(0, x, v) = f0(x, v).

We shall also consider a simplified one-dimensional model of (1), in
which the velocities are v = ±1. This is a variant of the well-known
Goldstein-Taylor model [6], [11], which describes the behavior of a gas
composed of two kinds of particles moving parallel to the x-axis with
constant speeds, of equal modulus c = 1, one in the positive x-direction
with density u(x, t), the other in the negative x-direction with density
v(x, t).

1
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The corresponding system of equations is:

(3)



















∂u

∂t
+

∂u

∂x
= σ(x)(v − u)

∂v

∂t
−

∂v

∂x
= σ(x)(u − v),

where u := u(t, x), v := v(t, x), x ∈ T = R/Z, t ≥ 0.
Such set of equations will satisfy the initial conditions

(4) u(0, x) = u0(x), v(0, x) = v0(x).

If σ were bounded from below by a strictly positive constant, then a
variant of the strategy proposed by Mouhot and Neumann in [9] would
lead to prove the exponential decay (with explicit rates) in time of the
solutions of Equation (1) or System (3) towards the unique equilibrium
state of the system.

However, this result has no obvious extension in the case of a van-
ishing cross section (even if such a degeneracy happens at only one
point). A reasonable conjecture is that when the equilibrium is still
unique, then some explicit (non necessarily exponential) rate should
still exist.

The goal of this paper is to prove this property under reasonable
assumptions on the cross section. More precisely, we shall suppose
that it satisfies the properties given in the following assumption:

Assumption 1: Let σ : T
d → R+ be a function satisfying the

following property: there exist xi ∈ T
d, i = 1, . . . , N , Cσ > 0 and

λσ > 0 such that

for a.e. x ∈ T
d, σ(x) ≥ Cσ inf

i=1,...,N
|x − xi|

λσ .

Our results are summarized in the following theorems, which deal re-
spectively with the transport equation and the Goldstein-Taylor model:

Theorem 1.1. Consider the linear transport model (1)-(2) in the do-
main T

d (d ∈ N) with a cross section σ ∈ L∞ ∩ H1(Td) satisfying
Assumption 1 and f0 such that f0 ∈ L∞(Td × V ), ∇xf̄0 ∈ L2(Td), and
v ⊗ v : ∇x∇xf0 ∈ L2(Td × V ).

Then there exists a unique nonnegative solution f := f(t, x, v) to
this system in C(R+; L2(T×V )), which converges when t → +∞ to its
asymptotic profile

f∞(x, v) :=

∫

Td

∫

V

f0(y, w) dwdy.



ASYMPTOTIC BEHAVIOR 3

Moreover, the following estimate holds:

(5) ||f(t, ·, ·)− f∞||2L2(T×V ) ≤ C1 t−
1

1+2 λσ

where C1 is a constant depending on Cσ, λσ, ||σ||H1(T)∩L∞(T), and f0,
which can be explicitly estimated in terms of those quantities.

Theorem 1.2. Consider the generalized Goldstein-Taylor model (3)-
(4) in the domain T = R/Z with a cross section σ ∈ H1(T) satisfying
Assumption 1 and (u0, v0) in H2(T) × H2(T).

Then there exists a unique nonnegative solution (u, v) := (u(t, x), v(t, x))
to this system in C(R+; L2(T))2 which converges when t → +∞ to its
asymptotic profile

(u∞, v∞) :=

(

1

2

∫

(u0 + v0) dx,
1

2

∫

(u0 + v0) dx

)

.

Moreover, the following estimate holds:

(6) ||u(t, ·) − u∞||2L2 + ||v(t, ·) − v∞||2L2 ≤ C2 t−
1

1+λσ ,

where C2 is a constant depending on Cσ, λσ, ||σ||H1(T) and u0, v0, which
can be explicitly estimated in terms of those quantities.

Finally, if the initial data (u0, v0) belong to C∞(T) ×C∞(T), and if
the cross section σ also lies in C∞(T), then estimate (6) can be replaced
by

(7) ||u(t, ·)− u∞||2L2 + ||v(t, ·) − v∞||2L2 ≤ C3 t−
3

λσ
+δ,

for any δ > 0. Here C3 is a constant which now depends on Cσ, λσ,
δ, ||σ||W k,∞ (for all k ≤ k0(δ)) and u0, v0, which can be explicitly
estimated in terms of those quantities.

Note that it is not known if exponential (or even “almost exponen-
tial”) convergence holds for these models. It is also not known if the
method of hypocoercivity such as described (for example) in [9], [7],
[12] can be used (though this seems likely). The proof presented here
relies on the older method introduced in [1], [3] and [4]. The different
rates of convergence obtained in Theorems 1.1 and 1.2 reflect the pos-
sibility to use interpolations which have a different power, depending
on the a priori smoothness of the solution of the equations.

The ideas developed in this work are presented on very simple models
on purpose. We think that they can be used for many variants of
Equation (1), changing for example the boundary conditions, or the
cross section.

There is no a-priori reason why it should not also work in nonlinear
situations, provided that uniform in time smoothness estimates are



4 LAURENT DESVILLETTES AND FRANCESCO SALVARANI

known for the solution of the problem under study (such estimates are
often difficult to obtain for general data, but they can sometimes be
proven in special regimes).

Note that the challenging problems of cross sections σ such that
σ = 0 on a set of strictly positive measure is not treated here. We refer
to [2] for cases of degeneracy in the simpler situation of coercivity (in
the context of reaction-diffusion equations).

The rest of the paper is structured in this way: in Section 2, the the-
ory of existence, uniqueness and smoothness for the linear transport
and Goldstein-Taylor models is briefly presented and the hypocoerciv-
ity method using differential inequalities is recalled. Section 3 is de-
voted to the study of the Goldstein-Taylor system. A priori estimates
are first presented in Subsection 3.1, then the large time behavior is
investigated in Subsection 3.2. The case in which the data are very
smooth is treated in Subsection 3.3. Finally, the proof of Theorem 1.1
is presented in Section 4.

2. Preliminaries

We begin with the following proposition about the Cauchy problem
for systems (1)-(2) and (3)-(4).

Proposition 2.1. Consider the transport system (1)-(2) with initial
data f0 ∈ L1(T×V ). Then there exists a unique (generalized) solution
f ∈ C(R+; L1(T × V )) to this problem.

Consider then the Goldstein-Taylor model (3)-(4) with initial data
(u0, v0) ∈ L1(T) × L1(T). Then there exists a unique (generalized)
solution (u, v) to this system in C(R+; L1(T) × L1(T)).

Proof of Proposition 2.1: It is well known that the unbounded
operator

B(u, v) =

(

−
∂u

∂x
+ σ(x)(v − u),

∂v

∂x
+ σ(x)(u − v)

)

on L1(T) × L1(T) with domain

D(B) = {(u, v) ∈ W 1,1(T) × W 1,1(T)}

is dissipative (see, for example, [8], [10]). The existence and unique-
ness of the solution (u, v) easily follows from the method presented in
[5]. The same kind of arguments holds for the transport model. This
concludes the proof of Proposition 2.1.
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Then, we introduce another proposition, whose proof is a direct con-
sequence of lemma 12 in [4]. This proposition replaces Gronwall’s
lemma in the context of hypocoercive equations.

Proposition 2.2. Let x and y be two nonnegative C2 functions defined
on R+ and satisfying (for all t > 0)

(8)

{

−x′(t) ≥ α1 y1+δ(t),
y′′(t) ≥ α3 x(t) − α2y

1−ε(t),

for some constants δ ≥ 0, ε ∈]0, 1[ and α1, α2, α3 > 0.
Then there exists a constant α4 > 0 depending only on x(0), α1, α2,

α3, δ and ε such that (for all t > 0),

x(t) ≤ α4 t−
1−ε
δ+ε .

3. The Golstein-Taylor model

3.1. A priori estimates. We begin with a result of boundedness in L2

for derivatives of first order in x and second order in t of the solutions
of system (3)-(4).

Proposition 3.1. Let u0, v0 ∈ H2(T), and σ ∈ H1(T). Then, there
exists a constant γ (depending explicitly on ||u0||H2, ||v0||H2 and ||σ||H1)
such that the solution (u, v) of system (3)-(4) satisfies the bound

sup
t≥0

∫

T

(

(∂tu)2 + (∂ttu)2 + (∂xu)2

)

dx ≤ γ,

sup
t≥0

∫

T

(

(∂tv)2 + (∂ttv)2 + (∂xv)2

)

dx ≤ γ.

Proof of Proposition 3.1: We differentiate k times (k = 1, 2) the
equations of system (3) with respect to the variable t, and multiply the
result by 2∂ ku/∂tk and 2∂ kv/∂tk respectively. After integrating with
respect to x ∈ T, we end up with
(9)

d

dt

∫

T

[

(

∂ ku

∂tk

)2

+

(

∂ kv

∂tk

)2
]

dx = −2

∫

T

σ(x)

[

∂ ku

∂tk
−

∂ kv

∂tk

]2

dx ≤ 0.

Then, we observe that

∂ttu = ∂xxu + 2 σ ∂xu + σ′ (u − v) + 2 σ2 (u − v)

and
∂ttv = ∂xxv − 2 σ ∂xv + σ′ (u − v) + 2 σ2 (v − u).

We know that at time 0, ∂xxu ∈ L2, σ ∈ H1 ⊂ L∞, so that σ ∂xu ∈
L2, σ2 (v − u) ∈ L2, and u ∈ H2 ⊂ L∞ so that σ′(u − v) ∈ L2.
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Finally, ∂ttu(0, ·) ∈ L2, and so do ∂tu(0, ·), ∂tv(0, ·) and ∂ttv(0, ·). Using
estimate (9), we obtain

sup
t≥0

∫

T

(

(∂tu)2 + (∂ttu)2 + (∂tv)2 + (∂ttv)2

)

dx < +∞.

We finally observe that

∂xu = −∂tu + σ(v − u), ∂xv = ∂tv + σ(v − u).

Using the bound above and the fact that σ ∈ H1 ⊂ L∞, we can
conclude the proof of Proposition 3.1.

Next proposition generalizes to derivatives of any order the results
of Proposition 3.1.

Proposition 3.2. Let k ∈ N
∗, u0, v0 ∈ Hk(T), and σ ∈ W k−1,∞(T).

Then there exists a constant γk depending explicitly on ||u0||Hk(T),
||v0||Hk(T), ||σ||W k−1,∞(T) such that the solution (u, v) of system (3)-(4)
satisfies the bound

sup
t≥0

∫

T

[

(

∇k
t,xu

)2
+

(

∇k
t,xv

)2
]

(t, x) dx ≤ γk.

Proof of Proposition 3.2: Estimate (9) still holds. In fact, using
the same proof, it holds for any k ∈ N

∗. Observing that using the
equations, the derivatives of order k in time of (u, v) at time t = 0
are sums of terms of the form (

∏

l=0,..,k−1(∂
l
xσ(x))pl) ∂m

x u(0, x) (and

(
∏

l=0,..,k−1(∂
l
xσ(x))pl) ∂m

x v(0, x)) with m ≤ k (and pl ∈ N), we see that

the derivatives ∂ ku
∂tk

, ∂ kv
∂tk

lie in L∞(R+; L2(T)).
Then, differentiating the equations k− 1 times with respect to t and

one time with respect to x, we see that

∂ ku

∂tk
= −

∂

∂x

∂ k−1u

∂tk−1
+ σ

∂ k−1

∂tk−1
(v − u).

The left-hand side of this formula belongs to L∞(R+; L2(T)), and so

does the second part of the right-hand side. As a consequence, ∂
∂x

∂ k−1u
∂tk−1

also lies in L∞(R+; L2(T)).
Differentiating then the equation k−2 times with respect to t and two

times with respect to x, we obtain that ∂2

∂x2

∂ k−2u
∂tk−2 lies in L∞(R+; L2(T)).

A simple induction enables to conclude the proof of Proposition 3.2.

3.2. Asymptotic behavior. This subsection is devoted to the study
of the long-time asymptotics for the solution (u, v) of (3)-(4) under the
assumption that the initial data are of class H2(T) and that the cross
section σ belongs to H1(T).
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Proof of the first part of Theorem 1.2: We introduce the quantity

(10) H(t) =

∫

T

[

(u − u∞)2 + (v − v∞)2] dx

which measures the distance of (u, v) to the global equilibrium (u∞, v∞).
We also introduce

(11) K(t) =

∫

T

(u − v)2 dx,

which measures the distance of (u, v) to the set of local equilibria (that
is, the set of functions (u, v) which depend on x and such that u = v).

The following result holds:

Lemma 3.1. We assume that (u := u(t, x), v := v(t, x)) is the (unique)
solution to Equations (3)-(4) with initial data u0, v0 lying in H2(T), and
for a cross section σ satisfying Assumption 1 and belonging to H1(T).
Then, the quantities H, K defined in (10)-(11) satisfy the following
system of differential inequalities:

−
d

dt
H(t) ≥ α1 K1+ λσ

2 (t),(12)

d2

dt2
K(t) ≥ 2 H(t) − α2 K1/2(t),(13)

where α1 depends on Cσ and γ, and α2 depends on ||σ||H1 and γ. Both
those coefficients can be estimated explicitly in terms of those quanti-
ties.

Proof of Lemma 3.1: For the sake of simplicity, the proof is written
when σ satisfies Assumption 1 with N = 1, and x1 = 0, so that

σ(x) ≥ Cσ |x|
λσ .

The general case can be treated without further difficulties.

Along the flow of Equation (3), the derivative of H is given by

(14)
d

dt
H(t) = −2

∫

T

σ(x)[u(x, t) − v(x, t)]2 dx.

Then, we observe that for any h ∈]0, 1/4[,
∫

T

|u− v|2(t, x) dx ≤

∫

|x|≤h

|u− v|2(t, x) dx +

∫

h≤|x|≤1/2

|u− v|2(t, x) dx

≤ 2

∫

|x|≤h

|u − v|2(t, x +
x

|x|
h) dx

+2

∫

|x|≤h

|(u−v)(t, x+
x

|x|
h)−(u−v)(t, x)|2 dx+

∫

h≤|x|≤1/2

|u−v|2(t, x) dx
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(15) ≤ 2

∫

|x|≤h

σ(x + x
|x|

h)

Cσ |x + x
|x|

h|λσ
|u − v|2(t, x +

x

|x|
h) dx

+2 h2

∫

|x|≤h

∣

∣

∣

∣

∫ 1

θ=0

(

∂x(u − v)(t, x + θ
x

|x|
h)

)

dθ

∣

∣

∣

∣

2

dx

+

∫

h≤|x|≤1/2

σ(x)

Cσ |x|λσ
|u − v|2(t, x) dx

≤
3

Cσ hλσ

∫

T

σ(x) |u − v|2(t, x) dx + 2 h2

∫

T

|∂x(u − v)|2(t, x) dx.

Optimizing with respect to h (and distinguishing between the cases
h ≤ 1

4
and h > 1

4
), we end up with

K(t) ≤ Cst (γ, Cσ)

(
∫

T

σ(x) |u − v|2(t, x) dx

)
1

1+
λσ
2 .

This, together with (14), leads immediately to estimate (12).

In order to obtain inequality (13), we need to compute the second
derivative of K with respect to time along the flow of system (3):

d2

dt2
K(t) = 2

∫

T

(vt − ut)
2 dx + 2

∫

T

(v − u)(vtt − utt) dx.

By using system (3), we therefore deduce

d2

dt2
K(t) = 2

∫

T

[vx + ux + 2σ(x)(u − v)]2 dx

+ 2

∫

T

(v − u)(vtt − utt) dx,

which implies

(16)
d2

dt2
K(t) ≥

∫

T

[(u + v)x]
2 dx − 8 ||σ||L∞

∫

T

(u − v)2 dx

−

(
∫

T

(u − v)2 dx

)1/2 (
∫

T

(utt − vtt)
2 dx

)1/2

.

Thanks to Poincaré-Wirtinger’s inequality,
(17)
∫

T

[(u+v)x]
2 dx ≥

∫

T

(u + v − (u∞ + v∞))2 dx = 2 H(t)−

∫

T

(u−v)2 dx.

As a consequence, and using a Sobolev inequality,

d2

dt2
K(t) ≥ 2 H(t) − (1 + 8 ||σ||L∞) K(t) − (2 γ1/2) K(t)1/2
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≥ 2 H(t) − Cst (γ, ||σ||H1) K(t)1/2.

Thus we get (13), and this concludes the proof of Proposition 3.1.

Formula (6) in Theorem 1.2 is then a simple consequence of Proposi-
tion 3.1 and Proposition 2.2. This concludes the proof of the first part
of Theorem 1.2.

3.3. Extra Smoothness of the data.

Proof of the second part of Theorem 1.2: We now treat the case
when σ as well as the initial data u0, v0 lie in C∞(T). We begin with
the

Lemma 3.2. We assume that (u := u(t, x), v := v(t, x)) is the (unique)
solution to system (3)-(4) with initial data u0, v0 lying in C∞(T), and
for a cross section σ satisfying Assumption 1 and belonging to C∞(T).
Then, the quantities H, K defined in (10)-(11) satisfy the following
system of differential inequalities (for any ε ∈]0, 1[):

−
d

dt
H(t) ≥ α4 K(t)1+ λσ

3 ,(18)

d2

dt2
K(t) ≥ H(t) − α5 K(t)1−ε,(19)

where α4 depends on Cσ and γi (i = 0, 2), and α5 depends on ε, ||σ||L∞,
γ0 and γ1+[ 1

ε
]. Both those coefficients can be estimated explicitly in

terms of these quantities.

Proof of Lemma 3.2: We still have (14) and (15). However, we then
proceed in the computation in the following way:
∫

T

|u−v|2(t, x) dx ≤
3

Cσ hλσ

∫

T

σ(x) |u−v|2(t, x) dx+2 h3 ||(u−v)x(t, ·)||
2
L∞(T)

≤
3

Cσ hλσ

∫

T

σ(x) |u − v|2(t, x) dx + Cst (γ1, γ2) h3,

thanks to a Sobolev inequality.
After optimizing with respect to h, we end up with

∫

T

|u − v|2(t, x) dx ≤ Cst (γ0, γ2, Cσ)

(
∫

T

σ(x) |u − v|2(t, x) dx

)
1

1+
λσ
3 ,

so that (18) holds.
We now observe that estimates (16) and (17) still hold. We therefore

still have

d2

dt2
K(t) ≥ 2 H(t)−(1+8 ||σ||L∞) K(t)−K(t)1/2

(
∫

T

(utt−vtt)
2 dx

)1/2

.
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Then, we observe that

utt − vtt = (u − v)xx + 2σ (ux + vx) + 4σ2(u − v).

By interpolation with high-order derivatives, we get (for any ε > 0)
∫

T

|uxx − vxx|
2(t, x) dx ≤ 2 γ2ε

1+[ 1
ε
]
K(t)1−2 ε.

Also by interpolation,
∫

T

|ux+vx|
2(t, x) dx ≤ 2 γε

1+[ 1
ε
]

(
∫

T

∣

∣

∣

∣

u(t, x)+v(t, x)−(u∞+v∞)

∣

∣

∣

∣

2

dx

)1−ε

≤ 2 γε
1+[ 1

ε
]
H(t)1−ε.

As a consequence,

d2

dt2
K(t) ≥ 2 H(t) − Cst (||σ||L∞) K(t) − Cst (||σ||L∞, γ1+[ 1

ε
], ε) K(t)1−ε

−Cst (||σ||L∞, γ1+[ 1
ε
], ε) K(t)1/2 H(t)1/2−ε/2

≥ H(t) − Cst (||σ||L∞, γ0, γ1+[ 1
ε
], ε) K(t)1−ε.

This concludes the proof of Proposition 3.2.

Formula (7) in Theorem 1.2 is then a simple consequence of Proposi-
tion 3.2 and Proposition 2.2. This concludes the proof of Theorem 1.2.

4. The Linear Transport Equation

Proof of Theorem 1.1: We observe first that for k = 0, 1, 2,

d

dt

∫

Td

∫

V

1

2

∣

∣

∣

∣

∂kf

∂tk

∣

∣

∣

∣

2

dvdx = −
1

2

∫

Td

σ(x)

∫

V

∣

∣

∣

∣

∂k f̄

∂tk
−

∂kf

∂tk

∣

∣

∣

∣

2

dvdx.

As a consequence, we see that (for k = 0, 1, 2), ∂kf
∂tk

∈ L∞(R+; L2(Td ×

V )), as soon as ∂kf
∂tk

(0) ∈ L2(Td × V ). Using the identity

∂2f

∂t2
= v ⊗ v : ∇x∇xf − σ (v · ∇xf̄) + 2 σ (v · ∇xf)

−σ∇x · (v f) − σ2 (f̄ − f) + (−v · ∇xσ) (f̄ − f),

we see (thanks to the assumptions of Theorem 1.1) that it is the case.
Then, we observe that f satisfies the maximum principle, so that

f ∈ L∞(R+ × T
d × V ).

We now introduce the quantities

H(f) =

∫ ∫

|f − f∞|2 dvdx, K(f) =

∫ ∫

|f − f̄ |2 dvdx.
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We observe that

dH(f)

dt
= −2

∫

σ(x)

∫

|f − f̄ |2 dvdx.

We interpolate in this way:
∫ ∫

|f − f̄ |2 dvdx ≤

∫

|x|≤h

∫

|f − f̄ |2 dvdx +

∫

|x|≥h

∫

|f − f̄ |2 dvdx

≤ 2 h ||f ||2L∞ +
Cσ

|h|λσ

∫

σ |f − f̄ |2 dvdx.

Optimizing in h, we get

(20) −
dH(f)

dt
≥ 2

∫

σ |f − f̄ |2 dvdx ≥ Cst K(f)1+λσ .

We now treat the second derivative in time of K(f).
We see that

d2

dt2
K(f) = 2

∫ ∫
∣

∣

∣

∣

∂f

∂t
−

∂f̄

∂t

∣

∣

∣

∣

2

dvdx+2

∫ ∫

(f−f̄)

(

∂2f

∂t2
−

∂2f̄

∂t2

)

dvdx

≥

∫ ∫

|∇x(vf − vf)|2 dvdx − Cst

∫

|f − f̄ |2 dvdx

−Cst

(
∫

|f − f̄ |2 dvdx

)1/2 ∥

∥

∥

∥

∂2f

∂t2

∥

∥

∥

∥

L∞(R+;L2(Td×V ))

≥ Cst

∫ ∫
∣

∣

∣

∣

vf − vf −

∫

T

(vf − vf) dx

∣

∣

∣

∣

2

dvdx−Cst (K(f) + K(f)1/2)

≥ Cst

∫ ∫

|v|2
∣

∣

∣

∣

f̄ −

∫

T

f̄ dx

∣

∣

∣

∣

2

dvdx − Cst (K(f) + K(f)1/2)

≥ Cst H(f) − Cst K(f)1/2.

We end up with the differential inequality

(21)
d2

dt2
K(f) ≥ Cst H(f) − Cst K(f)1/2.

Estimates (20) and (21) enable to use Proposition 2.2, and lead to the
estimate

H(f)(t) ≤ Cst t−
1

1+2 λσ .

This ends the proof of Theorem 1.1.
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Ferrata, 1, 27100 Pavia, ITALY. e-mail francesco.salvarani@unipv.it


