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Abstract. In this paper, we study a kinetic model describing the evolution of planetary dust

under the action of a planet and its satellites. In particular, we focus our attention on the

formation of planetary rings and the role of shepherd moons. The equation describing the
considered physical phenomenon is of Vlasov type, posed in an evolutionary domain in time.

We first study some theoretical properties of the model. Then, we describe a numerical method,

suitable for the study of kinetic equations in evolutionary domains with possibly complicated
geometries. Finally, we show and comment some simulations. In particular, our numerical

simulations show that shepherd moons play a key role in the formation and maintenance of

divisions between rings.

1. Introduction

A planetary ring is a complex system composed of dust and other small particles that orbit
a planet forming a flat disk. The first observed planetary rings were those of Saturn and were
recognized as rings by Christiaan Huygens in 1655 [17]. However, ring systems are not a feature
unique to Saturn. In fact, the other three giant planets of the Solar System are also surrounded
by a system of rings, and astrophysicists infer that many exoplanets may also have ring systems
[20].

In 1676, Giovanni Cassini discovered a gap between the rings of Saturn, now called the Cassini
Division [5]. Thanks to the Voyager probes, it was discovered that the structure of the rings is very
complex. Sometimes, within gaps in the rings are moons, called shepherd moons. The gravity of
the shepherd moons serves to maintain a well-defined edge of the ring. Material approaching the
orbit of the shepherd moon can be deflected back into the ring body, ejected from the system, or
fall onto the moon itself.

The formation of rings and gaps between rings has logically attracted the attention of as-
tronomers and astrophysicists (see, for example, [10] and the references therein).

As a natural consequence, this problem has also been studied by applied mathematicians. In
this context, multiple approaches have been proposed. The first one consisted in considering the
problem from the microscopic point of view, by using the classical methods of celestial mechanics
(see, for example, [24, 2]). Always at microscopic level, the literature has also been interested in
the study of models in which the particles constituting the ring suffered not only the effects of the
gravitational field, but could also collide inelastically [19].

The second viewpoint is the mesoscopic (or kinetic) approach. It consists in describing the
system through particle densities in the phase-space of the system. This approach goes back to
James Clerk Maxwell [13, 24], one of the founders of kinetic theory. A recent application of this
description to planetary rings can be found in [21], which studies approximate explicit stationary
solutions in the context of a non-collisional model of Vlasov type.

The third strategy consists in treating planetary rings by using an hydrodynamic description
(see, for example, [26]).

We moreover mention the possibility of using stochastic tools, such as in the case of the Burgers-
Zeldovich model [23].

Independently on the scale used for describing the problem, many authors have focused them-
selves on a particular phenomenon occurring inside planetary rings. For instance, the literature
reports studies on fragmentation and coagulation [11] or on the fractal structure of rings [22].

1
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In our paper, we focus on a particular phenomenon, namely the formation of a gap between
rings caused by the effect of a shepherd moon. We use the kinetic approach and, working on
a short time scale, describe the phenomenon with a non-collisional Vlasov equation in a time-
dependent domain. The precise assumptions that justify the mathematical structure of the model
are described in detail in the next section. At this point, we recall that the mathematical study of
kinetic equations in evolutionary domains is still in its early stages (see, for example, the pioneering
paper [1] and [7, 6, 9, 25]).

Planetary rings are essentially two-dimensional objects, because of the properties of symmetry
of the problem. In our article, we hence work in the phase-space R2 × R2 and suppose that the
spatial domain of the solution of the Vlasov equation is given by the complement of the domain
occupied by a planet and by its moons.

We first study and provide the theoretical framework of the problem. We then address the
problem of its numerical simulation. Although the simplifications with respect to the full dynamics
make the problem linear, the existence of a moving domain is a source of difficulties that imposes
a nontrivial study of the problem.

We have chosen to use a particle method for its numerical implementation. It is clear that
the study of kinetic equations in an evolutionary domain is not an easy task because of the high
dimensionality of the problem, whose effects need to be taken into account, and to the difficult
treatment of possibly complicated geometries. In our approach, we discretize the unknowns by
mean of a collection of weighted smooth shape functions, which evolve in time by following the
dynamics of the problem, and then we handle the possible overlapping between ring particles and
the moons (or the planet). This has as a consequence the elimination of the ring particle from the
domain. The numerical results show the versatility of the numerical method. In particular, the
effect of a shepherd moon on ring gap formation is clearly identified.

The structure of the article is the following. We start by discussing in Section 2 the different
physical phenomena taken into account or neglected, before introducing the model. In Section 3, we
prove an existence and uniqueness result for this model, by applying the method of characteristics in
a moving domain. Section 4 describes the numerical strategy and Section 5 presents the numerical
results for two different meaningful scenarios.

2. The mathematical model

We consider a planet surrounded by a fixed number of moons and a dusty cloud. The goal
of our model is to describe the dynamics of ring formation. The physical processes involved in
the evolution of planetary rings are multiple, and taking into account all of them would lead to
considerable complications in our study. However, the effects of various physical phenomena may
be more or less important with respect to the considered spatial and temporal scales. For our
purposes, we hence study a simplified version of the problem, which retains, however, the main
physical effects governing the creation of ringlets (in particular, the interaction between particles
and shepherd satellites).

2.1. The main gravitational effects. The first step is the analysis of the orders of magnitude
of the various gravitational forces acting on the system. In order to be consistent with a realistic
situation, we consider, for all the four giant planets of the Solar system, the Sun-planet-moons-rings
subsystem and analyze the problem in detail at the quantitative level.

2.1.1. The negligible role of the Sun. We first observe that the main effect on the particles is the
gravitational attraction of the hosting planet and that the gravitational attraction of the Sun can
be neglected in first approximation. This emerges from comparing the gravitational forces exerted
on the annular particles by their host planet and the Sun. They can be directly computed from
the data available for the Solar system. See the details below.

Let us consider a giant planet having mass mP and a dust particle in its ring system, with mass
m. Let M be the mass of the Sun. We denote with FS and FP the gravitational forces exerted
respectively by the Sun and the planet on the ring particle. The general formula for computing
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FP and FS on a ring particle with mass m are:

FS =
GmM

d2
S

, FP =
GmmP

d2
P

,

where G is the gravitational constant, dS is the average distance between the mass centre of the
Sun and the particle and dP is the average distance between the mass centre of the planet and the
particle.

Table 1 shows some data for the planetary rings of the Solar system. Because of the complex
structure of the considered ring systems, we chose for dP either the radius of one of the main rings,
or an average radius.

Table 1. Data of Solar system planets with planetary rings.

Saturn Uranus Neptune Jupiter

mP 5.7× 1026 kg 8.7× 1025 kg 1.0× 1026 kg 1.9× 1027 kg

dP 1.2× 108 m 3.8× 107 m 6.3× 107 m 1.2× 108 m

dS 1.4× 1012 m 2.7× 1012 m 4.5× 1012 m 7.8× 1011 m

The value of the Sun’s mass is M = 2.0 × 1030 kg. The mass m of a dust particle usually ranges
from 10−3 kg to 106 kg [4]. However, this value has no influence in the comparison of the orders
of magnitude developed in this Section.

We can deduce from these data that the gravitational force exerted by the Sun on a ring
particle is negligible when compared to the gravitational force exerted by the planet on the same
ring particle. Indeed, we can compute and compare the attractive forces FP (in N) between a
particle of mass m and a given planet:

(1) for a particle of mass m that orbits around Saturn

FP =
G m (5.7× 1026 kg)

(1.2× 108 m)2
≈ G m× (4.0× 1010 kg ·m−2),

(2) for a particle of mass m that orbits around Uranus

FP =
G m (8.7× 1025 kg)

(3.8× 107 m)2
≈ G m× (6.0× 1010 kg ·m−2),

(3) for a particle of mass m that orbits around Neptune

FP =
G m (1.0× 1026 kg)

(6.7× 107 m)2
≈ G m× (2.2× 1010 kg ·m−2),

(4) for a particle of mass m that orbits around Jupiter

FP =
G m (1.9× 1027 kg)

(1.2× 108 m)2
≈ G m× (1.3× 1011kg ·m−2).

On the other hand, the gravitational force FS exerted by the Sun on a particle orbiting Jupiter
(which is the closest planet to the Sun having a ring system) is

FS =
G m (2.0× 1030 kg)

(7.8× 1011 m)2
≈ G m× (3.2× 106 kg ·m−2) .

In the case of the other planets considered, the gravitational force between a ring particle and the
Sun is even smaller.

Therefore, ring particles are mainly affected by gravitational attraction of the planet and it is
reasonable to neglect the effect of the Sun.
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2.1.2. About the gravitational and contact interaction between particles. Secondly, we neglect the
mutual attraction between ring particles and assume that collisions between them are unfrequent:
we hence consider only the interactions between ring particles and planet and the interactions
between ring particles and moons. This assumption is more delicate. Indeed, it is clear that aggre-
gation and fragmentation phenomena play an important role in the ring dynamics [10]. However,
the importance of this phenomenon has to be appreciated with respect to the time scale of our
analysis and the ring density. We consider here the situation when the collision frequency is smaller
than the orbital frequency. The particle collision frequency ωc in a given ring can be computed
as the product of the optical depth τ , related to the density of the ring, and the angular speed Ω
of the latter, i.e. ωc = τΩ (as explained in [14] and [3]). The first consequence that can clearly
be deduced from this formula is that therefore not all rings behave in the same way in terms of
collisions. For optical depth around 10−7, as in the most tenuous Saturn’s rings, ωc ≈ 10−11s−1,
which means, almost 1 collision between dust particles per century. Whereas for τ = 1, as in
the dense A Ring, particles collide with a frequency of 10 per day. Since the orbital period of the
major Saturn’s moons is of the order of magnitude of days, such as Mimas (23 hours), Thetys (45.6
hours), and the time horizon of our model is of few satellite’s orbits, the system can be considered
as sufficiently rarefied to make such collisions unlikely [15].

2.1.3. About the mutual gravitational attraction of N$ moons. In our problem, we consider N$
moons and study their role during the formation of planetary rings, in the short period of time
following the breakup of a satellite. While, in general, the problem is difficult to be solved (it is,
in fact, the celebrated N -body problem of classical mechanics), when one of the celestial body has
a mass much greater than the mass of the other bodies, it is clear that the reciprocal influence
of the small-mass bodies between themselves is important only in large time. When dealing with
reasonably small time intervals, the gravitational attraction between the moons can be neglected
and we can therefore assume that the lunar orbits are always distinct and never overlap. These
assumptions are justifiable because we work on small time scales, in which the main effect is the
gravitational attraction between the planet and its moons.

The idea is to compare the gravitational force exerted by the host planet on one of its moons
with that which all the remaining moons exert on the fixed moon. For simplicity, we have chosen
to show the calculations for Saturn, as its moons are the most massive and numerous compared to
the other ringed planets in the Solar System. The moon we consider is one of the most massive,
namely Thetys. First, we calculate the Saturn-Thetys gravitational force FST and then FDT , the
one between Thethys and Dione, another massive moon of Saturn. Obviously, to be precise, we
should compute the gravitational force between Thetys and all the other moons of Saturn, but it
is easy to see from the data that the order of magnitude of the latter is the same as FDT . This
is why we omit the calculation. The reciprocal gravitational attraction force FST between Saturn
and Tethys is

FST = G
(5.7× 1026 kg)× (6.2× 1020 kg)

(2.9× 108 m)2
= 2.8× 1020 N,

whereas the reciprocal gravitational attraction FDT , at Dione-Thetys’ minimum distance, is

FDT = G
(1.1× 1021 kg)× (6.2× 1020 kg)

(8.2× 107 m)2
= 6.7× 1015 N.

One can see that FST is 5 orders of magnitude greater than FDT (and therefore greater than
the force exerted by all the more massive moons on Thetys). Therefore, the mutual gravitational
attraction between Thetys and the other moons can be neglected, working over short (astronomical)
time periods. In particular, this procedure is generalisable by taking any other moon in place of
Thetys. And it is generalisable by choosing any other ring system.

2.2. Interactions between particles and the major bodies. The sizes of satellites and planets
being much larger than the sizes of particles, the contact interaction between the former and the
dust is the predominant phenomenon in our problem. In particular, in our model we suppose that
the high mass of satellites and planet causes the total absorption of particles interacting with them.
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Most of the intricate ring structures owe their existence to the gravitational effect of moons,
without which the rings would be flat and featureless; without moons there would probably be
no rings at all because thin disks of small particles gradually would spread and disperse [10].
Resonance is a key effect in maintaining ring gaps [10]. However, during the evolution of a cloud
of debris for a short period of time, we only consider the collision between satellites and particles,
neglecting resonance.

The gravitational force exerted by the planet on its annular system erodes and sculpts the
rings, whose particles continually rain into the planet’s atmosphere. This flux of annular grains
disintegrate the grains themselves, reducing the lifetime of planetary rings [8].

We hence assume in our model that the total mass of the dust cloud is much smaller than the
mass of the planet and of the mass of the satellites, and that the mass of the satellites is much
smaller than that of the planet.

This is the case for Saturn’s ring: the Cassini probe estimated that the total mass of Saturn’s
rings (contained mainly in rings A, B and C) is of 1.54±0.49×1019 kg, which represents a fraction
of the mass of Mimas [18]. For the other annular systems of the Solar System, whose rings are
more rarefied, the argument is similar.

We will therefore suppose that the dust cloud has, in the model, a negligible gravitational effect
on the system and that it is possible to neglect the mutual gravitational interactions between the
satellites. Thus all the resulting complexity of the N -body problem will not be addressed in our
study. Consequently, the gravitational interactions considered in this article are the action of the
planet on the dust cloud and on the satellites, as well as the gravitational attraction of the satellites
on the dust cloud.

2.3. Equations modelling the system planet-moons-rings. In order to write our model, we
first introduce the distribution function

f : R∗+ × R+ × Ωt × Rd → R+

which describes the mass density of the dust, where m ∈ R∗+ is the mass variable, t ∈ R+ is the

time variable, x ∈ Ωt ⊂ Rd is the spatial position and v ∈ Rd the velocity, where d ∈ N∗. In
practice, because of the symmetries of the problem, the most relevant case is d = 2.

We suppose that the origin of the reference frame is the center of mass of the planet. Let rP > 0
and ri > 0 the radii of the planet and of the i-th shepherd moon respectively (i = 1, . . . N$), where
N$ > 1 is the total number of shepherd moons. We introduce the sets

Sti = {x ∈ Rd : |x− ξi(t)| 6 ri} and P t = {x ∈ Rd : |x| 6 rP },

where ξi(t) ∈ Rd is the position of the center of mass of the i-th shepherd moon with respect to
the origin of the reference system, i.e. the center of mass of the planet. The orbits of the satellites
are assumed to be known, so ξi(t) is a datum of the problem. Owing to the fact that we work in
a short-time horizon, we moreover suppose that

Sti ∩ Stj = ∅ for all i, j = 1, . . . , N$ and Sti ∩ P t = ∅ for all i = 1, . . . , N$.

The spatial domain of definition of the problem is hence given by the following open region of Rd:

Ωt = (P t)c \
N$⋃
i=1

Sti .

The boundary of Ωt is hence

Γt := ∂Ωt = ∂P t ∪

N$⋃
i=1

∂Sti

 .

If M̄ ⊂ R∗+, X̄ ⊂ Ωt and V̄ ⊂ Rd, the integral

IM̄,X̄,V̄ (t) :=

∫
M̄×X̄×V̄

f(m, t, x, v) dmdxdv
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represents the number of dust particles with mass m ∈ M̄ , position x ∈ X̄ and velocity v ∈ V̄ at
time t.

The evolution of the dust cloud is described by the gravitational Vlasov equation

(1)
∂f

∂t
+ v · ∇xf −

∇xΦ

m
· ∇vf = 0, (m, t, x, v) ∈ R∗+ × R+ × Ωt × Rd

where

(2) Φ(t, x) = Gm

(N$∑
i=1

mi

|x− ξi(t)|
+
mP

|x|

)
is the gravitational potential on a particle of mass m. It is due to the planet, which has mass mP ,
and to the moons, with masses mi and position of their centers of mass ξi(t) for all i = 1, . . . , N$.

The planet and the shepherd moons influence the motion of the particles through the gravita-
tional forces exerted on the dust cloud. In particular, when a dust particle collides with the planet
or a satellite, it is absorbed. This effect is mathematically described by supposing that the planet
and the moons are absorbing moving barriers.

Let nx be the outward normal originated in x ∈ Γt. Then, the boundary conditions on f are
the following:

(3)


f(m, t, x, v)|x∈∂St

i , (v−vi(x))·nx<0 = 0, i = 1, . . . , N$,

f(m, t, x, v)|x∈∂P t, (v−vP (x))·nx<0 = 0,

where vi(x) is the local velocity of the point x located at the surface of the i-th moon and vP (x)
is the local velocity of the point x located at the surface of the planet.

For simplicity, let us define the ingoing boundary at time t as the subset of Γt × Rd such that

(4)
Σt− :=

N$⋃
i=1

{
(x, v) ∈ ∂Sti × Rd : (v − vi(x)) · nx < 0

}
∪
{

(x, v) ∈ ∂P t × Rd : (v − vP (x)) · nx < 0
}
.

Thanks to this definition, the boundary conditions (3) can be rewritten as

(5)


∂f

∂t
+ v · ∇xf −

∇xΦ

m
· ∇vf = 0, (m, t, x, v) ∈ R∗+ × R+ × Ωt × Rd,

f(m, t, x, v)|(x,v) ∈ Σt
−

= 0.

The problem is supplemented with a suitable initial condition. We assume that its support is
contained in Ω0:

(6) f(m, 0, x, v) =

{
f in(m,x, v) if (m,x, v) ∈ R∗+ × Ω0 × Rd

0 otherwise,

where f in ∈ L1(R∗+ × Ω0 × Rd) ∩ L∞(R∗+ × Ω0 × Rd).

3. Some mathematical properties of the model

In this section, we prove an existence and uniqueness result for the gravitational Vlasov equation
for planetary rings (1)-(2) with boundary and initial conditions (5)-(6), exploiting the method of
characteristics. To recall, the method of characteristics consists of a theoretical technique to shift
the focus from the analysis of a PDE to the resolution of a system of ODEs. The first step of the
method is to choose certain curves (characteristic curves) along which the starting PDE becomes
a system of ODEs, via an appropriate change of variable. Secondly, the classical existence and
uniqueness theorems for ODEs are invoked, with the aim of reconstructing the solution of the
system along these curves. One concludes by transforming it into the solution of the PDE, taking
advantage of the change of variable previously implemented (see [12] for more explanations). In
our analysis, we need to pay attention to the evolution of the spatial domain, whose changes over
time are due to the motion of the planet and the shepherd satellites.
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3.1. The method of characteristics for the Vlasov equation. The gravitational Vlasov equa-
tion is a linear scalar first-order hyperbolic PDE. The recipe for writing the characteristic system
can be found on pages 97-100 of [12]. In particular, the formula of interest to us is Formula (8) on
page 98 of [12]. Specifically, since our equation is linear, the characteristic system becomes simpler
(see Formula (17) on p.100 of [12]).

For the Vlasov equation under study, the following definition holds.

Definition 1. The set of characteristic curves of the linear gravitational Vlasov equation (1)-(2)
is the general solution of the following system of ordinary differential equations:

(7)



Ṁ(t) = 0,

Ṫ (t) = 1,

Ẋ(t) = V (t),

V̇ (t) = −∇xΦ(T (t), X(t))

M(t)
.

We introduce now the function ζ : R+ → R, such that ζ(t) gives the solution f along the
characteristic curves (M,T,X, V ) (i.e. ζ(t) = f(M(t), T (t), X(t), V (t))). On the characteristic

curves, the Vlasov equation simply reduces to ζ̇(t) = 0.
The characteristic system takes hence the form

(8)



ζ̇(t) = 0,

Ṁ(t) = 0,

Ṫ (t) = 1,

Ẋ(t) = V (t),

V̇ (t) = −∇xΦ(T (t), X(t))

M(t)
,

for t ∈ R+.

Proposition 1. For all s ∈ R+ and for every (m,x, v) ∈ R∗+ × Ωt × Rd, there exists a unique
solution (M,T,X, V ) ∈ C∞ of the initial value problem (7) with initial conditions

(9)


M(s) = m,

T (s) = s,

X(s) = x,

V (s) = v.

Proof. It follows directly from the fact that the system (7) for (M,T,X, V ) satisfies the hypotheses
of the Picard-Lindelöf Theorem and the sub-linear condition holds, since the points of singularity
of Φ are excluded from the spatial domain Ωt for every time t ∈ R+. �

3.2. Existence and uniqueness of the solution. We are now ready to employ what we have
previously presented to obtain an existence and uniqueness result for System (1)-(5)-(6).

For the sake of simplicity, let us set z := (x, v), the initial data for the characteristic curves
(X,V ); and Z(t; s, z) := (X,V )(t; s, x, v) the characteristic (X,V ) which start from (x, v) in the
phase-space, i.e. it is equal to (x, v) when t = s, and which is parametrized by t.

The main tool to deal with the mobile domain in studying Equation (1)-(2) is the backward
absorbing time:

Definition 2. The backward absorbing time τΩt(x, v) for a particle starting from x ∈ Ωt in the
direction v ∈ Rd, is defined as

τΩt(x, v) = inf{θ > 0 : X(θ; t, x, v) ∈ Γt−θ}.

If the set Θ := {θ > 0 : X(θ; t, x, v) ∈ Γt−θ} is empty, then τΩt(x, v) = +∞.
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In other words, τΩt(x, v) corresponds to the time of arrival at the border when we follow the
characteristic X backwards from x ∈ Ωt with velocity v ∈ Rd. This consideration follows from the
two results summarized below:

Proposition 2. The characteristic Z := (X,V ), solving (7), satisfies:

(1) ∀t1, t2, t3 ∈ R+ and ∀z ∈ Ωt × Rd, Z(t3; t2, Z(t2; t1, z)) = Z(t3; t1, z);
(2) ∀t, s ∈ R+, the map z 7→ Z(t; s, z) is a C1-diffeomorphism and

(10) y 7→ Z(s; t, y)

is its inverse.

The proof of this result is classical and it will be omitted.

The infimum of θ > 0 such that X(θ; t, x, v) ∈ Γt−θ is the time whereby, starting from it in
y ∈ Ωθ, with velocity w ∈ Rd, we arrive at the time t in X(t; θ, y, w) = x with a velocity v. So, if
we are in x at the time t and we want to proceed backwards until we arrive in y at the time θ, we
have to use the inverse function defines in (10):

x = X(t; θ, y, w) 7→ X(θ; t, x, v),

and it is precisely for this reason that, in Definition 2, we check X(θ; t, x, v).

The spatial domain Ωt of the Vlasov equation (1)-(2) is not convex, for every t, so classical solutions
of the boundary value problem for the Vlasov equation may not exist. Indeed, let us consider the
characteristic part of the boundary, i.e.

Σt0 :=

N$⋃
i=1

{
(x, v) ∈ ∂Sti × Rd : (v − vi(x)) · nx = 0

}⋃
{

(x, v) ∈ ∂P t × Rd : (v − vP ) · nx = 0
}
.

Since Ωt is not convex, some velocity trajectories v from Σt0 can enter Ωt. It results that the
method of characteristics – and therefore the explicit formula given born in the theorem above –
does not define f on the points of Ωt interested by these trajectories.

However, Σt0 satisfies the hypotheses of Proposition 2.3 in [1], and hence has zero Lebesgue
measure.

We can express the solution of the initial-boundary value problem (1)-(2)-(5)-(6) using the
characteristics and the backward absorbing time:

Theorem 1. If f in ∈ L1(R∗+×Ω0×Rd)∩L∞(R∗+×Ω0×Rd), then there exists a unique generalised

solution f ∈ L1(R∗+ ×R+ ×Ωt ×Rd) ∩ L∞(R∗+ ×R+ ×Ωt ×Rd) of the boundary problem (1)-(2)-

(5)-(6) associated to the initial condition f(m, 0, z) = f in(m, z), where z := (x, v). It is given by
the same formula of the classical case, namely that, for a.e. (m, t, z) ∈ R∗+ × R+ × Ωt × Rd, we
have

(11) f(m, t, z) = f in(m,Z(0; t, z))1{τΩt (z)>t},

where Z := (X,V ) represent the characteristic curve which solves (7).

Proof. The proof can be obtained by adapting, to external domains, the proof given by Bardos in
[1], which is based on semigroup theory.

However, we give here a more direct proof, which is closer to the numerical strategy described in
the next section, based on the study of the evolution of the unknown on the characteristic curves
of the system. Let N0 ⊂ R∗+ ×Ω0 ×Rd be the set of zero Lebesgue measure in R∗+ ×Rd ×Rd such

that f in is defined and of class L1 ∩ L∞ on (R∗+ ×Ω0 ×Rd) \ N0, and let Nb ⊂ R∗+ ×R+ ×Σt− be

the set of zero Lebesgue measure in R∗+ × Rd × Rd such that f is zero on (R∗+ × R+ × Σt−) \ Nb.
Consequently, the set Nd := Nb ∪ N0 has zero Lebesgue measure in R∗+ × Rd × Rd. We easily
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see that f , given by (11), satisfies the Vlasov equation almost everywhere. Indeed, Equation (11)
defines a function on (R∗+ × R+ × Ω̄t × Rd) \ Nd such that

f(m, t+ s, Z(s; 0, z)) = f in(m,Z(0; t+ s, Z(s; 0, z)))1{τΩt+sZ(s;0,z)>t+s}

= f in(m,Z(0; t, z))1{τΩt (z)>t},

for all s ∈ R such that Z(s; 0, z) ∈ Ωt × Rd. In fact, thanks to Proposition 2,

f in(m,Z(0; t+ s, Z(s; 0, z))) = f in(m,Z(0; t, z))

because

Z(0; t+ s, Z(s; 0, z)) = Z(0; 2t, Z(2t; t+ s, Z(s; 0, z))︸ ︷︷ ︸
Z(t;0,z):=y

)

= Z(0; t, Z(t, 2t, y))

= Z(0; t, Z(t, 2t, Z(t; 0, z)))︸ ︷︷ ︸
z

.

Moreover,
1{τΩt+sZ(s;0,z)>t+s} = 1{τΩt (z)+s>t+s} = 1{τΩt (z)>t}.

So, the function s 7→ f(m, t + s, Z(s; 0, z)) is C1 in the variable s for all (m, t, z) ∈ (R∗+ × R+ ×
Ω̄t × Rd) \ Nd. Furthermore, we have that

df

ds
(m, t+ s, Z(s; 0, z)) = 0

for all (m, t, z) ∈ (R∗+ × R+ × Ω̄t × Rd) \ Nd and for all s such that (m, t + s, Z(s; 0, z)) ∈ R∗+ ×
R+ × Ωt × Rd. From Equation (11), we see moreover that

lim
t→0+

f(m, t, Z(t; 0, z)) = lim
t→0+

f in(m,Z(0; t, Z(t; 0, z)))

= f in(m, z)

for all (m, z) ∈ (R∗+ × Ω0 × Rd) \ N0, whereas

lim
s→0+

f(m, t+ s, Z(s; 0, z)) = f(m, t, z) = 0

for all (m, t, z) ∈ (R∗+ × R+ × Σt−) \ Nb. Therefore, f solves a.e. the Vlasov equation.

Uniqueness follows easily by noticing that if f is a generalised solution of Vlasov’s equation,
then the function

s 7→ f(m, t+ s, Z(s; 0, z)) is C1.

Moreover, there exists Nf ⊂ R∗+ × R+ × Ωt × Rd of zero Lebesgue measure such that

df

ds
(m, t+ s, Z(s; 0, z)) = 0

for all (m, t+ s, Z(s; 0, z)) ∈ (R∗+×R+×Ωt×Rd) \Nf and for all s ∈]−min (t, τΩt(z)), 0[, and we
have also

lim
t→0+

f(m, t, Z(t; 0, z)) = f in(m, z) (m, z) ∈ (R∗+ × Ω0 × Rd) \ N0,

and
lim
s→0+

f(m, t+ s, Z(s; 0, z)) = 0 (m, t, z) ∈ (R∗+ × R+ × Σt−) \ Nb.

Then, for all (m, t, z) ∈ (R∗+ × R+ × Ωt × Rd) \ (Nf ∪Nd), we have

df

ds
(m, t+ s, Z(s; 0, z)) = 0,

for all s ∈] − min (t, τΩt(z)), 0[. Integrating this equation, on ] − min (t, τΩt(z)), 0[, we find, for
t < τΩt(z)

f(m, t, z) = lim
ε→0+

f(m, 0, Z(0; t− ε, z)) = f in(m,Z(0; t, z))
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and for t > τΩt(z), f(m, t, z) = 0. �

4. Description of the numerical strategy

In this section we describe the numerical method used for the simulation of equations (1)-(5)-
(6) in two dimensions in space and velocity. Our procedure, based on a particle method and a
splitting strategy, is an evolution of the approach introduced in [6]. The substantial difference of
our problem from the one studied in [6] is that the dust particles in planetary rings, unlike gas
molecules, being affected by the gravitational acceleration due to the planet and moons, satisfy the
Vlasov equation (1), which is more complicated to deal with than the free transport equation. On
the other hand, the boundary condition are, in this problem, particularly easy to handle, because
the surfaces of the satellites are modelled with an absorbing boundary: the particles that collide
with it disappear from the problem’s domain. We place ourselves in the reference frame of the
planet, which is thus supposed at rest.
The centres of mass of the moons evolve independently according to the following equations in
polar coordinates:

(12) ξi(t) = ri(t)

(
cos θi(t)
sin θi(t)

)
with

{
ri(t) = r0

i

θi(t) = ωit
, for i = 1, . . . , N$.

In (12), ωi is the constant angular velocity of the circular orbit of the i-th moon and r0
i is its constant

distance from the origin of the coordinate system. If the i-th moon has an elliptical shape, then we
have to consider also its rotation around its own centre of mass. So, if δi describes the angle formed
by the major axis of the i-th moon and the x-axis of the coordinate system, and if σi represents
the angular velocity of the i-th satellite around its own centre, we have δi(t) = δi(0) + σit.

The initial density of the dust particles is discretized by means of a collection of weighted smooth
shape functions centred on the numerical particle positions and velocities (x0

k, v
0
k)16k6N0 , that is

(13) f in
N0,ε(x, v) =

N0∑
k=1

αk ϕε(x− x0
k)ϕε(v − v0

k),

where N0 represents the initial number of numerical particles, αk is the weight of the k-th numerical
particle (which represents αk ”real” particles). In (13), the shape function ϕε(x) = ϕ(ε−1x)/εd is
a smooth function with compact support. The term ”numerical particles” is here used for avoiding
any confusion with the (real) number of dust particles. Once the number N0 of numerical particles
has been chosen, the initial positions (x0

k)16k6N0 and velocities (v0
k)16k6N0 are sampled according

to the initial density f in thanks to a Monte-Carlo procedure. Then, the positions and velocities of
the numerical particles evolve in time, according to the explicit Euler scheme, with time step ∆t

(14)


xn+1
k = xnk + ∆tvnk

vn+1
k = vnk −∆t

∇xΦ(tn, xnk )

m

1 6 k 6 Nn,

where Nn is the number of numerical particles at the time tn (which can differ from N0 because
some particles can be absorbed by the planet or the moons between t0 and tn). In order to simplify
the interactions between the moons and the numerical particles, we use a time-splitting between the
transport (free flow of the particles in the absence of any interaction, mathematically represented
by the transport operator v ·∇) and the treatment of the differents interactions (flow of the particles
due to the planet-moons gravitational field, and the absorbing boundary condition on Σt−). In other
words, in each time interval [tn, tn+1[, we first move the moons and the planet independently of
the motion of the dust particles, then we freeze them and we transport the numerical particles and
perform the treatment of the boundary conditions. Thus, when we move the numerical particles,
the domain is fixed, allowing us to come back to deal with the boundary conditions of a fixed
domain instead of working in a mobile domain. Once determined the positions of the largest
bodies at the time tn+1, we move the Nn macro-particles, according to the equations of motion
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(14), finding (xn+1
k , vn+1

k )16k6Nn . Then, we test on every numerical particle k if xn+1
k ∈ Ωn+1 and

otherwise we impose the boundary condition.
To do so, we only need a cartesian equation of the surface of the planet and of the satellites,

which for elliptical bodies with axis lengths a and b is{
(x, y) ∈ R2 |

(
(x− ri(t) cos(θi(t))

a

)2

+

(
(y − ri(t) sin(θi(t))

b

)2

6 1

}
.

Once written the coordinates of macro particles in the reference frame of the ellipse, we control
if they verify the cartesian equation or not. If yes, we apply the boundary condition, namely we
remove the k-th particle from the domain, then we renumber the remaining numerical particles.
The number of numerical particles at time tn+1 hence becomes then Nn+1 6 Nn. We neglect the
mass increase of the moon coming from the absorption of particles.

The shortcoming of this strategy is that, when a particle collides with the i-th body, it does
not allow us to determine the position of the intersection between the particle’s trajectory and the
i-th moon. However, since we are dealing with absorption boundary conditions, the value of this
intersection becomes superfluous for our discussion. Although this strategy is less precise than the
one in which the intersection is calculated, the graphical results of these two approaches are similar,
with the advantage that the former allows us to deal with bodies having complicated shapes and
is less computationally expensive.

Another problem that could arise is shown in the Figure 1: during the time interval [tn, tn+1[
a dust particle collides with a moon, but the method does not detect the collision because the
particle is outside the moon at time tn+1. However, this problem can be controlled by reducing
the time step ∆t. The value of ∆t should be chosen globally for all numerical particles in order to
guarantee i) the partial superposition between the domain representing the moon at time tn and
at time tn+1 and ii) if R > 0 is the radius of the smallest moon,

max
k=1,...,N0

‖xn+1
k − xnk‖ < 2R.

If the previous constraint is not satisfied for some tn, the time step ∆t has to be reduced (for all
particles) in order to fullfill it.

The computational cost of our method is clearly proportional to N0/∆t, because there are no
interactions between the numerical particles.

Figure 1. A situation in which the k-th particle collides with the i-th moon, but
the numerical method does not notice the collision.

5. Numerical results

We now describe some simulations implemented for the planetary rings problem in two spatial
dimensions (i.e. four dimensions in phase-space). The data used in the numerical simulations are
scaled in order to be compatible with the data of the giant planets of the Solar system. Here
we have chosen moons of sufficiently high size and mass in order to have appreciable and visible
results.
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5.1. Simulation 1. In this scenario, we simulate the orbit of an elliptical shepherd moon around
a planet and observe how the moon’s motion creates a separation in the dust cloud around the
planet, thus contributing to the formation of a ring system. We consider a circular planet, with
radius ρP and mass mP , and an elliptical shepherd moon, with axes a1 and b1 and mass mS1 . We

moreover assume that the moon, with center of mass ξ0 = r0
1

(
cos θ0

1

sin θ0
1

)
at the time t = 0, orbits the

planet with constant angular velocity ω1 and rotates around its own centre of mass with constant
angular velocity σ1. The quantity δ0

1 is the initial angle from the semi-major axis of the i-moon
and the x-axis of the coordinate system.

The spatial domain of the planetary ring problem is, for d = 2:

Ωt := R2 \
(
P t ∪ St1

)
, t > 0.

Our numerical spatial domain is a truncation of Ωt1 for each time tn:

(15) Ω̂n := D \
(
Pn ∪ Sn1

)
where D := [−1, 1]× [−1, 1] (scaled according to the length L0 = 2× 108 m) is the square domain
for the simulations.

The table shows the values of the data we have selected for these simulations.

Planet Moon
mP = 5.70× 1026 kg mS1

= 8× 1021 kg

ρP = 5.82× 107 m a1 = 1.6× 106 m

b1 = 1.6× 106 m

r0
1 = 1.2× 108 m

θ0
1 = 0.00 rad

ω1 = 1.33× 10−3 rad/s

δ0
1 = 1.05 rad

σ1 = 4× 10−10 rad/s

We have supposed that the initial distribution f in is factorized as the product of a function
depending on the space variable only and a function depending on a suitably chosen velocity
vorb = vorb(x). More precisely, let rmin = 6.7× 107m, rmax = 1.8× 108m and define

R :=

{
(x1, x2) ∈ D, rmin 6

√
x2

1 + x2
2 6 rmax

}
and

S2
orb(x) :=

{
v ∈ R2, ‖v‖ = vorb(x)

}
.

The initial distribution is

(16) f in(x, v) = 1R(x)1S2
orb(x)(v).

We thus first consider the finite set (x0
k)16k≤N0 as a realisation of the density function associated

to 1R(x): we generate the positions (x0
k)16k6N0 as the realisations of a uniform density on R, in

a probabilistic way. The initial velocity v0
k of the k-th macro-particle is then chosen as the orbital

velocity of a point at x0
k (i.e. we suppose that the radial velocity vr is zero). Thus, written its

initial position x0
k = r0

k

(
cos Θ0

k

sin Θ0
k

)
in polar coordinates, its orbital velocity is:

(17) v0
k := vk,orb(− sin Θ0

k, cos Θ0
k), k = 1, . . . , N0,

where

(18) vk,orb =

√
GmP

r0
k
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is the approximation of the modulus of the orbital velocity for dust particles. The particle weights
are identical, i.e. we suppose that

(19) αk :=
||f in||L1(Ω0×R2)

N0
=
n0|R|
N0

, 1 6 k 6 N0,

where n0 :=
||f in||L1(Ω0×R2)

|R| . This quantity has been normalized to 1 in the simulations.

Then, for every n, we move the corresponding numerical particle in the time interval [tn, tn+1]
using an explicit Euler method and we check if the numerical particle falls into the planet or the
moons. If so, it is eliminated.

The next step consists in the reconstruction of the density fn+1
N0,ε. As in [6], we use B-splines of

3-order in two space dimensions as shape functions φε, with shape sizes ε1 = h
1/2
1 and ε2 = h

1/2
2 ,

where h1 and h2 are the initial distances between two numerical particles in the first and second
direction, respectively.

In order to visualize the space-time evolution of the dusty particles, we reconstruct the spatial
density

ρ(t, x) :=

∫
R2

f(t, x, v)dv

from the positions and the velocities of the numerical particles and we plot the numerical macro-
scopic density

ρnN0,ε(x) :=

∫
R2

fnN0,ε(x, v)dv =
Nn∑
k=1

αkφε(x− xnk ).

In Figure 2 we show the results of the simulation. We have used N0 = 587 116 initial numerical
particles. In Saturn rings, some estimates suggest that the order of magnitude of the number of dust
particles is 3× 1016. According to (19), it means that a numerical particle corresponds to 5× 1010

dust particles. The planet and the moons are coloured in red to facilitate their visualization. One
can notice that the moons sweep away the dust in front of them as they orbit the planet, creating
a path where the density ρnN0,ε of the rings is very low. This result is consistent with astronomers’

assumptions about the creation of ringlets based on data collected by the Cassini spacecraft [16].

5.2. Simulation 2. In this section we describe the results of the simulation of a close-up view of
the moon in a previously open gap, neglecting the planet’s gravitational role on the moon and ring
dust. Let us then consider the square D and take as domain, at each discrete time tn, the set:
Ω̂n := D \ Sn. The space in which the dust particles are initially located is the following:

(20) R := {(x1, x2) ∈ D | rmin 6 x2 6 rmax}.

where rmin = −5× 107m and rmax = 5× 107m. As initial distribution, we consider

(21) f in(x, v) = 1{x∈R}δ0(v),

which is uniform in space and non-zero only if the velocity is zero in each component. So, (x0
k)16N0

are selected as realisation of a uniform density, while (v0
k)16N0 are set to zero. The weights

(αk)16k6N0 are chosen as in (19), with R defined in (20).
The physical data for the moon are the following:

Moon

mS = 6.0× 1018 kg

a = 1.50× 106 m

b = 1.00× 106 m

δ0 = 3.14/3 rad

The moon is supposed to be immobile, in order to study only the influence of its gravitational
force on the particles’ ring. At each time step, we move the particles, following the numerical
solution of the equation of motion (14) in the time interval ]tn, tn+1]. Particles which fall into the



14 FRÉDÉRIQUE CHARLES, ANNAMARIA MASSIMINI & FRANCESCO SALVARANI

Figure 2. Time history of the spatial numerical density ρnN0,ε at instants t = 0 s,

t = 6.0× 105 s, t = 1.2× 106 s, t = 1.8× 106 s, starting from the image at the top
left, proceeding from left to right and from top to bottom. The axis are scaled
according to the length L0 = 2× 108 m.

moon are eliminated. Then, we reconstruct the density fn+1
N0,ε as described in Section 5.1 and we

employ it to define the spatial numerical density

ρn+1
N0,ε(x) =

Nn+1∑
k=1

αkφε(x− xn+1
k ).

Figure 3 shows the time evolution of the numerical density ρnN0,ε on D. In this simulation, we
have employed 485 825 numerical particles.

By comparing the two pictures, we observe the effect of the gravitational attraction by the moon
on the dust particles and, moreover, the emergence of wavy, jagged edges, consistent with what
has been observed in Saturn’s rings [10].

This effect is not due to the particle method, because the stochasticity appears only in the dis-
cretization of the initial condition. The other steps of our strategy are deterministic and therefore
the oscillations are a consequence of the model itself.

6. Conclusion

With this paper, we aimed to provide a robust mathematical model capable of describing the
formation of gaps and patterns within planetary ring systems. Firstly, we focused on a formal
justification of the proposed Vlasov model (5)-(6). The physical processes involved in a ring system
are numerous, yet some can, at first glance, be neglected. A careful selection of those relevant to
the problem of our interest was therefore necessary. Subsequently, we proved, via the method of
characteristics on a time-dependent domain, the well-posedness of the Vlasov equation (5)-(6).
The proof of Theorem 1 via this method offers a natural connection to the presented numerical
strategy. Indeed, ultimately, the purpose of the paper was to provide a numerical method to
simulate the model. We used the particle method coupled with a splitting technique, useful for
capturing collisions between dust particles with the planet or moons. The simulations that emerge
(Figures 2 and 3) are coherent with the predicted theoretical results.
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Figure 3. Time history of the spatial numerical density ρnNn,ε at instants t = 0 s

(left) and t = 4.96 × 104 s (right). The axis are scaled according to the length
L0 = 2× 108 m.

In future works, collisions between particles and certain source terms (such as the presence of
a moon, e.g. Titan, capable of supplying the rings with new particles) can be included and thus
more advanced models can be studied.

Acknowledgments: Work supported by the Austrian Exchange Service (ÖAD) in the framework
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[1] Claude Bardos. Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients
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l’Académie Royale des Sciences, 10:404–405, 1667.
[6] Frédérique Charles. Mathematical and numerical study of a dusty Knudsen gas mixture: Extension to non-

spherical dust particles. In Francesco Salvarani, editor, Recent Advances in Kinetic Equations and Applications,
pages 129–145, Cham, 2021. Springer International Publishing.

[7] Frédérique Charles and Francesco Salvarani. Mathematical and numerical study of a dusty Knudsen gas mixture.

Acta Appl. Math., 168:17–31, 2020.
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