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Abstract. We consider the linear Boltzmann equation in R
d, d ∈ N,

under the effect of an absorbing moving barrier. We prove existence
and uniqueness of the solution and consider the problem of the time-
asymptotic convergence to equilibrium.

We then propose a numerical strategy to study the problem and
provide quantitative results concerning some relevant test cases.

1. Introduction

This article aims to study some properties of the linear Boltzmann equa-
tion under the action of an absorbing moving surface.

This equation represents the time evolution of a population of point par-
ticles that interact with the medium trough absorption and scattering phe-
nomena, by supposing that the mean free path between two consecutive
interactions has the same order of magnitude as a macroscopic characteris-
tic length.

The information on the particle system is given by the particle distri-
bution density, a function that depends on space, time and, moreover, on
some “internal” variables (i.e. variables that refer to a single particle of the
system, typically the velocity of a single particle).

Many physical phenomena can be modelled by the linear Boltzmann equa-
tion. We quote, for example, the behaviour of a neutron population inside
the core of a fission nuclear reactor [6] and the time evolution of the radia-
tion, seen as a photons gas, inside the matter [7, 12].

However, the research on kinetic equations is mostly done in a static
situation. The field of kinetic equations with moving elements – or in moving
domains – is indeed still unexplored and, up to our knowledge, the only
available results concern the Knudsen gas [2, 13, 8].

Nevertheless, many reasons encourage the study of this kind of problems.
First of all, there is an intrinsic interest from a mathematical point of

view, since a time-dependent absorbing barrier originates new phenomena
that are absent when the domain is fixed, in particular when looking at the
long-time evolution.

Moreover, a very practical argument suggests the research on the subject.
Indeed, in general, the study of kinetic equations is very useful in establish-
ing hierarchies of models, based on some underlying simple and physically
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relevant conservation laws, and obtained by an appropriate limiting proce-
dure of the kinetic model when some scaling parameters tend to zero.

Therefore, this procedure allows to deduce very solid macroscopic models
and it can be applied to many situations. We cite only, as example, the
benefits of a kinetic deduction of models describing the fluid-structure in-
teraction in hemodynamics, such as those studied in [11]. This approach is
still unexplored, even when looking only to formal derivations.

In the kinetic description, the interaction of the particles with the medium
is described by some functions, usually called “cross sections”.

In this article we will consider quite general cross sections. However, for
the sake of simplicity, we will avoid the presence of “holes” in the domain
(which must be described by degenerate cross sections). We lead to [4, 3, 5,
10, 9] the readers interested in understanding the peculiar features of this
kind of cross sections.

This article is not exhaustive and it treats only some aspects of the prob-
lem under study. We will prove an existence and uniqueness theorem and
then we will study the long time asymptotics of the problem. We note that
our analysis of the long time behaviour is only a first step in understanding
the rich behaviour of the system, and that further studies are necessary in
order to obtain a deeper knowledge of the problem.

The paper is organized as follows: after the statement of the problem,
given in the next section, we provide, in Sections 3 and 4, the theoretical
background of the problem. Then, in Section 5, we explain the numerical
method used for obtaining our numerical simulations, which will be pre-
sented and analysed in Section 6.

2. The problem

Since the features of the absorbing moving barrier are the key aspect of the
problem, we begin our analysis with a careful description of the requirements
on the moving barrier itself that are needed for proving our results.

All the analysis will be performed in the framework of the d-dimensional
Euclidean space R

d, d ∈ N.
Let ψ : R+×R

d → R be a regular function, at least of class C(R+;C1(Rd)).
For all t ≥ 0, we introduce the domain

Ωt = {x ∈ R
d : ψ(t, x) < 0}

and we define the absorbing moving barrier Γt as the boundary of Ωt, i.e.

Γt = ∂Ωt for all t ≥ 0.

In what follows, we suppose some further basic properties on the family
of domains Ωt, collected in the following definition:

Definition 2.1. The family of domains Ωt, t ≥ 0, is said to be admissible

if and only if:

- Ωt 6= ∅ for all t ≥ 0;
- Ωt is connected for all t ≥ 0;
- the family Ωt is uniformly contained in a fixed ball BR(0) of radius

R > 0 centred in the origin of the reference frame:

Ωt ⊂ BR(0) for all t ≥ 0;
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- for all t ≥ 0, ∂Ωt is without boundary.

Likewise, the moving barrier Γt (t ≥ 0) is admissible if and only if the

corresponding family of domains Ωt is admissible.

The paper considers the time evolution of a gas (or a set of identical
point particles) described by a distribution function f := f(t, x, v). We will
suppose that x ∈ R

d and that the velocities belong to a suitable velocity
space V ⊆ R

d. Possible examples of velocity spaces are the whole Euclidean
space R

d, the sphere S
d−1 or the spherical shell V = {v ∈ R

d : 0 < vm ≤
|v| ≤ vM}.

The physical meaning of the distribution function is the following: if
X̄ ⊂ R

d and V̄ ⊂ V , the integral
∫

X̄×V̄

f(t, x, v) dxdv

represents the number of gas molecules that, at time t, have position x ∈ X̄
and velocity v ∈ V̄ .

We suppose moreover that the initial conditions have support contained
in Ω0, and then that the particles interact with a fixed background.

The time evolution of f is hence governed by the linear Boltzmann equa-
tion

(2.1)
∂f

∂t
+ v · ∇xf + a(t, x, v)f −Kf = 0, (t, x, v) ∈ R

+ × R
d × V,

where

Kf(t, x, v) :=

∫

V

k(t, x, v, w)f(t, x, w)dw.

The problem is supplemented with the initial condition and with the
constraint on the absorbing surface:

(2.2) f(0, x, v) =

{

f in(x, v) if (x, v) ∈ Ω0 × V
0 otherwise

f(t, x, v)|x∈Γt = 0,

where f in ∈ L∞(Ω0 × V ).
The interaction of the particles with the medium is described by the

scattering operator K and by the absorption term a.
The kernel k of the scattering operator K is a function of class L∞(R+ ×

R
d × V × V ), locally symmetric with respect to the velocity variables, i.e.,

for a.e. (t, x) ∈ R
+ × R

d

k(t, x, v, w) = k(t, x, w, v) for a.e. (v,w) ∈ V × V

and such that

0 ≤ k(t, x, v, w) for a.e. (t, x, v, w) ∈ R
+ ×R

d × V × V.

Moreover we suppose that

k(t, x, v, w) = 0 for a.e. x ∈ R
d \ Ωt,

for a.e. (v,w) ∈ V × V , for all t ∈ [0,+∞), and that there exists a positive
constant M ∈ R

+ such that

M := sup
(t,x,v)∈R+×Rd×V

∫

V

k(t, x, v, w) dw < +∞.
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The absorption term a is a function of class L∞(R+ × R
d × V ). We will

suppose moreover that

a ≥ ā > 0 for a.e. x ∈ Ωt and a = 0 for a.e. x ∈ R
d \ Ωt,

for a.e. v ∈ V and for all t ∈ [0,+∞).
The functions a and k are the cross sections of our problem.
The main tool for studying Equation (2.1) is the backward absorbing

time, defined as follows.

Definition 2.2. The backward absorbing time τΩt(x, v) for a particle start-

ing from x ∈ Ωt in the direction v ∈ V , is defined as

τΩt(x, v) = inf{θ > 0 : x− θv ∈ Γt−θ}.

If the set Θ := {θ > 0 : x− θv ∈ Γt−θ} is empty, then τΩt(x, v) = +∞.

3. Existence and uniqueness

This section is devoted to the study of the basic properties concerning the
well posedness of (2.1)-(2.2). However, before considering the main problem,
we will need some results on the linear transport equation. We hence study
the evolution equation governing the unknown g given by

(3.1)
∂g

∂t
+ v · ∇xg + a(t, x, v)g = S(t, x, v), (t, x, v) ∈ R

+ × R
d × V.

The absorption term a ∈ L∞(R+ × R
d × V ) is such that

a ≥ ā > 0 for a.e. x ∈ Ωt and a = 0 for a.e. x ∈ R
d \Ωt

and the source term S ∈ L∞(R+ × R
d × V ) is such that

S ≥ 0 for a.e. x ∈ Ωt and S = 0 for a.e. x ∈ R
d \ Ωt,

for a.e. v ∈ V and for all t ∈ [0,+∞).
The problem is supplemented with the initial condition and with the

constraint on the absorbing barrier

(3.2) g(0, x, v) =

{

gin(x, v) if (x, v) ∈ Ω0 × V
0 otherwise

g(t, x, v)|x∈Γt = 0

where gin ∈ Lp(Ω0 × V ), 1 ≤ p ≤ +∞.
The method of characteristics gives the explicit form of the unique weak

solution of the problem (3.1)-(3.2), namely

g(t, x, v) = gin(x− tv, v) exp

(

−

∫ t

0
a(s, x+ (s− t)v, v) ds

)

1τΩt (x,v)>t

+

∫ t

(t−τΩt (x,v))+
exp

(

−

∫ t

s

a(τ, x+ (τ − t)v, v) dτ

)

S(s, x+ (s− t)v, v) ds.

Under the hypotheses stated before, if gin ≥ 0 for a.e. (x, v) ∈ Ω0 × V ,
then g ≥ 0 for a.e. (t, x, v) ∈ R

+ × R
d × V . Moreover, g = 0 for a.e.

x ∈ R
d \ Ωt, for a.e. v ∈ V and for all t > 0.

The main goal of the section is the proof of the following theorem:
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Theorem 3.1. Let f in ∈ L∞(Ω0 × V ) be a non-negative function for a.e.

(x, v) ∈ Ω0 × V . If the moving barrier Γt, t ≥ 0, satisfies the requirements

of Definition 2.1, then the initial-boundary value problem (2.1)-(2.2) admits

a unique weak solution f ∈ L∞([0, t∗]× R
d × V ).

Moreover, f ≥ 0 for a.e. (t, x, v) ∈ [0, t∗]× R
d × V , t∗ > 0.

Proof. The strategy of proof is inspired by the classical representation of the
solution in terms of the Dyson-Phillips expansion (see, for example, [1]).

We write the problem (2.1)-(2.2) in the integral form obtained by applying
the method of characteristics. We obtain
(3.3)

f(t, x, v) = f in(x− tv, v) exp

(

−

∫ t

0
a(s, x+ (s− t)v, v) ds

)

1τΩt (x,v)>t

+

∫ t

(t−τΩt (x,v))+
exp

(

−

∫ t

s

a(τ, x+ (τ − t)v, v) dτ

)

Kf(s, x+ (s− t)v, v) ds.

The previous equation can be written in the equivalent form

(3.4) f = F (f in) + Tf,

where

F (f in) = f in(x− tv, v) exp

(

−

∫ t

0
a(s, x+ (s− t)v, v) ds

)

1τΩt (x,v)>t

and

Th =

∫ t

(t−τΩt (x,v))+
exp

(

−

∫ t

s

a(τ, x+ (τ − t)v, v) dτ

)

Kh(s, x+(s−t)v, v) ds.

We now prove that the series

(3.5) f =

+∞
∑

n=0

T nF (f in)

is a solution of Equation (3.4).
Let t∗ ∈ R

+. Since f in ∈ L∞(Ω0 × V ), f in ≥ 0 for a.e. (x, v) ∈ R
d × V

and a(t, x, v) ≥ 0 for a.e. (x, v) ∈ R
d × V , then

F (f in)(t, x, v) ≥ 0

for a.e. (t, x, v) ∈ [0, t∗]× R
d × V and

‖F (f in)‖L∞([0,t∗]×Rd×V ) ≤ ‖f in‖L∞(Ω0×V ).

It is then easy to see that, for all h ∈ L∞([0, t∗]× R
d × V )

|T nh(t, x, v)| ≤

∫ t

0
|KT n−1h|(s, x + (s − t)v, v) ds

≤M

∫ t

0
‖T n−1h(s, · , · )‖L∞(Rd×V ) ds.

By iteration on n, we finally deduce that

sup
t∈[0,t∗]

‖T nh(t, · , · )‖L∞(Rd×V ) ≤ sup
t∈[0,t∗]

(Mt)n

n!
‖h(t, · , · )‖L∞(Rd×V ).
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The previous estimate proves that the linear application T n is continuous
from the Banach space L∞([0, t∗] × R

d × V ) into itself, and that its norm
verifies

‖T n‖L(L∞([0,t∗]×Rd×V )) ≤
(Mt∗)n

n!
.

We can then conclude that each term of the series (3.5) is positive and that

‖T nF (f in)‖L∞([0,t∗]×Rd×V ) ≤
(Mt∗)n

n!
‖f in‖L∞(Ω0×V ).

The space L∞([0, t∗]× R
d × V ) is a complete Banach space. Moreover, the

series (3.5) is composed by positive terms and is normally convergent. Hence
f , obtained as the limit of (3.5), exists and belongs to L∞([0, t∗]×R

d × V ).
Since the application T n is continuous on L∞([0, t∗]× R

d × V ), then

f =

+∞
∑

n=0

T nF (f in) = F (f in) +

+∞
∑

n=1

T nF (f in)

= F (f in) + T

+∞
∑

n=0

T nF (f in) = F (f in) + Tf.

This shows that f is solution of (3.4). The existence of a solution of class
L∞([0, t∗]× R

d × V ) of the problem (2.1)-(2.2) is hence proved.
The uniqueness of the solution can be deduced as follows. Suppose that

there exist two different solutions f1 and f2 of (3.4), which are of class
L∞([0, t∗]× R

d × V ).
Hence, by linearity, the function h = f1−f2 (which is of class L∞([0, t∗]×

R
d × V )) satisfies the problem h = Th.
By iteration, h = T nh for all n ∈ N. Hence,

‖h‖L∞([0,t∗]×Rd×V ) ≤ ‖T n‖L(L∞([0,t∗]×Rd×V ))‖h‖L∞([0,t∗]×Rd×V )

≤
(Mt∗)n

n!
‖h‖L∞([0,t∗]×Rd×V )

for all n ∈ N.
Hence h = 0 for a.e. (t, x, v) ∈ [0, t∗]×R

d × V , and the uniqueness of the
solution in L∞ is proved.

Finally, since the series (3.5) is composed of positive terms, then the
unique solution f of (2.1)-(2.2) is positive. �

4. Convergence to equilibrium

The condition Ωt ⊂ BR(0), for all t ≥ 0, has an important consequence
for the long-time asymptotics of the solution.

We will perform the computations for velocities belonging to the spherical
shell V only. Straightforward modifications allow to treat the case V = S

d−1.
In the absorption dominated case (i.e. when ā ≥ ‖k‖L∞((0,t∗)×BR(0)×V×V)),

the following result holds:

Theorem 4.1. Let f in ≥ 0 for a.e. (x, v) ∈ Ω0 × V, where

V = {v ∈ R
d : 0 < vm ≤ |v| ≤ vM}.

If the absorbing barrier Γt satisfies the prescriptions of Definition 2.1 and,

moreover, ā ≥ ‖k‖L∞((0,t∗)×BR(0)×V×V), then the unique solution f of the
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initial-boundary value problem (2.1)-(2.2) asymptotically converges to zero

with an explicit exponential rate for t→ +∞. Moreover, the L1-norm of the

solution satisfies the following estimate:

‖p(t, · , · )‖L1(BR(0)×V) ≤ ‖f in‖L1(Ω0×V)e
−(ā−‖k‖L∞((0,t∗)×BR(0)×V×V))t

−e−(ā−‖k‖L∞)t

∫ t

0

∫

∂BR(0)×V

v ·nx>0

|v ·nx|f
in(x−θv, v)e−‖a‖L∞ θ

1τBR(0)(x,v)>θ dS(x)dvdθ

for any t ≥ 0.

Proof. Let p be the solution of the IBVP

(4.1)
∂p

∂t
+ v · ∇xp+ a(t, x, v)p −Kp = 0, (t, x, v) ∈ R

+ ×BR(0) × V.

with initial and boundary conditions
(4.2)

p(0, x, v) =

{

f in(x, v) x ∈ Ω0 × V

0 x ∈ (BR(0) \Ω
0)× V

, p(t, x, v)|(x,v)∈Γ− = 0,

where Γ− = {(x, v) ∈ ∂BR(0) × V : nx · v < 0}, and nx is the outward
normal to BR(0) originated in x ∈ BR(0).

Problem (4.1)-(4.2) can be written in the equivalent integral formulation
(4.3)

p(t, x, v) = f in(x− tv, v) exp

(

−

∫ t

0
a(s, x+ (s− t)v, v) ds

)

1τBR(0)(x,v)>t

+

∫ t

(t−τBR(0)(x,v))+
exp

(

−

∫ t

s

a(τ, x+ (τ − t)v, v) dτ

)

Kp(s, x+ (s− t)v, v) ds.

Since the barrier Γt remains confined in BR(0) for all t ≥ 0, we have that

τBR(0)(x, v) ≥ τΩt(x, v)

for all (t, x, v) ∈ [0, t∗] × Ωt × V. The IBV problem (4.1)-(4.2) is posed
in a fixed domain. It can hence be solved with the same strategy used in
the proof of Theorem 3.1 and its solution can be written in terms of the
Dyson-Phillips expansion. Its form is exactly as in Theorem 3.1, that is

p =

+∞
∑

n=0

T n
BR(0)FBR(0)(f

in),

where

FBR(0)(f
in) = f in(x− tv, v) exp

(

−

∫ t

0
a(s, x+ (s− t)v, v) ds

)

1τBR(0)(x,v)>t

and

Th =

∫ t

(t−τBR(0)(x,v))+
exp

(

−

∫ t

s

a(τ, x+ (τ − t)v, v) dτ

)

Kh(s, x+(s−t)v, v) ds.

By comparison between the integral formulations (3.3) and (4.3) and the
corresponding Dyson-Phillips expansions, we deduce immediately that

(4.4) 0 ≤ f ≤ p for a.e. (x, v) ∈ Ωt ×V

for all t > 0. This implies that the exponential convergence to zero as
t→ +∞ for f is a consequence of the same behaviour for p.
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Let us consider Equation (4.1). Since p ≥ 0 for a.e. (t, x, v) ∈ [0, t∗] ×
BR(0)× V and ā ≥ ‖k‖L∞((0,t∗)×BR(0)×V×V), we deduce that

(4.5)

d

dt
‖p(t, · , · )‖L1(BR(0)×V) ≤ −

∫

BR(0)×V

v · ∇xp(t, x, v) dxdv

−(ā− ‖k‖L∞((0,t∗)×BR(0)×V×V))‖p(t, · , · )‖L1(BR(0)×V) =

−

∫

∂BR(0)×V

v ·nx>0

|v · nx|p(t, x, v) dS(x)dv

−(ā− ‖k‖L∞((0,t∗)×BR(0)×V×V))‖p(t, · , · )‖L1(BR(0)×V) ≤ 0,

where dS(x) is the surface element on ∂BR(0), the last identity being a
consequence of the divergence theorem.

By using the positivity of p and of the kernel k, we obtain that

p(t, x, v) ≥ f in(x− tv, v)e
−t‖a‖L∞ (R+×BR(0)×V)1τBR(0)(x,v)>t

for a.e. (x, v) ∈ BR(0)× V, for all t > 0.
Hence, by Grönwall’s lemma,

‖p(t, · , · )‖L1(BR(0)×V) ≤ ‖f in‖L1(Ω0×V)e
−(ā−‖k‖L∞((0,t∗)×BR(0)×V×V))t

−e−(ā−‖k‖L∞)t

∫ t

0

∫

∂BR(0)×V

v ·nx>0

|v ·nx|f
in(x−θv, v)e−‖a‖L∞ θ

1τBR(0)(x,v)>θ dS(x)dvdθ

for any t ≥ 0.
Hence, the result of the theorem follows. �

The general case, with moving barriers that do not satisfy the prescrip-
tions stated in Definition 2.1 and/or with cross sections inducing a local
augmentation of the particle population, is much more complicated to study,
and a wide variety of behaviours can happen.

In particular, it would be interesting to investigate whether the absorbing
boundary can balance a net particle production inside the moving domain,
in the regions where k ≥ a.

Another interesting open question concerns the characterization of the
requirements on a, k and Γt that lead to a finite extinction time of the
density function f .

5. The numerical strategy

This sections is devoted to describe our numerical strategy for the study
of (2.1)-(2.2). It is an extension of the particle method proposed in [8] and
takes into account the effects of the medium on the particles, as described
below.

In practice, a particle method simulates a population, composed by a
great number of individual entities, by a reduced set of moving particles
(whose number can be handled by a computing machine), which obey to
the basic physical principles of the problem. For this reason, it allows the
control of the main quantities used in the simulations, such as the mean free
path between collisions, the particle free flow and the collision frequency.
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The strategy of a particle method consists in discretizing the unknown
function f by means of a sum of Dirac masses, centred in (xk(t), vk(t))1≤k≤N ,
which represent a set composed by N ∈ N macro-particles that evolve in the
phase space of a system. More precisely, the working hypothesis is the
approximation

f =

N
∑

k=1

ωk δ(x− xk(t)) δ(v − vk(t)),

where ωk is the weight of the k-th particle.
Once the number N of numerical particles has been chosen, the problem

is initialized by approximating the initial condition f in with

f in(x, v) =

N
∑

k=1

ωk δ(x− x0k) δ(v − v0k),

and then the time evolution of the system is obtained by deducing the time
evolution of the macro-particles on the characteristic curves of the problem
(2.1)-(2.2).

Here, all the weights of the particles are identical, and are tuned in order
to reproduce the mass of the initial condition:

ωk = ‖f in‖L1(Ω0×V )/N,

for all 1 ≤ k ≤ N .
Different phenomena are responsible of the time evolution of the system.

In particular, we need to take into account:

(1) the random walk of the particle in the domain, mathematically repre-
sented by the transport operator v ·∇ and by the collisional operator
(a−K);

(2) the absorbing conditions on the moving barrier;
(3) the time evolution of the absorbing barrier.

All these phenomena are taken into account in the code, by using the nu-
merical strategy described below.

For simplicity, we will suppose always that the velocities of the macro-
particles belong to the unit sphere, that is vk(t) ∈ S

d−1 for all 1 ≤ k ≤ N
and for all t ≥ 0, and that the system is locally conservative and spatially
homogeneous, i.e.

a(t, x, v) = σ > 0 and k(t, x, v, w) = σ/|Sd−1| > 0

for a.e. (t, x, v, w) ∈ R
+ × R

d × S
d−1 × S

d−1.

5.1. Motion of the particle with “frozen” absorbing barrier. We
choose a fixed small time interval ∆t > 0, whose magnitude is smaller (of at
least one order of magnitude) than the time corresponding to the mean free
path of the particle gas and fix the fraction α ∈ (0, 1) of particles that are
supposed to change direction through scattering phenomena in [t, t+∆t].

Then, in the time interval [t, t+∆t] the numerical particles move according
to the free flow rule







x′k(t) = vk(t),

v′k(t) = 0,
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under the initial conditions (xk(0), vk(0)) = (x0k, v
0
k), for all 1 ≤ k ≤ N .

The next step consists in generating a random number from an uniform
distribution between the interval (0, 1). If this value is less or equal to α,
the particles is considered to be scattered by the medium, in the opposite
case the particles will be driven by the free flow with velocity vk(t). Note
that α depends on the time step ∆t that has been chosen in the numerical
simulations: if α≪ 1 for a particular choice of ∆t, then there exists a simple
rule for computing the fraction of scattered particles α∗ > 0 for a multiple
∆t∗ = m∆t, m ∈ N: indeed, the probability that a particle follows a free
flow dynamics in the time interval [t, t+∆t∗] = [t, t+m∆t] can be written
either as (1− α)m or (1− α∗) respectively.

But, when α≪ 1, we have that (1−α)m ≈ (1−mα), and hence α∗ ≈ mα.
The link between α and σ is then given by the relationship

σ = α/∆t.

In particular, this procedure generates a sequence of changes in the veloc-
ity directions whose time intervals (θn)n≥0 in R

+ are described, in the limit
∆t→ 0, by an exponential law of parameter σ: for t > 0,

P(θn > t) = e−σt.

For n ≥ 1, the total time after n collisions is obviously

Tn =

n−1
∑

j=0

θj.

On the other hand, the effect of the scattering is obtained through a sample
of the velocity vk on the sphere S

d−1, with an uniform probability law. By
denoting with (Vn)n≥1 a sequence of independent random variables in S

d−1

with uniform law, representing the velocity changes, we have that

P(Vn ∈ V ⊆ S
d−1) =

1

|Sd−1|

∫

V

dω.

It is well known that the procedure written above generates a density func-
tion f that solves the transport equation (2.1), with V = S

d−1, a(t, x, v) =
σ > 0 for a.e. (t, x, v) ∈ R

+ × Ωt × V and with k(t, x, v, w) = σ/|Sd−1| for
a.e. (t, x, v, w) ∈ R

+ × Ωt × V × V (see, for example, [1]).
This procedure is performed by supposing that the absorbing boundary

is fixed in its position at time t for the whole duration of the time step, i.e.
the random walk takes places in Ωt.

5.2. Time evolution of the absorbing barrier. The second step consists
in taking into account the time evolution of the absorbing surface Γt in the
time interval [t, t + ∆t], the time step ∆t being the same as in Subsection
5.1.

The motion of the barrier is treated in an exact way, provided that an
analytical formulation of its time evolution is known.

Then, the algorithm identifies between the numerical particles, described
by the sum

f =

N
∑

k=1

ωk δ(x− xk(t+∆t)) δ(v − vk(t+∆t)),
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those that leave the domain in the time interval [t, t+∆t]. In this case, the
corresponding weights ωk are set to zero and then the corresponding particle
is removed.

If the final time has not been reached, then the two steps of the splitting
procedure are performed again in the next time interval [t+∆t, t+2∆t], with
initial conditions (xk(t+∆t), vk(t+∆t)), for all 1 ≤ k ≤ N∗, where N∗ ≤ N
represents the new total number of particles, obtained by subtracting from
N the number of particles absorbed by the moving barrier.

5.3. Advantages and drawbacks of the numerical strategy. As all
numerical approaches to a partial differential equation, the particle method
presented here has some weaknesses and some positive aspects.

In primis, it is very simple to implement, even for complex geometries
of the evolutionary barrier and in situations of high dimensionality. The
evolution law of the barrier is treated in an exact way, provided that its
analytical formulation is known.

Our strategy is based on the physical hypotheses that allow to deduce
the linear Boltzmann equation itself, starting from an Hamiltonian system
of point particles. However, the number of particles that is needed in order
to achieve a reasonable accuracy is very large.

In order to reduce the computation time, a parallelization technique (for
example, on graphic cards) could be used.

We refer to [8] for details concerning the parallelization of a particle
method in the case of a Knudsen gas. This strategy could be easily adapted
to the present case.

6. Numerical results

In this section we show some relevant examples of long-time behaviour in
different situations.

All computations have been performed in the three-dimensional physical
space R

3, without taking into account any symmetry, and with velocities
in S

2. Hence, the simulation took place in the five-dimensional phase-space
R
3 × S

2.
In all tests we used N = 106 numerical particles, and a time step ∆t =

2 × 10−4. The initial condition of all simulations is a weighted character-
istic function of the ball of radius 1/2 centred in (−.5, 0, 0) ∈ R

3, with a
normalization factor such that ‖f in‖L1(R3×S2) = 1:

f in(x, v) =
6

π
1(x,v)∈B1/2((−.5,0,0))×S2 .

The time evolution of f in is given by the problem
(6.1)
∂f

∂t
+ v · ∇xf = σ

(
∫

S2

f(t, x, w)dw − f

)

= 0, (t, x, v) ∈ R
+ × Ωt × S

2,

(6.2) f(0, x, v) = f in(x, v), f(t, x, v)|x∈Γt
i
= 0,

where Γt
i (i = 1, . . . , 4) are some relevant absorbing moving barriers. In

what follows, we denote with x = (x1, x2, x3) ∈ R
3. In all tests, σ = 10.
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Figure 1. Time evolution of the solution of (6.1)-(6.2) with
absorbing barrier S

2: ‖f‖L1 versus t (left) and log (‖f‖L1)
versus t (right).

The simulations, written in C, heavily need sequences of random num-
bers. In our tests, we used the standard rand48() pseudo-random number
generator, which guarantees a satisfactory approximation of the uniform
distribution.

The hardware being used is a workstation equipped with an Intel Xeon
CPU X5450 (12M Cache, 3.00 GHz, 1333 MHz FSB), with 47 GB memory.

6.1. First example: fixed domain. We consider (6.1)-(6.2) under the
effect of the fixed absorbing barrier Γt

1 = S
2, i.e. the barrier is the unit

sphere.
In Figure 1, we show that the L1-norm of f is exponentially decaying

to zero after a transient initial period that corresponds to the time interval
that is needed to the first particles for reaching the absorbing boundary.

6.2. Second example: expansion. We now consider the problem defined
by (6.1)-(6.2) under the action of the absorbing moving barrier

Γt
2 = {x ∈ R

3 : x21 + x22 + x23 = e−t + 3(1− e−t), t ∈ R
+}.

Γt
2 is a sphere of radius r = 1 at time t = 0, that expands in time and whose

radius reaches asymptotically the value r = 3 as t→ +∞.
The results, plotted in Figure 2, show that the L1-norm of f is strictly de-

creasing in time, after a transient initial period corresponding to the smallest
forward exit time of the particles that describe the initial condition.

Here the convergence speed is slower with respect to the first simulation.
This result agrees with the physics of the problem, since the expansion of the
absorbing boundary induces a modification of the forward absorbing time,
which is larger than the forward absorbing time obtained in Subsection 6.1:

τΩt
2
(x, v) ≥ τΩt

1
(x, v) for all (t, x, v) ∈ R

+ × (Ωt
1 ∩ Ωt

2)× S
2.

Also in this case the convergence is exponential for large time.



ON THE LINEAR BOLTZMANN EQUATION WITH ABSORBING BOUNDARY 13

Figure 2. Time evolution of the solution of (6.1)-(6.2) under
the action of Γt

2: ‖f‖L1 versus t (left) and log (‖f‖L1) versus
t (right).

Figure 3. Time evolution of the solution of (6.1)-(6.2) with
absorbing barrier Γt

3: ‖f‖L1 versus t (left) and log (‖f‖L1)
versus t (right).

6.3. Third example: oscillatory domain. The next simulation shows
the behaviour of the solution of Problem (6.1)-(6.2), under the action of the
oscillatory moving barrier

Γt
3 = {x ∈ R

3 : x21 + x22 + x23 = 2 + sin(2πt), t ∈ R
+}.

The results, plotted in Figure 3 (left), show that the L1-norm of f is
globally monotone non increasing.

However, during the expansion phases of the barrier, sometimes the ve-
locity of the particles is smaller than the expansion velocity of the moving
boundary. In this case, no particles can reach the absorbing barrier and
therefore the L1-norm of f remains constant on such time subintervals. As
shown by the semi-logarithmic plot (Figure 3, right), it is apparent that the
convergence is exponential for large time.

6.4. Fourth example: translational barrier. In this last simulation,
we consider a surface whose evolution law includes translational effects. In
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Figure 4. Time evolution of the absorbing barrier Γt
4 at

t = 0 (left), t = 0.5 (centre) and t = 1 (right).

Figure 5. Time evolution of the solution of (6.1)-(6.2) with
absorbing barrier Γt

4: ‖f‖L1 versus t (left) and log (‖f‖L1)
versus t (right).

particular, Problem (6.1)-(6.2) is set under the effect of the moving boundary

Γt
4 = {x ∈ R

3 : (x1 − 2ϕ(t))2 + x22 + x23 = 1, t ∈ R
+},

where ϕ(t) = t for t ∈ [0, 1] and ϕ(t) = 1 for t ≥ 1 (see Figure 4 for a
visualization of the time evolution of the absorbing barrier).

This simulation shows that, sometimes, the convergence to the long-time
equilibrium can be better than exponential. In particular, in Figure 5, we
numerically recover a convergence to zero in finite time. This behaviour is
due to the fact that there exists a time t̃ for which the support of f and Ωt

4

are disjoint.
The slight degradation in the time interval [0.75, 0.9] of the numerical

simulation is caused by the reduced number of numerical particles: at time
t = 0.7500 only 79 numerical particles are present, and the last one is ab-
sorbed by the moving boundary at time t = 0.8646.
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7. Conclusions

We have studied the behaviour of the linear Boltzmann equation under
the action of a moving barrier in R

d, d ∈ N. Existence and uniqueness of the
solution have been proved, as well as the exponential asymptotic convergence
to zero as t→ +∞ in the absorption dominated case.

We have then proposed a numerical strategy for describing our problem,
based on a particle method.

The results of this article can be extended in many aspects. From a
theoretical point of view, it would be interesting to investigate on a more
detailed basis the relationships between the initial data and the evolution
law of the moving barrier in order to deduce more precise convergence results
in some specific regimes. Furthermore, it would be interesting to take into
account more complex interactions with the boundary, and explore, both
theoretically and numerically, the resulting kinetic models and their fluid
limits.
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