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Abstract. In this paper, we deal with a kinetic model to describe the
evolution of the opinion in a closed group with respect to a choice be-
tween multiple options, e.g. political parties, which takes into account
two main mechanisms of opinion formation, namely the interaction be-
tween individuals and the effect of the mass media. We provide an
existence and uniqueness result for the model, and then we numerically
test it in some relevant cases.

1. Introduction

The idea of modeling sociological behaviours by using tools of statistical
mechanics arose about thirty years ago. The topics covered by such a re-
search field, called sociophysics by Galam et al. in the early eighties [13],
deal with several different problems, including social networks, population
dynamics, voting, coalition formation and opinion dynamics.

Many different mathematical strategies have been explored. A very pop-
ular technique consists in using a description based on Ising models, see
[11, 19, 12] for example.

The kinetic theory has been only in recent years applied to describe collec-
tive behaviour phenomena (see [15, 14, 16], for instance, as a possible intro-
duction of Boltzmann-like equations in the context of sociophysics). During
the last few years, the opinion formation with respect to a binary question
(typically, a referendum), or in situations using a monodimensional opinion
variable, has been modelled by kinetic-type equations in [20, 6, 8, 7, 10]. The
main advantage of the kinetic formulation with respect to other strategies,
such as the Ising models, is that one can also take into account intermediate
opinions, therefore allowing to describe a partial agreement (or disagree-
ment). It is worth noticing that the kinetic description has mainly been
employed, up to now, in that case of binary questions.

Overtaking the situations concerning this kind of opinion formation is
not completely straightforward from a modelling viewpoint. Indeed, a ma-
jor problem consists in the fact that, with a plurality of possible options, in
general, it is not possible to rank the options independently on the individ-
ual. For example, the schematization left/right in politics is not univocal,
and some persons, although having a clear political orientation, can vote
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for another party which they do not share the same ideas with, but which
defends some tangible interest that is very important to them.

The order between parties being a personal matter, it is hence not possible
to use only one scalar independent opinion variable, at least when there are
more than two political parties. It then becomes necessary to introduce an
opinion vector, whose dimension coincides with the number of the possible
choices. We note moreover that the opinion on an option can be independent
on the opinion on the others ones: the use of a multidimensional opinion
variable allows to take into account situations where the individual has a
positive viewpoint for more than a possibility of choice.

In this paper, we give a specific attention to a particular problem of
multidimensional opinion formation: we aim to tackle the modelling of a
large population which must choose between two or more available political
parties through a vote. However, our results are not limited to this context:
our strategy can indeed be used in many other situations, for instance, the
choice between some products in a no-monopolistic commercial market.

In a large-scale election, it is well accepted that two different processes
play a fundamental role in the phenomenon of opinion formation inside
a population: the binary exchange of ideas between individuals and the
influence of the mass media (for example, TV networks, radios, newspapers,
internet).

Whereas the interpersonal communication is always an essential ingredi-
ent in the time evolution of the public opinion, the interaction with media
is typical of some kind of choices.

For example, in a small-scale election (such as a local election in a small
community), the effect of the media, if any, is often less efficient than the
interpersonal exchange of ideas between individuals: here, the direct knowl-
edge of the candidates turns out to be decisive. Note that, in such a context,
it would also be convenient to discuss the relevance of the kinetic descrip-
tion, since the basic assumption on the large size of the population cannot
hold anymore.

This last phenomenon has been very well understood by political actors,
who make a great effort in order to take advantage from it (e.g. by using
direct advertisements, but also by controlling directly or indirectly the media
themselves).

In this work, we have chosen to model the interpersonal communication
by a unique mechanism, which is very similar to the process defined in [6]:
the binary exchange between individuals induces concentration towards the
majority opinion.

In general, this assumption does not hold. It is indeed clear that, in a
real situation, the phenomenology is much more intricate. For example,
many different behaviours of opinion formation depend on the fact that the
way people think is not uniform. A realistic model should therefore include
as many binary interaction rules between individuals as the mental paths
of the members of the population. It is worth noticing that the variety of
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behaviours in the context of interpersonal communication is already enough
to explain many interesting phenomena, such as the concentration towards
some particular opinions or the cyclic (in time) behaviour of the distribution
function: we refer to [10, 5] in the case of models depending on one scalar
variable.

However, one of our primary objectives of the paper is to focus on the in-
fluence of the mass media on the population. Since the introduction of other
factors which can modify the opinion evolution can hide the direct impact
of the mass media, we shall therefore disregard them, and only consider a
unique interaction rule coupled with the media effect. In this context, the
binary collision rule which tends to the consensus seems the best choice,
since it represents a very popular way of thinking and, in many populations,
it is the most common behaviour [9, 1, 2, 3].

The next step in the modeling analysis should be to consider a more com-
plete model, with a plurality of possible effects as the ones briefly mentioned
above.

Concerning the characteristics of the media, we choose to consider the
media opinion as an external input to the population. It means that some-
one, which is not influenced by the population itself, tries to modify the
equilibrium which would be reached in a media-free situation. Of course,
there are other possibilities. For example, people may prefer to be informed
by media which share, more or less, their opinions. Hence, instead of re-
leasing ideas without caring about the population, such kind of media may
follow the local (in time) majority, in order to be more popular than the
concurrence. It would mean that this kind of media would propose opinions
which depend on the average opinion of the population.

Our choice for the media characteristics has the advantage of permitting
the study of possible manipulation effects on the population. This kind of
situations has been individuated and analyzed [17]: there exist, indeed, spe-
cial interest groups which are able to manipulate the public opinion through
the media, both in democratic societies and in autocratic ones.

In the earlier stages of development, for example, the state and the po-
litical parties tend to play an important role in financing the media (either
directly through ownership, or indirectly through advertising). In more de-
velopped markets, even if the effects are more subtle, they still are present.

The model of the propaganda process is however complex [18]. It takes
the form of a message flow through a network system, originated from an in-
stitution, and which can end with the possibility of response from the public.
The message of the institution is carried by some propaganda agents (which
can be charismatic people, but also bureaucrats or low-key disseminators of
information). In order to successfully complete the process, the strength of
the carrier is of course crucial.

Once established the aforementioned phenomena, the dynamics of their
competition is clear. Whereas the binary exchange between individuals in-
duces concentration towards a weighted majority opinion, the presence of
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the media disturbs this tendency to compromise through an attraction effect
towards the media opinion.

We point out that our model describe the evolution of the opinion in a
community with respect to a multidimensional choice, but it does not pro-
vide any forecast on the choice itself. By analogy with quantum mechanics,
we might say that our model foresees the time evolution of the state of a
system, whereas the choice process is the analogous of the measurement
process, which gives, as a result, an eigenstate of the system itself.

Obviously, the starting point of the choice process is given by the distri-
bution function, but it cannot only be determined by it. In order to justify
this statement, let us consider, as an example, the electoral process. When
voters only have two options, the strategy of vote seems quite clear. Eeach
individual chooses the political party which is closer to (or at least not so
far from) his opinion. Exceptions to this rule are quite uncommon, and are
mainly due to people who think that the available parties are unsatisfactory.

On the contrary, when there are three or more options, the electoral
system plays a crucial role, and the translation of the voter’s sympathy
into a vote heavily depends on the voting process. If the system is purely
proportional, the strategy of vote can still be based on a maximal agreement
rule. On the other hand, if the individuals are confronted to a majority
system (or a mixed one), sometimes they would vote for a party which is
not the best one in their own opinion, but that has real possibilities of
winning the election, rather than a party which fits their opinion, but in no
position of winning.

Here we choose to only consider a purely proportional voting system,
which allows to establish a clear link between the opinion of an individual
and its vote. Other systems of vote imply the coupling of our model of
opinion formation with a strategy of vote based on game theory [15].

The paper is organized as follows. In the next section, we describe our
model, written in a weak form with respect to the opinion vector. Then, in
Section 3, we obtain an alternative formulation, the strong form, which is
the starting point to study the main mathematical properties of the model.
Existence and uniqueness are deduced in Section 4. Note that the number
of available political parties is arbitrary, but it is obviously finite. We only
performed numerical simulations for two and three parties, and the results
are collected in Section 5. This choice is due to the fact that the distribution
function can be visualized only when the available options are at most two.
With more than two options, only quantities related to the distribution func-
tion (but not the distribution function itself) can be visualized. Moreover,
the dynamical complexity of having more than two options is fully present
in the 3D case.
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2. Model for opinion formation

Let us consider an election process with p ≥ 1 political parties, denoted
as Pi, 1 ≤ i ≤ p. For each party Pi, we introduce an agreement variable

xi ∈ [−1, 1]. In the following, Ω denotes the open interval (−1, 1).
We label with xi = −1 and xi = 1 the two extreme behaviours: the

complete disagreement with the party Pi is translated into the model by
setting xi = −1, and the opposite situation, i.e. the complete agreement, is
translated by setting xi = 1. Note that any intermediate value between the
two extremes, xi = 0 excluded, means a partial agreement or disagreement,
with a degree of conviction proportional to |xi|. The value xi = 0 means a
total indifference with respect to party Pi.

Since there are several parties, it can be useful to define the opinion (or
agreement) vector x = (x1, . . . , xp) ∈ Ω̄p, which gives, for each individual of
the population, its feelings about the political parties.

The unknown of our model is a density (or distribution function) f =
f(t, x) ≥ 0, defined on R+ × Ω̄p, whose time evolution is described by a
kinetic-type equation. If the agreement vector is defined on a sub-domain
D ⊆ Ω̄p, the integral

∫

D

f(t, x) dx

represents the number of individuals with opinion included in D at time
t ≥ 0. Note that, in order to give a meaning to the previous considerations,
f should satisfy f(t, ·) ∈ L1(Ωp) for all t ∈ R+.

As sketched in the introduction, we only take into account two processes
of opinion evolution. The first one is given by the binary interaction between
individuals, who exchange their points of view and adjust their opinions on
the ground of each other’s belief. The second one is the interaction with the
media. Both phenomena are accurately presented below.

2.1. Exchange of opinions inside the population. We model this pro-
cess by borrowing the collisional mechanism of a typical interaction in the
kinetic theory of gases: whereas, in rarefied gas dynamics, the particles ex-
change momentum and energy in such a way that the principles of classical
mechanics are satisfied, here the “collision” between individuals allows the
exchange of opinions.

Let x, x∗ ∈ Ω̄p the opinion vectors of two individuals before an interaction.
We suppose that the opinions after the interaction change according to the
following rule:

(1)



















x′
i =

xi + x∗
i

2
+ η(xi)

xi − x∗
i

2
,

(x∗
i )

′ =
xi + x∗

i

2
+ η(x∗

i )
x∗

i − xi

2
,

1 ≤ i ≤ p.

Of course, other choices, based on sociological considerations, are possible.
For p = 1, with (1), we recover the collision rule defined in [6].
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The function η : Ω̄ → R, which we henceforth name the attraction func-

tion, is smooth and it describes the degree of attraction of the average
opinion with respect to the starting opinion of the agent. Note that η may
depend on i, but we choose not to take into account this dependence, since
we obtain the same kind of results. In the sequel, we need some more as-
sumptions on the attraction coefficient η.

Definition 2.1. Let η : Ω̄ → R be an even function of class C1(Ω̄). The
attraction function is admissible if

• 0 ≤ η(s) < 1 for all s ∈ Ω̄,
• η′(s) < 0 for all s ∈ [−1, 0],
• the Jacobian J(xi, x

∗
i ) of the collision mechanism (1), taken compo-

nent by component, i.e.

J(xi, x
∗
i ) =

1

2
[η(xi) + η(x∗

i )] −
1

4
η′(xi)η

′(x∗
i )(xi − x∗

i )
2

+
1

4
[η′(xi) − η′(x∗

i )](xi − x∗
i ) +

1

4
[η′(xi)η(x∗

i ) − η(xi)η
′(x∗

i )](xi − x∗
i )

is uniformly lower bounded by a strictly positive constant, i.e. there
exists Jmin > 0 such that J(xi, x

∗
i ) ≥ Jmin, for any i and any couple

(xi, x
∗
i ) ∈ Ω̄2.

The first property prevents that the interaction destroys the bounds of
the interval Ω. The second one translates the assumption that the effects
of the interaction between individuals is stronger when the pre-collisional
opinions are close to zero. The third one ensures that the inverse of the
collision rule (1) is well defined.

Remark 2.2. By using the properties listed in Definition 2.1, it is not dif-
ficult to also prove that, for any i and xi, x∗

i ∈ Ω̄,

x′
i − (x∗

i )
′ =

1

2
[η(xi) + η(x∗

i )] (xi − x∗
i ),

and, since 0 ≤ η < 1,
|x′

i − (x∗
i )

′| ≤ |xi − x∗
i |.

It is then clear that the lateral bounds are not violated, i.e.

max{|x′
i| , |(x

∗
i )

′|} ≤ max{|xi| , |x
∗
i |}.

We note that the set of admissible attraction coefficients is not empty. A
possible choice is η(s) = λ(1 + s2), with 0 < λ < 1/2.

Once defined the collision rule (1), the interaction between individuals and
the corresponding exchange of opinions is described by a collisional integral
of Boltzmann type.

The collisional integral, which is denoted as Q, has the classical structure
of the dissipative Boltzmann kernels. At a formal level, it can be viewed as
composed of two parts: a gain term Q+, which quantifies the exchanges of
opinion between individuals which give, after the interaction with another
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individual, the opinion vector x, and a loss term Q−, which quantifies the
exchanges of opinion where an individual with pre-collisional opinion vector
x experiences an interaction with another member of the population.

It is apparent that the existence of a pre-collisional pair which restitutes
the post-collisional pair (x, x∗) through a collision of type (1) is not guar-
anteed, unless we suppose that the collisional rule is a diffeomorphism of
Ω̄2p onto itself. Unfortunately, the collisional mechanism (1) does not verify
this property. For instance, in general, there is no (xi, x

∗
i ) ∈ Ω̄2 which gives,

after collision, the couple of extreme opinions (−1, 1).
In order to overcome this difficulty, the natural framework for such a

collision rule is given by the weak form. Two choices are possible. We may
either build a model in a weak form with respect to x only, or work in a
weak setting with respect to the whole set of independent variables. We
choose the first option, which seems to be the correct framework for such
kind of models.

A crucial term of the collision integral is given by the cross section. This
quantity measures the probability of interaction between individuals and,
moreover, the probability that the interaction causes a modification of the
agent’s opinion.

We suppose that the cross section β : Ω × Ω → R+ is a function of class
L∞(Ω × Ω) which depends on a suitable pre-collisional opinion distance.

Let ϕ = ϕ(x) be a suitably regular test function. We define the weak
form of the collision kernel as

(2) 〈Q(f, f), ϕ〉 =

∫

Ω2p

β(x, x∗)f(t, x)f(t, x∗)
[

ϕ(x′) − ϕ(x)
]

dx∗dx.

Note that the particular form of the collision rule (1) only enters through
the test function ϕ(x′). It is also clear that the operator Q only acts on the
agreement vector, and not on time.

The explicit form of the change of variables (1) also allows to give the
following alternative formulations of the collision kernel:

〈Q(f, f), ϕ〉

=

∫

Ω2p

β(x, x∗)f(t, x)f(t, x∗)
[

ϕ((x∗)′) − ϕ(x∗)
]

dx∗dx

=
1

2

∫

Ω2p

β(x, x∗)f(t, x)f(t, x∗)
[

ϕ(x′) + ϕ((x∗)′) − ϕ(x) − ϕ(x∗)
]

dx∗dx.

Remark 2.3. At least formally, we have 〈Q(f, f), 1〉 = 0.

2.2. The influence of media. The effects of the media on the population
are here modelled by a fixed background. This assumption adds a linear
kinetic term into our equations. We consider a set of m ∈ N

∗ media. For
any media Mj, 1 ≤ j ≤ m, we introduce two quantities: its strength αj ,
which translates the influence of the media on the population and its opinion
vector Xj ∈ Ωp, with respect to each political party.
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Both quantities can be time-dependent. In what follows, we can suppose
that the strength of the media is constant. This is the simplest assumption.
It seems reasonable if the time scale is small enough, as it may happen
during an electoral process. Of course, other choices, based on sociological
considerations, are possible.

We do not suppose, however, that the opinion vector of the media is
time-independent: even if, normally, the opinionists are quite stable in their
convictions, some events can considerably modify the appealing of a party.
Moreover, a particular strategy of manipulation of the public opinion, which
is investigated in Section 5.1, is based on a time-evolution of the opinion
vector of the media. Hence, in the following, we admit that Xj : R+ → Ωp

for any j.
The effect of each media Mj on the individual is therefore described by

an interaction rule which reminds the collision rule (1):

(3) x̃i = Φj
i (xi) = xi + ξj(|X

j
i − xi|) (Xj

i − xi),

for all i and j.
The functions ξj : [0, 2] → R are the influence functions and satisfy the

prescription collected in the following definition:

Definition 2.4. Let 1 ≤ j ≤ m and ξj : [0, 2] → R+ be a function of class
C1([0, 2]). The influence function is admissible if 0 ≤ ξj(s) < 1, and if there
exists cj ∈ (0, 2) such that

• ξj(s) = 0 for all s ∈ [cj , 2],
• ξj

′(s) < 0 for all s ∈ (0, cj).

Using this definition, we have the following proposition, whose proof is
immediate.

Proposition 2.5. The rule (3) is invertible. More precisely, the function

Φj
i : xi 7→ x̃i is a C1-diffeomorphism on Ω̄ for any j = 1, . . . ,m and for any

i = 1, . . . , p.

The set of admissible influence functions is not empty. Indeed, a possible
choice of ξj , with cj = 1 and 0 < λ < 1/2, is:

ξj(s) =

{

λ(1 + cos(πs)) if |s| ∈ [0, 1],
0 otherwise.

The influence function acts in a different manner from the attraction func-
tion, since it depends on the distance between the opinion of the agent and
the opinion of the media. When ξj = 0, the media has no effect in changing
the opinion of the corresponding individual. This hypothesis translates the
idea that the media may more easily influence people with a similar opinion.

Once defined the interaction rule (3), the influence of each media is de-
scribed by a (possibly time-dependent) linear integral operator, Lj, 1 ≤ j ≤
m, that has the classical structure of the linear Boltzmann kernels. Also in
this case, the natural framework is the weak formulation.
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Let ϕ = ϕ(x) be a suitably regular test function. We define the weak
form of the interaction kernel as

(4) 〈Ljf, ϕ〉 = αj

∫

Ωp

f(t, x) [ϕ(x̃) − ϕ(x)] dx.

Remark 2.6. At least formally, we have 〈Ljf, 1〉 = 0.

2.3. Combining the two phenomena. We are then able to write down
the whole model. Let T > 0. The evolution law of the unknown f = f(t, x)
results in an integro-differential equation:

(5)

∫

Ωp

ft(t, x)ϕ(x) dx =
m
∑

j=1

〈Ljf, ϕ〉 + 〈Q(f, f), ϕ〉

posed in (t, x) ∈ [0, T ] × Ωp, for all ϕ ∈ C(Ωp), with initial condition

(6) f(0, x) = f in(x) for all x ∈ Ωp.

3. Alternative weak formulation

3.1. Collision term. The form of the collisional integral given by (2) is not
completely satisfactory for the gain term because of the intricate dependence
of the argument of the test function on the variables x, x∗. We therefore
consider the weak form of the gain term

(7) 〈Q+(f, f), ϕ〉 =

∫∫

Ω2p

β(x, x∗)f(t, x)f(t, x∗)ϕ(x′) dx∗dx.

In the same way as in [6], let us denote

Di
η =

{

(xi, x
′
i) ∈ R × Ω̄

∣

∣

∣

∣

x′
i − 1

2
+ η(x′

i)
x′

i + 1

2
≤ xi ≤

x′
i + 1

2
+ η(x′

i)
x′

i − 1

2

}

and

Kη(x, x′) =

p
∏

i=1

2

1 − η(x′
i)

χDi
η
(xi, x

′
i), ∀ x, x′ ∈ Ω̄p,

where χDi
η

is the characteristic function of the set Di
η. Since η is an admis-

sible attraction function, it is clear that Di
η ⊆ Ω̄2. Note that, for a fixed η,

Kη is obviously of class L∞(Ω2p).
We then perform the change of variables x∗ 7→ x′ in (7), for a fixed x. It

is easy to see that

dx∗
i =

2

1 − η(xi)
dx′

i and x∗
i =

2x′
i − xi − η(xi)xi

1 − η(xi)
.

Then, after permuting x and x′, we obtain the following weak form of the
gain term:

〈Q+(f, f), ϕ〉 =

∫∫

Ω2p

β(x′, y)Kη(x, x′)f(t, y)f(t, x′)ϕ(x) dx′dx,
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where

yi =
2xi − x′

i − η(x′
i)x

′
i

1 − η(x′
i)

, 1 ≤ i ≤ p.

A new weak form of the collision operator immediately comes:

〈Q(f, f), ϕ〉 = 〈Q+(f, f), ϕ〉 −

∫∫

Ω2p

β(x, x′)f(t, x)f(t, x′)ϕ(x) dx′dx,

which becomes the definition of the collisional kernel in our model.

3.2. Linear term. We can obtain a similar result for the operator which
models the interactions with a media. For a given j, we use again the

notation Φj
i introduced in Proposition 2.5. Let us then denote Ψj

i the inverse

function of Φj
i , and successively set, for any z ∈ Ω̄p,

Ψj(z) = (Ψj
i (zi))1≤i≤p, Rj(z) =

(

p
∏

i=1

(Φj
i )

′[Ψj
i (zi)]

)−1

.

Since Φj is a C1-diffeomorphism, there exists R > 0 such that the nonneg-
ative function Rj is upper bounded by R. We can now perform the change
of variables x 7→ x̃ in (4), permute x and x̃, and obtain a new weak form for
the media action:

〈Ljf, ϕ〉 = αj

∫

Ωp

f(t,Ψj(x)) Rj(x) ϕ(x) dx − αj

∫

Ωp

f(t, x) ϕ(x) dx.

4. Existence and uniqueness theorem

In this section, we aim to study some mathematical properties of our
problem (5)–(6). We first obtain some a priori estimates, and then deduce a
theorem which asserts the existence and uniqueness of a solution to (5)–(6).

Our model guarantees the conservation of the total number of individuals
of the population. By borrowing the kinetic theory language, the following
result is also named the total mass conservation.

Proposition 4.1. Let f = f(t, x) be a nonnegative solution of (5)–(6), with
a nonnegative initial condition f in ∈ L1(Ωp). Then we have

‖f(t, ·)‖L1(Ωp) = ‖f in‖L1(Ωp), for a.e. t ≥ 0.

Proof. We simply consider Equation (5) with test function ϕ ≡ 1. �

Of course, the mass conservation is not realistic if we consider long-time
forecasts. Indeed, in such situations, we should also consider processes of
birth, death and shift of age of the voters, which would lead to the variation
of the total number of individuals. But usually, as in the case of elections or
referendums, the interest of such models is to deduce short-term forecasts
by using, as an initial datum, the result of some opinion poll.

Since |x| ≤ 1, from the mass conservation, we immediately deduce, in the
following corollary, that all the moments of f are bounded.
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Corollary 4.2. Let f = f(t, x) be a nonnegative solution of (5)–(6), with
nonnegative initial condition f in ∈ L1(Ωp). Then, for any n ≥ 1,

∫

Ωp

xnf(t, x) dx ≤ ‖f in‖L1(Ωp), for a.e. t ≥ 0.

We are now ready to prove the existence of weak solutions to our problem.
The results are collected in the following theorem:

Theorem 4.3. Let f in a nonnegative function of class L1(Ωp). Then, for
all T > 0, Equation (5)–(6) admits a unique nonnegative solution f ∈
C0([0, T ];L1(Ωp)).

Proof. Let T > 0. We consider the operator Θ : f 7→ Θf defined on
C0([0, T ];L1(Ωp)), for t ∈ [0, T ] and x ∈ Ωp, by

Θf(t, x) = f(0, x) −

∫ t

0

∫

Ωp

β(x, x′) f(s, x) f(s, x′) dx′ ds

+

∫ t

0

∫

Ωp

β(x′, y) Kη(x, x′) f(s, y) f(s, x′) dx′ ds

+

m
∑

j=1

αj

∫ t

0

(

f(s,Ψj(x)) Rj(x) − f(s, x)
)

ds,

where

yi =
2xi − x′

i − η(x′
i)x

′
i

1 − η(x′
i)

, 1 ≤ i ≤ p.

It is a direct consequence from Proposition 4.1 that Θ : C0([0, T ];L1(Ωp)) →
C0([0, T ];L1(Ωp)).

The existence and uniqueness of a solution to (5)–(6) follow, if we can
prove that Θ is a contraction in the functional space C0([0, T ];L1(Ωp)).

Indeed, (5) can be rewritten under a strong integral form as Θf = f . Let
us hence consider u, v ∈ C0([0, T ];L1(Ωp)) sharing the same initial condition
f in. We have

‖Θu − Θv‖L∞(0,T ;L1(Ωp))

≤ T



2‖βKη‖L∞(Ω2p)‖f
in‖L1(Ω) + (1 + Rp)

m
∑

j=1

αj



 ‖u − v‖L∞(0,T ;L1(Ωp)).

The quantity inside the square brackets in the previous inequality is a
constant A > 0 which only depends on the data. Hence, if we choose
T0 = (2A)−1 > 0, Θ is a contraction on [0, T0]. Then there exists a unique
f ∈ L∞(0, T0;L

1(Ωp)) such that Θf = f . Thanks to the expression of Θf ,
it is then clear that, in fact, f ∈ C0([0, T0];L

1(Ωp)).
Moreover, since the mass is conserved by Proposition 4.1, we can ap-

ply a bootstrap method by using as initial datum f(T0, x), and extend, if
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necessary, the time interval up to [0, T ]. By induction, the existence and
uniqueness of a solution to (5)–(6) are proved. �

5. Numerical simulations

This section is devoted to investigate the numerical behaviour of the
model. We limit ourselves to the 2D and 3D situations, mostly for com-
putational cost and readability reasons. We apply the model to an electoral
competition but, as explained in the introduction, other situations with an
analogous dynamics (e.g. the choice between some products advertised by
media) can be described by the same tool.

The computations are performed using a numerical code written in C. We
consider a regular subdivision (x0, . . . , xN ) of Ω, with N ≥ 1. The function f
is computed at the center of each cubic cell

∏p
i=1(x

ki , xki+1), 0 ≤ ki ≤ N−1.
In our computations, we choose N = 100.

The scheme itself conserves the total agents number, i.e. ‖f(t)‖L1
x
. In

order to numerically simulate collisions, we used a slightly modified Bird
method [4]. Note that our scheme does not allow the scalar opinions to
go out from [−1, 1]. As a matter of fact, opinions x such that |x| > 1 are
not possible because the collision mechanism prevents them, and the media
opinions of the media also live in [−1, 1].

In the whole section, the form of the attraction function is η(s) = 0.25(1+
s2). The influence function (independent on the media) is ξ(s) = 0.9(1−s2)
on [0, 1] and ξ(s) = 0 on [1, 2]. Note that, of course, this function ξ is not
C1, but that does not matter for the numerics. We also choose a constant
cross section β = 1. The values of (αj) are given as proportional to β.

5.1. Two-party system. We first choose p = 2, i.e. the phenomenon of
opinion formation only concerns two political parties. Using a scalar opinion
variable would then be an option, but, in this case, the meaning of the
scalar variable would be the signed difference of the two components of
the two-dimensional opinion vector. In fact, the 2D model contains more
information about the population opinion than the 1D one. Anyway, we
are also interested in the following integrals, which represent the population
percentage respectively in favour of parties P1 and P2:

I1 =

∫∫

E1

f(x) dx, I2 =

∫∫

E2

f(x) dx = 1 − I1,

where

E1 = {(x1, x2) ∈ Ω2 | x1 > x2}, E2 = {(x1, x2) ∈ Ω2 | x1 < x2}.

If not precised, the population is uniformly distributed: f in(x1, x2) = 0.25.

5.1.1. Media-free population. We first treat the case of a population with-
out media, whereas the dynamics is given only by the binary interactions
between individuals, which should lead to a compromise effect. In Figure 1,
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Figure 1. Distribution function at time t = 20000

we can observe that, at time t = 20000, the distribution function began to
strongly get close to a Dirac mass centred in (0, 0), as expected.

5.1.2. Population away from the media influence. We now consider the effect
of one media whose opinion is too far from the opinion of the population.
The initial datum f in(x1, x2) = 4 when (x1 < −0.5, x2 < −0.5) and zero
otherwise. The opinion of the media is centred in (0.9, 0.9), and its strength
is α1 = 0.1β.

time = 0

-0.5
 0

 0.5
opinion #1

-0.5

 0

 0.5

opinion #2

 0

 2

 4

time = 100 000
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 0

 100

 200

 300

Figure 2. Distribution function at time t = 0 and t = 100 000

We observe no effect of the media opinion on the population. The distri-
bution function converges towards the Dirac mass centred in (−0.75,−0.75).
Figure 2 shows the plots of f at initial time and t = 100 000.

5.1.3. Influence of one unique media. We here consider one unique media
which can act on the population. When the media opinion is in agreement
with the opinion of a part, even very small, of the population, its effect is
far from being negligible.

The behaviour of the model is indeed obtained through the combined
effect of compromise effect and influence of the media, that acts as a linear
Boltzmann kernel.
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Heuristically, the dynamics is the following. When the members of the
group with precollisional opinions close to the media opinion interact with
the remainder of the population, the opinions of the latters are drawn up
towards the media opinion. In this case, a successive interaction with the
media can have a significant effect, and the convergence to the media opinion
becomes possible.

The model exhibits a threshold effect: if the fraction of the population
whose interaction with the media is significant is above a critical value, then
we can numerically recover that, asymptotically, the distribution function
goes to a Dirac mass centred at the same point of the opinion of the media.
Otherwise, the concentration effect of the media is not enough to draw the
whole population to the media opinion.

We recover both behaviours in the next two numerical simulations. The
media strength is set to α1 = 0.1β, and its opinion vector is (0.9, 0.9).

time = 0
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 0

 0.5

opinion #1

-0.5

 0

 0.5
opinion #2

 0

 2

 4

time = 100 000

-0.5
 0

 0.5

opinion #1

-0.5

 0

 0.5

opinion #2

 0

 50

 100

 150

 200

 250

Figure 3. Distribution function for situation 1 at (a) t = 0
and (b) t = 100 000

Situation 1. We consider an initial datum such that f in(x1, x2) = 56/15
when (x1 < −0.5, x2 < −0.5), f in(x1, x2) = 8/15 when (0.75 > x1 >
0.5, x2 < −0.5) and zero otherwise. In Figure 3, we observe that the con-
centration effect is not global: the distribution function has a Dirac-like
behaviour in (0.9,−0.75), but it cannot vanish around the region (x1 <
−0.1, x2 ≃ −0.75), because of the threshold on the media effect.

Situation 2. In this case, the initial datum satisfies: f in(x1, x2) = 32/9 when
(x1 < −0.5, x2 < −0.5), f in(x1, x2) = 16/9 when (0.75 > x1 > 0.5, 0.75 >
x2 > 0.5) and zero otherwise. This time, an almost full concentration effect
around the media opinion is shown in Figure 4.

5.1.4. Competition between two fixed unbalanced media. From now on, we
only use a population with a uniformly distributed opinion. We study the
effect of two media with different strength. More precisely, we have α1 =
0.1β, X1 = (0.6,−0.4), α2 = 0.3β and X2 = (−0.3, 0.7). In Figure 5, we
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Figure 4. Distribution function for situation 2 at (a) t = 0
and (b) t = 100 000
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Figure 5. Distribution function with two media (t =
100 000 and 1 000 000)

observe the forming of two Dirac masses-like in X2 and in (−0.15, 0.7), and
the vanishing of two other Dirac masses-like. The highest one is centred on
the stronger media opinion. The remaining other one does not vanish when
time grows, and its mass is one third of the one centred in X2.

5.1.5. Opinion manipulation by a media. We choose the media with the
same strength α1 = α2 = 0.1β, and the opinion vector of media M1 is fixed
X1 = (0.4,−0.4). Up to time 10 000, we compare the behaviour of the
distribution function and of I1 in the two following cases. We first choose
X2 = (−0.4, 0.4), constant with respect to time. Then we choose X2 with
the same opinion, except when 3000 < t < 7000, where X2 = (−0.39, 0.39).

One can check that, with these two choices, the distribution function cen-
ters on (0, 0) when time grows, but does not become a Dirac mass. However,
the impact of a variable media opinion is very strong with respect to time.
Figure 6 shows that the variation of I1 is violent, and that the result of the
poll, which was previously balanced, is suddenly artificially moved in favour
of party P1.
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Figure 6. Plot of I1 with respect to t using a fixed/variable media

From a sociological point of view, the model forecasts a growth of positive
opinions concerning party P1, induced by a very small change of X2 towards
X1, without reinforcing the opinion of media M1.

5.1.6. A unique media or two media with half strength to represent the me-
dia opinion. We compare the behaviour of the distribution function in two
similar cases.

Situation 3. Three media act on the population, with the following charac-
teristics:

X1 = X2 = (0.4,−0.4), X3 = (−0.4, 0.4), α1 = α2 = 0.1β, α3 = 0.2β.

Situation 4. Two media act on the population, with the following charac-
teristics:

X1 = (0.4,−0.4), X2 = (−0.4, 0.4), α1 = α2 = 0.2β.

time = 20 000

-0.5
 0

 0.5
opinion #1

-0.5

 0

 0.5

opinion #2

 0

 40

 80

 120

 160

time = 20 000

-0.5
 0

 0.5
opinion #1

-0.5

 0

 0.5

opinion #2

 0

 60

 120

Figure 7. Distribution functions for situations 3 and 4 at
t = 20000

One can check that the amount of people in favour of party P1 oscillates
around 0.5 in both situations, and one cannot draw any conclusion from this
only information.
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We note that media X1 and X2 of situation 3 have the same opinion as
media X1 of situation 4, the sum of the strength of the former being equal
to the strength of the latter.

At a theoretical level, since the interaction with media is described by a
linear term of the model, the results of situations 3 and 4 should be identical.

We can recover this feature in Figure 7: the supports of the two distribu-
tion functions are numerically identical and, moreover, their global shapes
are similar. The differences in the shapes are originated by a numerical ef-
fect due to the treatment of the collisional part with a Bird method, based
on a random routine.

5.1.7. One strong media against two weaker ones. We here investigate the
situation of three media where their respective opinion vectors are

X1 = (0.6,−0.6), X2 = (−0.6, 0.6), X3 = (−0.2, 0.2),

and their strength

α1 = 0.2β, α2 = α3 = 0.1β.
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Figure 8. Plot of I2 with respect to t when the media rather
favour party P1

As expected, we can see in Figure 8 that party P2 is immediately weakened
by the media influence.

5.2. Three-party system. We now choose p = 3, i.e. the phenomenon of
opinion formation involves three political parties. Using a scalar opinion
variable is not anymore an option.

Let

E1 = {x ∈ Ω3 | x1 > max(x2, x3)},

E2 = {x ∈ Ω3 | x2 > max(x1, x3)},

E3 = {x ∈ Ω3 | x3 > max(x1, x2)}.
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In the same way as in 5.1, we are interested in the three following integrals

I1 =

∫∫∫

E1

f(x) dx, I2 =

∫∫∫

E2

f(x) dx, I3 =

∫∫∫

E3

f(x) dx,

which can be interpreted in terms of percentage of the population more likely
to vote, in a proportional system, for parties P1, P2 and P3 respectively. In
all the tests, the population is uniformly distributed: f in(x) = 0.125.

5.2.1. A medialess party. We investigate the situation where two of the three
parties are supported by two media with the same strength, and the last one
has no mediatic support. More precisely, we have

X1 = (0.4,−0.4,−0.4), X2 = (−0.4, 0.4,−0.4), α1 = α2 = 0.1β.
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Figure 9. Plots of I1 and I3 with respect to t when party
P3 has no media support

Although it does not benefit from any mediatic help, supporters of party
P3 do not disappear, as one can check in Figure 9. Of course, he is weakened
regarding the other parties, but still 20 % of the population may eventually
vote for it.

5.2.2. An extremist media. We here consider a situation where party P1 has
a supporting media with a more asserted opinion, i.e. X1 = (0.9,−0.2,−0.2).
The two other media support parties P2 and P3 with a more centred opinion,
i.e. X2 = (−0.2, 0.3,−0.2) and X3 = (−0.2,−0.2, 0.3). The strength of each
media is set to 0.1β.

The quantity I2 is not plotted in Figure 10, the two curves of I2 and I3

are almost superimposed: there is a total symmetry between the second and
third variables. In this situation, we can see that an extremist media does
not really help the party which it supports: the moderate ones are far more
efficient. Party P1 has indeed the same result as if there were no media
supporting it.
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Figure 10. Plots of I1 and I3 with respect to t when party
P1 has an extremist support

5.2.3. A strong media with a variable opinion. Eventually, we study the
behaviour of our model in the case when there is one media stronger than
the other ones and whose opinion varies with respect to t. More precisely,
we set

X1(t) = (0.3,−0.2,−0.2) + 0.2 cos(2πt/100)(−1, 1, 1),

X2 = (−0.2, 0.3,−0.2), X3 = (−0.2,−0.2, 0.3),

and impose
α1 = 0.2β, α2 = α3 = 0.1β.
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Figure 11. Plots of I1 and I3 with respect to t when party
P1 has a strong mediatic support

Once again, the quantity I2 is not plotted in Figure 11, for symmetry
reasons. The strength of media M1, which is linked to party P1, significantly
increases the influence of this party. Moreover, the variations of X1 induce
some non vanishing oscillations on I1 and I3, as seen in Figure 11. When
X1

1 is close to its maximal value, around t ≡ 50[100], the proportion of the
population which favours party P1 is around 80 %, whereas it should be
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around 50 %. On the contrary, when X1
1 is close to its minimal value, party

P1 loses its absolute majority.
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