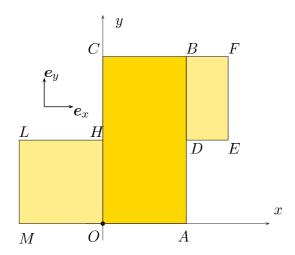
Università di Pavia Facoltà di Ingegneria

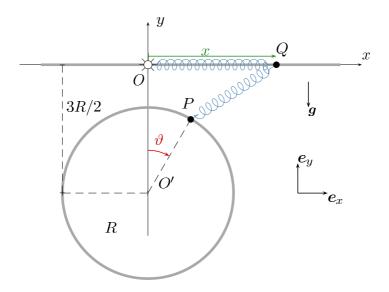
Corso di Laurea in Ingegneria Civile e Ambientale/per l'Ambiente e il Territorio

Esame di Fisica Matematica

21 febbraio 2014


Il *candidato* scriva nello spazio sottostante il proprio Cognome e Nome.

COGNOME NOME


La *prova* consta di **2** esercizi e **2** domande, e durerà **2** *ore* e **30** *minuti*. *Non è permesso* usare né calcolatrice né telefono cellulare/smartphone; non è consentito consultare testi o appunti, al di fuori di quelli eventualmente distribuiti dalla Commissione pena l'esclusione dalla prova.

Esercizi

- 1. Un corpo rigido piano è ottenuto unendo ad una lamina rettangolare omogenea OABC di lati $OA = 2\ell$ e $AB = 4\ell$, e massa 4m, una lamina rettangolare omogenea BDEF di lati $BD = 2\ell$ e $BF = \ell$, e massa m, saldata lungo il lato AB, e una quadrata OHLM di lato 2ℓ e massa 2m, saldata con unn lato lungo OC. Utilizzando il riferimento cartesiano ortogonale centrato in O, e con assi x ed y paralleli ad OA e OC, calcolare:
 - 1. La posizione del baricentro G complessivo del corpo nel riferimento assegnato. (2 punti)
 - 2. I momenti di inerzia I_{yy}^{OABC} , I_{yy}^{BDEF} , e I_{yy}^{OHLM} rispetto all'asse y delle lamine. (4 punti)
 - 3. I momenti di inerzia I_{xx}^{OABC} , I_{xx}^{BDEF} , e I_{xx}^{OHLM} rispetto all'asse x delle lamine. (4 punti)
 - 4. La matrice di inerzia complessiva $[I_O]$ del corpo rispetto al sistema assegnato. (3 punti)
 - 5. Il momento di inerzia I_G^{zz} complessivo del corpo rispetto alla retta passante per il baricentro G ortogonale al piano xy. (3 punti)

- 2. In un piano verticale, un punto materiale Q di massa 2m può muoversi liberamente lungo una guida orizzontale passante per un punto O; un secondo punto materiale P di massa 3m è vincolato a scorrere senza attrito lungo una guida circolare fissa, di raggio R, con diametro orizzontale e centro O' posto verticalmente sotto O a distanza 3R/2 da esso. Una forza di richiamo elastica, di costante $k = \frac{mg}{R}$ attrae Q verso O; una seconda forza di richiamo elastica, di costante $k_2 = \gamma \frac{mg}{R}$, attrae Q verso P. Usando come coordinate lagrangiane l'angolo ϑ che PO' forma con la verticale ascendente, contato positivamente in senso antiorario, e l'ascissa x di Q misurata da O, si determini:
 - 1. l'energia cinetica $T(x, \vartheta, \dot{x}, \dot{\vartheta})$ del sistema; (2 punti)
 - 2. il potenziale $U(x, \vartheta)$ del sistema; (3 punti)
 - 3. la/le configurazioni di equilibrio del sistema; (3 punti)
 - 4. la stabilità della/e configurazioni di equilibrio trovate al variare di γ ; (4 punti)
 - 5. le equazioni di Lagrange per $\gamma=2$. (3 punti)

