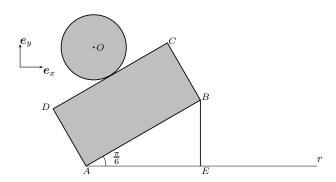
Università di Pavia Facoltà di Ingegneria Corso di Laurea in Ingegneria Industriale **Prova scritta di Fisica Matematica** 14 luglio 2021

Il *candidato* scriva nello spazio sottostante il propro Cognome e Nome.

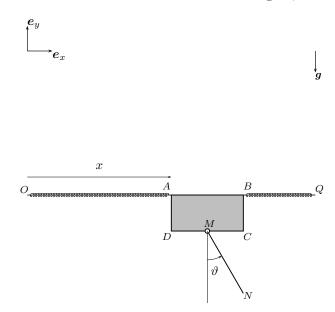
COGNOME

NOME


La **prova** consta di **3** Quesiti e durerà **2** ore e **30** minuti. Non è permesso consultare testi od appunti, al di fuori di quelli distribuiti dalla Commissione.

1. Determinare, per il seguente sistema di vettori applicati,

$$\begin{cases} \mathbf{v}_1 = -2\mathbf{e}_x - \mathbf{e}_y + 3\mathbf{e}_z & \text{applicato in } P_1 - O \equiv (1, 3, 2), \\ \mathbf{v}_2 = 3\mathbf{e}_x + \mathbf{e}_y - 3\mathbf{e}_z & \text{applicato in } P_2 - O \equiv (1, 2, -1), \\ \mathbf{v}_3 = -5\mathbf{e}_x - 4\mathbf{e}_y + 2\mathbf{e}_z & \text{applicato in } P_3 - O \equiv (3, 1, -1) \end{cases}$$


il risultante (1 punto), il momento risultante (3 punti). Trovare un sistema equivalente, formato da due vettori, di cui uno applicato nel punto $Q \equiv (2, -1, 0)$ (3 punti).

2. Un corpo rigido è formato da un rettangolo ABCD di massa 2m con il vertice A sulla retta orizzontale r ed il lato AB inclinato di $\frac{\pi}{6}$ rispetto all'orizzontale. I lati del rettangolo sono $AB = 4\ell$, $AD = 2\ell$; da un'asta BE verticale, di massa 3m e lunghezza 2ℓ ; da un disco di raggio ℓ , tangente nel punto medio di CD al rettangolo e di massa 4m. Determinare il momento di inerzia di ciascuno dei tre corpi descritti rispetto

alla retta passante per B, diretta lungo e_x (9 punti). Determinare il momento centrale di inerzia per l'intero corpo nella direzione parallela ad AD (5 punti).

3. In un piano verticale, un rettangolo omogeneo ABCD di massa 3m e lati di lunghezza $AB = 2\ell$, $AD = \ell$ trasla lungo una guida orizzontale r. Nel punto medio di CD è sospeso l'estremo M di un'asta MN di massa m e lunghezza 2ℓ , libera di ruotare attorno ad M. I vertici A e B del rettangolo sono attratti verso due punti fissi O e Q di r, distanti 8ℓ tra loro, da due molle ideali, di costanti elastiche $2\frac{mg}{\ell}$ e $4\frac{mg}{\ell}$, rispettivamente. Introdotte le coordinate x e ϑ indicate in figura, determinare l'energia cinetica (4 punti) e

l'energia potenziale del sistema (2 punti). Trovare le configurazioni ordinarie di equilibrio e determinare le pulsazioni delle piccole oscillazioni intorno alla configurazione stabile (3 punti).