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Abstract. Let (Xn) be a sequence of integrable real random variables, adapted

to a filtration (Gn). Define

Cn =
√

n
{ 1

n

n∑
k=1

Xk −E(Xn+1 | Gn)
}

and Dn =
√

n
{
E(Xn+1 | Gn)−Z

}
where Z is the a.s. limit of E(Xn+1 | Gn) (assumed to exist). Conditions

for (Cn, Dn) −→ N (0, U) ×N (0, V ) stably are given, where U, V are certain
random variables. In particular, under such conditions, one obtains

√
n
{ 1

n

n∑
k=1

Xk − Z
}

= Cn + Dn −→ N (0, U + V ) stably.

This CLT has natural applications to Bayesian statistics and urn problems.

The latter are investigated, by paying special attention to multicolor randomly

reinforced urns.

1. Introduction and motivations

As regards asymptotics in urn models, there is not a unique reference frame-
work. Rather, there are many (ingenious) disjoint ideas, one for each class of prob-
lems. Well known examples are martingale methods, exchangeability, branching
processes, stochastic approximation, dynamical systems and so on; see [16].

Those limit theorems which unify various urn problems, thus, look of some in-
terest.

In this paper, we focus on the CLT. While thought for urn problems, our CLT
is stated for an arbitrary sequence of real random variables. Thus, it potentially
applies to every urn situation, even if its main application (known to us) is an
important special case of randomly reinforced urns (RRU).

Let (Xn) be a sequence of real random variables such that E|Xn| < ∞. Define
Zn = E

(
Xn+1 | Gn

)
where G = (Gn) is some filtration which makes (Xn) adapted.

Under various assumptions, one obtains Zn
a.s.,L1−→ Z for some random variable Z.

Define further Xn = 1
n

∑n
k=1Xk and

Cn =
√
n
(
Xn − Zn), Dn =

√
n
(
Zn − Z),

Wn = Cn +Dn =
√
n
(
Xn − Z).
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The limit distribution of Cn, Dn or Wn is a main goal in various fields, includ-
ing Bayesian statistics, discrete time filtering, gambling and urn problems. See [2],
[4], [5], [6], [7], [8], [10] and references therein. In fact, suppose the next obser-
vation Xn+1 is to be predicted conditionally on the available information Gn. If
the predictor Zn cannot be evaluated in closed form, one needs some estimate Ẑn

and Cn reduces to the scaled error when Ẑn = Xn. And Xn is a sound estimate
of Zn under some distributional assumptions on (Xn), for instance when (Xn) is
exchangeable, as it is usual in Bayesian statistics. Similarly, Dn and Wn are of
interest provided Z is regarded as a random parameter. In this case, Zn is the
Bayesian estimate (of Z) under quadratic loss and Xn can be often viewed as the
maximum likelihood estimate. Note also that, in the trivial case where (Xn) is i.i.d.
and Gn = σ(X1, . . . , Xn), one obtains Cn = Wn =

√
n
(
Xn−EX1) and Dn = 0. As

to urn problems, Xn could be the indicator of {black ball at time n} in a multicolor
urn. Then, Zn becomes the proportion of black balls in the urn at time n and Xn

the observed frequency of black balls at time n.
In Theorem 2, we give conditions for

(Cn, Dn) −→ N (0, U)×N (0, V ) stably (1)

where U, V are certain random variables and N (0, L) denotes the Gaussian kernel
with mean 0 and variance L. A nice consequence is that

Wn = Cn +Dn −→ N (0, U + V ) stably.

Stable convergence, in the sense of Aldous and Renyi, is a strong form of convergence
in distribution; the definition is recalled in Section 2.

To check the conditions for (1), it is fundamental to know something about the
convergence rate of

Zn+1 − Zn and E
(
Zn+1 − Zn | Gn

)
.

Hence, such conditions become simpler when (Zn) is a G-martingale. Since

E
(
Zn+1 | Gn

)
= E

{
E(Xn+2 | Gn+1) | Gn

}
= E

(
Xn+2 | Gn

)
a.s.,

(Zn) is trivially a G-martingale in case

P
(
Xk ∈ · | Gn

)
= P

(
Xn+1 ∈ · | Gn

)
a.s. for all 0 ≤ n < k. (2)

Those (G-adapted) sequences (Xn) satisfying (2) are investigated in [5] and are
called conditionally identically distributed with respect to G. Note that (2) holds if
(Xn) is exchangeable and Gn = σ(X1, . . . , Xn).

Together with Theorem 2, the main contribution of this paper is one of its
applications, that is, an important special case of RRU. Two other applications are
r-step predictions and Poisson-Dirichlet sequences. We refer to Subsections 4.1 and
4.2 for the latter and we next describe this type of urn.

An urn contains black and red balls. At each time n ≥ 1, a ball is drawn and
then replaced together with a random number of balls of the same color. Say that
Bn black balls or Rn red balls are added to the urn according to whether Xn = 1
or Xn = 0, where Xn is the indicator of {black ball at time n}. Define

Gn = σ(X1, B1, R1, . . . , Xn, Bn, Rn)
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and suppose that

Bn ≥ 0, Rn ≥ 0, EBn = ERn,

sup
n
E
{

(Bn +Rn)u
}
<∞ for some u > 2,

m := lim
n
EBn > 0, q := lim

n
EB2

n, s := lim
n
ER2

n,

(Bn, Rn) independent of
(
X1, B1, R1, . . . , Xn−1, Bn−1, Rn−1, Xn

)
.

Then, as shown in Corollary 7, condition (1) holds with

U = Z(1− Z)
( (1− Z)q + Zs

m2
− 1
)

and V = Z(1− Z)
(1− Z)q + Zs

m2
.

A remark on the assumption EBn = ERn is in order. Such an assumption is
technically fundamental for Corollary 7, but it is not required by RRU, as defined
in [9]. Indeed, EBn 6= ERn is closer to the spirit of RRU and those real problems
motivating them. However, EBn = ERn is an important special case of RRU. For
instance, it might be the null hypothesis in an application.

Corollary 7 improves the existing result on this type of urns, obtained in [2],
under two aspects. First, Corollary 7 implies convergence of the pairs (Cn, Dn)
and not only of Dn. Hence, one also gets Wn −→ N (0, U + V ) stably. Second,
unlike [2], neither the sequence ((Bn, Rn)) is identically distributed nor the random
variables Bn +Rn have compact support.

By just the same argument used for two color urns, multicolor versions of Corol-
lary 7 are easily manufactured. To our knowledge, results of this type were not
available so far. Briefly, for a d-color urn, let Xn,j be the indicator of {ball of
color j at time n} where n ≥ 1 and 1 ≤ j ≤ d. Suppose An,j balls of color j are
added in case Xn,j = 1. The random variables An,j are requested the same type of
conditions asked above to Bn and Rn; see Subsection 4.4 for details. Then,(

Cn, Dn

)
−→ Nd(0,U)×Nd(0,V) stably,

where Cn and Dn are the vectorial versions of Cn and Dn while U, V are certain
random covariance matrices; see Corollary 10.

A last note is the following. In the previous urn, the n-th reinforce matrix is

An = diag
(
An,1, . . . , An,d

)
.

Since EAn,1 = . . . = EAn,d, the leading eigenvalue of the mean matrix EAn has
multiplicity greater than 1. Even if significant for applications, this particular case
(the leading eigenvalue of EAn is not simple) is typically neglected; see [3], [12],
[13], and page 20 of [16]. Our result, and indeed the result in [2], contribute to
(partially) fill this gap.

2. Stable convergence

Stable convergence has been introduced by Renyi in [18] and subsequently in-
vestigated by various authors. In a sense, it is intermediate between convergence in
distribution and convergence in probability. We recall here basic definitions. For
more information, we refer to [1], [7], [11] and references therein.

Let (Ω,A, P ) be a probability space and S a metric space. A kernel on S, or a
random probability measure on S, is a measurable collection N = {N(ω) : ω ∈ Ω}
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of probability measures on the Borel σ-field on S. Measurability means that

N(ω)(f) =
∫
f(x)N(ω)(dx)

is A-measurable, as a function of ω ∈ Ω, for each bounded Borel map f : S → R.
Let (Yn) be a sequence of S-valued random variables and N a kernel on S. Both

(Yn) and N are defined on (Ω,A, P ). Say that Yn converges stably to N in case

P
(
Yn ∈ · | H

)
−→ E

(
N(·) | H

)
weakly

for all H ∈ A such that P (H) > 0.

Clearly, if Yn → N stably, then Yn converges in distribution to the probability law
E
(
N(·)

)
(just let H = Ω). Moreover, when S is separable, it is not hard to see that

Yn
P→ Y if and only if Yn converges stably to the kernel N = δY .

We next mention a strong form of stable convergence, introduced in [7], to be
used later on. Let Fn ⊂ A be a sub-σ-field, n ≥ 1. Say that Yn converges to N
stably in strong sense, with respect to the sequence (Fn), in case

E
(
f(Yn) | Fn

) P−→ N(f) for each f ∈ Cb(S)

where Cb(S) denotes the set of real bounded continuous functions on S.
Finally, we state a simple but useful fact as a lemma.

Lemma 1. Suppose that S is a separable metric space and
Cn and Dn are S-valued random variables on (Ω,A, P ), n ≥ 1;
M and N are kernels on S defined on (Ω,A, P );
G = (Gn : n ≥ 1) is an (increasing) filtration satisfying

σ(Cn) ⊂ Gn and σ(Dn) ⊂ G∞ for all n, where G∞ = σ(∪nGn).

If Cn →M stably and Dn → N stably in strong sense, with respect to G, then

(Cn, Dn) −→M ×N stably.

(Here, M ×N is the kernel on S × S such that
(
M ×N

)
(ω) = M(ω) ×N(ω) for

all ω).

Proof. By standard arguments, since S is separable and σ(Cn, Dn) ⊂ G∞, it suffices
to prove that E

{
IH f1(Cn) f2(Dn)} → E

{
IH M(f1)N(f2)} whenever H ∈ ∪nGn

and f1, f2 ∈ Cb(S). Let Ln = E
(
f2(Dn) | Gn

)
−N(f2). Since H ∈ ∪nGn, there is

k such that H ∈ Gn for n ≥ k. Thus,

E
{
IH f1(Cn) f2(Dn)} = E

{
IH f1(Cn)E

(
f2(Dn) | Gn

)
}

= E
{
IH f1(Cn)N(f2)}+ E

{
IH f1(Cn)Ln} for all n ≥ k.

Finally, |E
{
IH f1(Cn)Ln} | ≤ sup |f1|E|Ln| → 0, since Dn → N stably in strong

sense, and E
{
IH f1(Cn)N(f2)} → E

{
IH M(f1)N(f2)} as Cn →M stably. �

3. A central limit theorem

In the sequel, (Xn : n ≥ 1) is a sequence of real random variables on the
probability space (Ω,A, P ) and G = (Gn : n ≥ 0) an (increasing) filtration. We



RANDOMLY REINFORCED URNS 5

assume E|Xn| <∞ and we let

Xn =
1
n

n∑
k=1

Xk, Zn = E(Xn+1 | Gn) and

Cn =
√
n
(
Xn − Zn

)
.

In case Zn
a.s.−→ Z, for some real random variable Z, we also define

Dn =
√
n
(
Zn − Z

)
.

Sufficient conditions for Zn
a.s.,L1−→ Z are supnEX

2
n <∞ and

E
{(
E(Zn+1 | Gn)− Zn

)2} = o(n−3). (3)

In this case, in fact, (Zn) is an uniformly integrable quasi-martingale.
We recall that a sequence (Yn) of real integrable random variables is a quasi-

martingale (with respect to the filtration G) if it is G-adapted and∑
n

E
∣∣∣E(Yn+1 | Gn)− Yn

∣∣∣ <∞.
If (Yn) is a quasi-martingale and supnE|Yn| <∞, then Yn converges a.s..

Let N (a, b) denote the one-dimensional Gaussian law with mean a and variance
b ≥ 0 (where N (a, 0) = δa). Note that N (0, L) is a kernel on R for each real non
negative random variable L. We are now in a position to state our CLT.

Theorem 2. Suppose σ(Xn) ⊂ Gn for each n ≥ 1, (X2
n) is uniformly integrable

and condition (3) holds. Let us consider the following conditions

(a) 1√
n
E
{

max1≤k≤n k |Zk−1 − Zk|
}
−→ 0,

(b) 1
n

∑n
k=1

{
Xk − Zk−1 + k(Zk−1 − Zk)

}2 P−→ U ,

(c)
√
nE
{

supk≥n|Zk−1 − Zk|
}
−→ 0,

(d) n
∑

k≥n(Zk−1 − Zk)2 P−→ V ,

where U and V are real non negative random variables. Then, Cn → N (0, U) stably
under (a)-(b), and Dn → N (0, V ) stably in strong sense, with respect to G, under
(c)-(d). In particular,

(Cn, Dn) −→ N (0, U)×N (0, V ) stably under (a)-(b)-(c)-(d).

Proof. Since σ(Cn) ⊂ Gn and Z can be taken G∞-measurable, Lemma 1 applies.
Thus, it suffices to prove that Cn → N (0, U) stably and Dn → N (0, V ) stably in
strong sense.

”Cn → N (0, U) stably”. Suppose conditions (a)-(b) hold. First note that

√
nCn = nXn − nZn =

n∑
k=1

Xk +
n∑

k=1

(
(k − 1)Zk−1 − kZk

)
=

n∑
k=1

{
Xk − Zk−1 + k(Zk−1 − Zk)

}
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where Z0 = E(X1 | G0). Letting

Yn,k =
Xk − Zk−1 + k

(
E(Zk | Gk−1)− Zk

)
√
n

and Qn =
1√
n

n∑
k=1

k
(
Zk−1−E(Zk | Gk−1)

)
,

it follows that Cn =
∑n

k=1 Yn,k + Qn. By condition (3),

E|Qn| ≤
1√
n

n∑
k=1

k

√
E
{(
Zk−1 − E(Zk | Gk−1)

)2} =
1√
n

n∑
k=1

o(k−1/2) −→ 0.

Hence, it suffices to prove that
∑n

k=1 Yn,k → N (0, U) stably. Letting Fn,k = Gk,
k = 1, . . . , n, one obtains E

(
Yn,k | Fn,k−1

)
= 0 a.s.. Thus, by Corollary 7 of [7],∑n

k=1 Yn,k → N (0, U) stably whenever

(i) E
{

max
1≤k≤n

|Yn,k|
}
−→ 0; (ii)

n∑
k=1

Y 2
n,k

P−→ U.

As to (i), first note that

√
n max

1≤k≤n
|Yn,k| ≤ max

1≤k≤n
|Xk−Zk−1|+

n∑
k=1

k |E(Zk | Gk−1)−Zk−1|+ max
1≤k≤n

k |Zk−1−Zk|.

Since (X2
n) is uniformly integrable, ((Xn −Zn−1)2) is uniformly integrable as well,

and this implies 1
n E
{

max1≤k≤n(Xk − Zk−1)2
}
−→ 0. By condition (3),

1√
n

n∑
k=1

k E
∣∣∣E(Zk | Gk−1)− Zk−1

∣∣∣ =
1√
n

n∑
k=1

o(k−1/2) −→ 0.

Thus, (i) follows from condition (a).
As to (ii), write

n∑
k=1

Y 2
n,k =

1
n

n∑
k=1

(
Xk − Zk−1 + k(Zk−1 − Zk)

)2 +
1
n

n∑
k=1

k2
(
E(Zk | Gk−1)− Zk−1

)2+

+
2
n

n∑
k=1

(
Xk − Zk−1 + k(Zk−1 − Zk)

)
k
(
E(Zk | Gk−1)− Zk−1

)
= Rn + Sn + Tn say.

Then, Rn
P→ U by (b) and E|Sn| = ESn → 0 by (3). Further Tn

P−→ 0, since

T 2
n

4
≤ 1
n

n∑
k=1

(
Xk − Zk−1 + k(Zk−1 − Zk)

)2 · 1
n

n∑
k=1

k2
(
E(Zk | Gk−1)− Zk−1

)2 = Rn Sn.

Hence, (ii) holds, and this concludes the proof of Cn → N (0, U) stably.

”Dn → N (0, V ) stably in strong sense”. Suppose conditions (c)-(d) hold.
We first recall a known result; see Example 6 of [7]. Let (Ln) be a G-martingale

such that Ln
a.s.,L1−→ L for some real random variable L. Then,

√
n
(
Ln − L

)
−→ N (0, V ) stably in strong sense with respect to G,

provided

(c*)
√
nE
{

sup
k≥n
|Lk−1 − Lk|

}
−→ 0; (d*) n

∑
k≥n

(Lk−1 − Lk)2 P−→ V.
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Next, define L0 = Z0 and

Ln = Zn −
n−1∑
k=0

(
E(Zk+1 | Gk)− Zk

)
.

Then, (Ln) is a G-martingale. Also, Ln
a.s.,L1−→ L for some L, as (Zn) is an uniformly

integrable quasi-martingale. In particular, Ln − L can be written as Ln − L =∑
k≥n(Lk −Lk+1) a.s.. Similarly, Zn −Z =

∑
k≥n(Zk −Zk+1) a.s.. It follows that

E
∣∣∣Dn −

√
n(Ln − L)

∣∣∣ =
√
nE
∣∣∣(Zn − Z)− (Ln − L)

∣∣∣
=
√
nE
∣∣∣∑

k≥n

{
(Zk − Lk)− (Zk+1 − Lk+1)

}∣∣∣
≤
√
n
∑
k≥n

E
∣∣∣Zk − E(Zk+1 | Gk)

∣∣∣ =
√
n
∑
k≥n

o(k−3/2) −→ 0.

Thus, Dn → N (0, V ) stably in strong sense if and only if
√
n(Ln − L) → N (0, V )

stably in strong sense, and to conclude the proof it suffices to check conditions
(c*)-(d*). In turn, (c*)-(d*) are a straightforward consequence of conditions (3),
(c), (d) and

Lk−1 − Lk =
(
Zk−1 − Zk

)
+
(
E(Zk | Gk−1)− Zk−1

)
.

�

Some remarks on Theorem 2 are in order.
In real problems, one of the quantities of main interest is

Wn =
√
n
(
Xn − Z).

And, under the assumptions of Theorem 2, one obtains

Wn = Cn +Dn −→ N (0, U + V ) stably.

Condition (3) trivially holds when (Xn) is conditionally identically distributed
with respect to G; see [5] and Section 1. In particular, (3) holds if (Xn) is exchange-
able and Gn = σ(X1, . . . , Xn).

Under (c), condition (a) can be replaced by

(a*) supn
1
n

∑n
k=1 k

2E
{

(Zk−1 − Zk)2
}
<∞.

Indeed, (a*) and (c) imply (a) (we omit calculations). Note that, for proving
Cn → N (0, U) stably under (a*)-(b)-(c), one can rely on more classical versions of
the martingale CLT, such as Theorem 3.2 of [11].

To check conditions (b) and (d), the following simple lemma can help.

Lemma 3. Let (Yn) be a G-adapted sequence of real random variables. If∑∞
n=1 n

−2EY 2
n <∞ and E

(
Yn+1 | Gn

) a.s.−→ Y , for some random variable Y , then

n
∑
k≥n

Yk

k2

a.s.−→ Y and
1
n

n∑
k=1

Yk
a.s.−→ Y.



8 PATRIZIA BERTI, IRENE CRIMALDI, LUCA PRATELLI, AND PIETRO RIGO

Proof. Let Ln =
∑n

k=1

Yk−E
(
Yk|Gk−1

)
k . Then, Ln is a G-martingale such that

sup
n
EL2

n ≤ 4
∑

k

EY 2
k

k2
<∞.

Thus, Ln converges a.s. and Abel summation formula yields

n
∑
k≥n

Yk − E
(
Yk | Gk−1

)
k2

a.s.−→ 0.

Since E
(
Yn+1 | Gn

) a.s.−→ Y and n
∑

k≥n
1
k2 −→ 1, it follows that

n
∑
k≥n

Yk

k2
= n

∑
k≥n

Yk − E
(
Yk | Gk−1

)
k2

+ n
∑
k≥n

E
(
Yk | Gk−1

)
k2

a.s.−→ Y.

Similarly, Kroneker lemma and E
(
Yn+1 | Gn

) a.s.−→ Y yield

1
n

n∑
k=1

Yk =
1
n

n∑
k=1

E(Yk | Gk−1) +
1
n

n∑
k=1

k
Yk − E

(
Yk | Gk−1

)
k

a.s.−→ Y.

�

Finally, as regards Dn, a natural question is whether

E
(
f(Dn) | Gn

) a.s.−→ N (0, V )(f) for each f ∈ Cb(R). (4)

This is a strengthening of Dn → N (0, V ) stably in strong sense, as E
(
f(Dn) | Gn

)
is requested to converge a.s. and not only in probability. Conditions for (4) are
given by the next proposition.

Proposition 4. Let (Xn) be a (non necessarily G-adapted) sequence of integrable
random variables. Condition (4) holds whenever (Zn) is uniformly integrable and∑

k≥1

√
k E
∣∣∣E(Zk | Gk−1)− Zk−1

∣∣∣ <∞,
E
{

sup
k≥1

√
k |Zk−1 − Zk|

}
<∞, n

∑
k≥n

(Zk−1 − Zk)2 a.s.−→ V.

Proof. Just repeat (the second part of) the proof of Theorem 2, but use Theorem
2.2 of [8] instead of Example 6 of [7]. �

4. Applications

4.1. r-step predictions. Suppose we are requested to make conditional forecasts
on a sequence of events An ∈ Gn. To fix ideas, for each n, we aim to predict

A∗n =
(
∩j∈JAn+j

)
∩
(
∩j∈JcAc

n+j

)
conditionally on Gn, where J is a given subset of {1, . . . , r} and Jc = {1, . . . , r}\J .
Letting Xn = IAn

, the predictor can be written as

Z∗n = E
{∏

j∈J

Xn+j

∏
j∈Jc

(1−Xn+j) | Gn

}
.

In the spirit of Section 1, when Z∗n cannot be evaluated in closed form, one needs
to estimate it. Under some assumptions, in particular when (Xn) is exchangeable
and Gn = σ(X1, . . . , Xn), a reasonable estimate of Z∗n is X

h

n(1 − Xn)r−h where
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h = card(J). Usually, under such assumptions, one also has Zn
a.s.−→ Z and Z∗n

a.s.−→
Zh(1− Z)r−h for some random variable Z. So, it makes sense to define

C∗n =
√
n
{
X

h

n(1−Xn)r−h − Z∗n
}
, D∗n =

√
n
{
Z∗n − Zh(1− Z)r−h

}
.

Next result is a straightforward consequence of Theorem 2.

Corollary 5. Let (Xn) be a G-adapted sequence of indicators satisfying (3). If
conditions (a)-(b)-(c)-(d) of Theorem 2 hold, then

(C∗n, D
∗
n) −→ N (0, σ2U)×N (0, σ2V ) stably, where

σ2 =
{
hZh−1(1− Z)r−h − (r − h)Zh(1− Z)r−h−1

}2
.

Proof. We just give a sketch of the proof. Let f(x) = xh(1 − x)r−h. Based on
(c), it can be shown that

√
nE
∣∣∣Z∗n − f(Zn)

∣∣∣ −→ 0. Thus, C∗n can be replaced by
√
n
{
f(Xn)− f(Zn)

}
and D∗n by

√
n
{
f(Zn)− f(Z)

}
. By the mean value theorem,

√
n
{
f(Xn)− f(Zn)

}
=
√
n f ′(Mn) (Xn − Zn) = f ′(Mn)Cn

where Mn is between Xn and Zn. By (3), Zn
a.s−→ Z and Xn

a.s−→ Z. Hence,
f ′(Mn) a.s−→ f ′(Z) as f ′ is continuous. By Theorem 2, Cn → N (0, U) stably. Thus,

√
n
{
f(Xn)− f(Zn)

}
−→ f ′(Z)N (0, U) = N (0, σ2U) stably.

By a similar argument, it can be seen that
√
n
{
f(Zn) − f(Z)

}
−→ N (0, σ2V )

stably in strong sense. An application of Lemma 1 concludes the proof. �

Roughly speaking Corollary 5 states that, if 1-step predictions behave nicely,
then r-step predictions behave nicely as well. In fact, (C∗n, D

∗
n) converges stably

under the same conditions which imply convergence of (Cn, Dn), and the respective
limits are connected in a simple way. Forthcoming Subsections 4.2 and 4.3 provide
examples of indicators satisfying the assumptions of Corollary 5.

4.2. Poisson-Dirichlet sequences. Let Y be a finite set and (Yn) a sequence of
Y-valued random variables satisfying

P
(
Yn+1 ∈ A | Y1, . . . , Yn

)
=

∑
y∈A(Sn,y − α) I{Sn,y 6=0} +

(
θ + α

∑
y∈Y I{Sn,y 6=0}

)
ν(A)

θ + n

a.s. for all A ⊂ Y and n ≥ 1. Here, 0 ≤ α < 1 and θ > −α are constants, ν is the
probability distribution of Y1 and Sn,y =

∑n
k=1 I{Yk=y}.

Sequences (Yn) of this type play a role in various frameworks, mainly in population-
genetics. They can be regarded as a generalization of those exchangeable sequences
directed by a two parameter Poisson-Dirichlet process; see [17]. For α = 0, (Yn)
reduces to a classical Dirichlet sequence (i.e., an exchangeable sequence directed by
a Dirichlet process). But, for α 6= 0, (Yn) may even fail to be exchangeable.

From the point of view of Theorem 2, however, the only important thing is that
P
(
Yn+1 ∈ · | Y1, . . . , Yn

)
can be written down explicitly. Indeed, the following

result is available.

Corollary 6. Let Gn = σ(Y1, . . . , Yn) and Xn = IA(Yn), where A ⊂ Y. Then,
condition (3) holds (so that Zn

a.s.−→ Z) and

(Cn, Dn) −→ δ0 ×N
(
0, Z(1− Z)

)
stably.
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Proof. Let Qn = −α
∑

y∈A I{Sn,y 6=0} +
(
θ + α

∑
y∈Y I{Sn,y 6=0}

)
ν(A). Since

Zn = P
(
Yn+1 ∈ A | Y1, . . . , Yn

)
=
nXn + Qn

θ + n
and |Qn| ≤ c

for some constant c, then Cn
a.s.−→ 0. By Lemma 1 and Theorem 2, thus, it suffices

to check conditions (3), (c) and (d) with V = Z(1− Z). On noting that

Zn+1 − Zn =
Xn+1 − Zn

θ + n+ 1
+
Qn+1 −Qn

θ + n+ 1
,

condition (c) trivially holds. Since Sn+1,y = Sn,y + I{Yn+1=y}, one obtains

Qn+1 −Qn = −αν(Ac)
∑
y∈A

I{Sn,y=0}I{Yn+1=y} + αν(A)
∑

y∈Ac

I{Sn,y=0}I{Yn+1=y}.

It follows that

E
{
|Qn+1 −Qn| | Gn

}
≤ 2

∑
y∈Y

I{Sn,y=0} P
(
Yn+1 = y | Gn

)
≤ d

θ + n
a.s.

for some constant d, and this implies

∣∣∣E(Zn+1 | Gn

)
− Zn

∣∣∣ =

∣∣∣E(Qn+1 −Qn | Gn

)∣∣∣
θ + n+ 1

≤ d

(θ + n)2
a.s..

Hence, condition (3) holds. To check (d), note that
∑

k k
2E
{

(Zk−1 − Zk)4
}
<∞.

Since Zk
a.s.−→ Z (by (3)) one also obtains

E
{

(Xk − Zk−1)2 | Gk−1

}
= Zk−1 − Z2

k−1
a.s.−→ Z(1− Z),

E
{

(Qk −Qk−1)2 | Gk−1

}
+ 2E

{
(Xk − Zk−1) (Qk −Qk−1) | Gk−1

} a.s.−→ 0.

Thus, k2E
{

(Zk−1 − Zk)2 | Gk−1

} a.s.−→ Z(1− Z). Letting Yk = k2(Zk−1 − Zk)2 and
Y = Z(1− Z), Lemma 3 implies

n
∑
k≥n

(Zk−1 − Zk)2 = n
∑
k≥n

Yk

k2

a.s.−→ Z(1− Z).

�

As it is clear from the previous proof, all assumptions of Proposition 4 are
satisfied. Therefore, Dn meets condition (4) with V = Z(1− Z).

A result analogous to Corollary 6 is Theorem 4.1 of [4]. The main tool for proving
the latter, indeed, is Theorem 2.

4.3. Two color randomly reinforced urns. An urn contains b > 0 black balls
and r > 0 red balls. At each time n ≥ 1, a ball is drawn and then replaced together
with a random number of balls of the same color. Say that Bn black balls or Rn

red balls are added to the urn according to whether Xn = 1 or Xn = 0, where Xn

is the indicator of {black ball at time n}.
Urns of this type have some history starting with [9]. See also [2], [4], [5], [8],

[15], [16] and references therein.
To model such urns, we assume Xn, Bn, Rn random variables on the probability

space (Ω,A, P ) such that
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(∗) Xn ∈ {0, 1}, Bn ≥ 0, Rn ≥ 0,

(Bn, Rn) independent of
(
X1, B1, R1, . . . , Xn−1, Bn−1, Rn−1, Xn

)
,

Zn = P
(
Xn+1 = 1 | Gn

)
=

b+
∑n

k=1BkXk

b+ r +
∑n

k=1

(
BkXk +Rk(1−Xk)

) a.s.,

for each n ≥ 1, where

G0 = {∅,Ω}, Gn = σ
(
X1, B1, R1, . . . , Xn, Bn, Rn

)
.

In the particular case Bn = Rn, in Example 3.5 of [5], it is shown that Cn

converges stably to a Gaussian kernel whenever EB2
1 < ∞ and the sequence

(Bn : n ≥ 1) is identically distributed. Further, in Corollary 4.1 of [8], Dn is
shown to satisfy condition (4). The latter result on Dn is extended to Bn 6= Rn in
[2], under the assumptions that B1 + R1 has compact support, EB1 = ER1, and
((Bn, Rn) : n ≥ 1) is identically distributed.

Based on the results in Section 3, condition (4) can be shown to hold more
generally. Indeed, to get condition (4), it is fundamental that EBn = ERn for all n
and the three sequences (EBn), (EB2

n), (ER2
n) approach a limit. But the identity

assumption for distributions of (Bn, Rn) can be dropped, and compact support of
Bn +Rn can be replaced by a moment condition such as

sup
n
E
{

(Bn +Rn)u
}
<∞ for some u > 2. (5)

Under these conditions, not only Dn meets (4), but the pairs (Cn, Dn) converge
stably as well. In particular, one obtains stable convergence of Wn = Cn + Dn

which is of potential interest in urn problems.

Corollary 7. In addition to (∗) and (5), suppose EBn = ERn for all n and

m := lim
n
EBn > 0, q := lim

n
EB2

n, s := lim
n
ER2

n.

Then, condition (3) holds (so that Zn
a.s.−→ Z) and

(Cn, Dn) −→ N (0, U)×N (0, V ) stably, where

U = Z(1− Z)
( (1− Z)q + Zs

m2
− 1
)

and V = Z(1− Z)
(1− Z)q + Zs

m2
.

In particular, Wn = Cn+Dn −→ N (0, U+V ) stably. Moreover, Dn meets condition
(4), that is, E

(
f(Dn) | Gn

) a.s.−→ N (0, V )(f) for each f ∈ Cb(R).

It is worth noting that, arguing as in [2] and [15], one obtains P (Z = z) = 0 for
all z. Thus, N (0, V ) is a non degenerate kernel. In turn, N (0, U) is non degenerate
unless q = s = m2, and this happens if and only if both Bn and Rn converge in
probability (necessarily to m). In the latter case (q = s = m2), Cn

P−→ 0 and
condition (4) holds with V = Z(1− Z). Thus, in a sense, RRU behave as classical
Polya urns (i.e., those urns with Bn = Rn = m) whenever the reinforcements
converge in probability.

The proof of Corollary 7 is deferred to the Appendix as it needs some work. Here,
to point out the underlying argument, we sketch such a proof under the superfluous
but simplifying assumption that Bn ∨Rn ≤ c for all n and some constant c. Let

Sn = b+ r +
n∑

k=1

(
BkXk +Rk(1−Xk)

)
.
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After some algebra, Zn+1 − Zn can be written as

Zn+1 − Zn =
(1− Zn)Xn+1Bn+1 − Zn (1−Xn+1)Rn+1

Sn+1

=
(1− Zn)Xn+1Bn+1

Sn +Bn+1
− Zn (1−Xn+1)Rn+1

Sn +Rn+1
.

By (∗) and EBn+1 = ERn+1,

E
(
Zn+1 − Zn | Gn

)
= Zn(1− Zn)E

{ Bn+1

Sn +Bn+1
− Rn+1

Sn +Rn+1
| Gn

}
= Zn(1− Zn)E

{ Bn+1

Sn +Bn+1
− Bn+1

Sn
− Rn+1

Sn +Rn+1
+
Rn+1

Sn
| Gn

}
= Zn(1− Zn)E

{
−

B2
n+1

Sn(Sn +Bn+1)
+

R2
n+1

Sn(Sn +Rn+1)
| Gn

}
a.s..

Thus,
∣∣∣E(Zn+1 | Gn

)
− Zn

∣∣∣ ≤ EB2
n+1+ER2

n+1
S2

n
a.s.. Since supn

(
EB2

n + ER2
n

)
< ∞

and E(S−p
n ) = O(n−p) for all p > 0 (as shown in Lemma 11) then

E
{
|E(Zn+1 | Gn)− Zn|p

}
= O(n−2p) for all p > 0.

In particular, condition (3) holds and
∑

k

√
k E
∣∣∣E(Zk | Gk−1)− Zk−1

∣∣∣ <∞.
To conclude the proof, in view of Lemma 1, Theorem 2 and Proposition 4, it

suffices to check conditions (a), (b) and

(i) E
{

sup
k≥1

√
k |Zk−1 − Zk|

}
<∞; (ii) n

∑
k≥n

(Zk−1 − Zk)2 a.s.−→ V.

Conditions (a) and (i) are straightforward consequences of |Zn+1 − Zn| ≤ c
Sn

and
E(S−p

n ) = O(n−p) for all p > 0. Condition (b) follows from the same argument
as (ii). And to prove (ii), it suffices to show that E(Yn+1 | Gn) a.s.−→ V where
Yn = n2(Zn−1 − Zn)2; see Lemma 3. Write (n+ 1)−2E(Yn+1 | Gn) as

Zn(1− Zn)2E
{ B2

n+1

(Sn +Bn+1)2
| Gn

}
+ Z2

n(1− Zn)E
{ R2

n+1

(Sn +Rn+1)2
| Gn

}
.

Since Sn

n

a.s.−→ m (by Lemma 11) and Bn+1 ≤ c, then

n2E
{ B2

n+1

(Sn +Bn+1)2
| Gn

}
≤ n2E

{B2
n+1

S2
n

| Gn

}
= n2EB

2
n+1

S2
n

a.s.−→ q

m2
and

n2E
{ B2

n+1

(Sn +Bn+1)2
| Gn

}
≥ n2E

{ B2
n+1

(Sn + c)2
| Gn

}
= n2 EB2

n+1

(Sn + c)2
a.s.−→ q

m2
.

Similarly, n2E
{ R2

n+1
(Sn+Rn+1)2

| Gn

} a.s.−→ s
m2 . Since Zn

a.s.−→ Z, it follows that

E(Yn+1 | Gn) a.s.−→ Z(1− Z)2
q

m2
+ Z2(1− Z)

s

m2
= V.

This concludes the (sketch of the) proof.

Remark 8. In order for (Cn, Dn) −→ N (0, U) × N (0, V ) stably, some of the
assumptions of Corollary 7 can be stated in a different form. We mention two
(independent) facts.

First, condition (5) can be weakened into uniform integrability of (Bn +Rn)2.
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Second, (Bn, Rn) independent of
(
X1, B1, R1, . . . , Xn−1, Bn−1, Rn−1, Xn

)
can be

replaced by the following four conditions:
(i) (Bn, Rn) conditionally independent of Xn given Gn−1;

(ii) Condition (5) holds for some u > 4;
(iii) There are an integer n0 and a constant l > 0 such that

E
(
Bn ∧ n1/4 | Gn−1

)
≥ l and E

(
Rn ∧ n1/4 | Gn−1

)
≥ l a.s. whenever n ≥ n0;

(iv) There are random variables m, q, s such that

E
(
Bn | Gn−1

)
= E

(
Rn | Gn−1

) P−→ m, E
(
B2

n | Gn−1

) P−→ q, E
(
R2

n | Gn−1

) P−→ s.

Even if in a different framework, conditions similar to (i)-(iv) are in [3].

4.4. The multicolor case. To avoid technicalities, we firstly investigated two color
urns, but Theorem 2 applies to the multicolor case as well.

An urn contains aj > 0 balls of color j ∈ {1, . . . , d} where d ≥ 2. Let Xn,j

denote the indicator of {ball of color j at time n}. In case Xn,j = 1, the ball which
has been drawn is replaced together with An,j more balls of color j. Formally, we
assume

{
Xn,j , An,j : n ≥ 1, 1 ≤ j ≤ d

}
random variables on the probability space

(Ω,A, P ) satisfying

(∗∗) Xn,j ∈ {0, 1},
∑d

j=1Xn,j = 1, An,j ≥ 0,

(An,1, . . . , An,d) independent of
(
Ak,j , Xk,j , Xn,j : 1 ≤ k < n, 1 ≤ j ≤ d

)
,

Zn,j = P
(
Xn+1,j = 1 | Gn

)
=

aj +
∑n

k=1Ak,jXk,j∑d
i=1 ai +

∑n
k=1

∑d
i=1Ak,iXk,i

a.s.,

where G0 = {∅,Ω}, Gn = σ
(
Ak,j , Xk,j : 1 ≤ k ≤ n, 1 ≤ j ≤ d

)
.

Note that

Zn+1,j − Zn,j = (1− Zn,j)
An+1,j Xn+1,j

Sn +An+1,j
− Zn,j

∑
i 6=j

An+1,iXn+1,i

Sn +An+1,i

where Sn =
d∑

i=1

ai +
n∑

k=1

d∑
i=1

Ak,iXk,i.

In addition to (∗∗), as in Subsection 4.3, we ask the moment condition

sup
n
E
{( d∑

j=1

An,j

)u}
<∞ for some u > 2. (6)

Further, it is assumed that

EAn,j = EAn,1 for each n ≥ 1 and 1 ≤ j ≤ d, and (7)

m := lim
n
EAn,1 > 0, qj := lim

n
EA2

n,j for each 1 ≤ j ≤ d.

Fix 1 ≤ j ≤ d. Since EAn,i = EAn,1 for all n and i, the same calculation as in
Subsection 4.3 yields∣∣∣E(Zn+1,j | Gn

)
− Zn,j

∣∣∣ ≤ ∑d
i=1EA

2
n+1,i

S2
n

a.s..
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Also, E(S−p
n ) = O(n−p) for all p > 0; see Remark 12. Thus,

E
{
|E
(
Zn+1,j | Gn

)
− Zn,j |p

}
= O(n−2p) for all p > 0. (8)

In particular, Zn,j meets condition (3) so that Zn,j
a.s.−→ Z(j) for some random

variable Z(j). Define

Cn,j =
√
n
( 1
n

n∑
k=1

Xk,j − Zn,j

)
and Dn,j =

√
n
(
Zn,j − Z(j)

)
.

Next result is quite expected at this point.

Corollary 9. Suppose conditions (∗∗), (6), (7) hold and fix 1 ≤ j ≤ d. Then,(
Cn,j , Dn,j

)
−→ N (0, Uj)×N (0, Vj) stably, where

Uj = Vj − Z(j)(1− Z(j)) and Vj =
Z(j)

m2

{
qj (1− Z(j))2 + Z(j)

∑
i 6=j

qi Z(i)

}
.

Moreover, E
(
f(Dn,j) | Gn

) a.s.−→ N (0, Vj)(f) for each f ∈ Cb(R), that is, Dn,j meets
condition (4).

Proof. Just repeat the proof of Corollary 7 with Xn,j in the place of Xn. �

A vectorial version of Corollary 9 can be obtained with slight effort. Let Nd(0,Σ)
denote the d-dimensional Gaussian law with mean vector 0 and covariance matrix
Σ and

Cn =
(
Cn,1, . . . , Cn,d

)
, Dn =

(
Dn,1, . . . , Dn,d

)
.

Corollary 10. Suppose conditions (∗∗), (6), (7) hold. Then,(
Cn, Dn

)
−→ Nd(0,U)×Nd(0,V) stably,

where U, V are the d× d matrices with entries Uj,j = Uj, Vj,j = Vj, and

Ui,j = Vi,j + Z(i)Z(j), Vi,j =
Z(i)Z(j)

m2

{ d∑
h=1

qhZ(h) − qi − qj
}

for i 6= j.

Moreover, E
(
f(Dn) | Gn

) a.s.−→ Nd(0,V)(f) for each f ∈ Cb(Rd).

Proof. Given a linear functional φ : Rd → R, it suffices to see that

φ(Cn) −→ Nd(0,U) ◦ φ−1 stably, and

E
(
g ◦ φ(Dn) | Gn

) a.s.−→ Nd(0,V)(g ◦ φ) for each g ∈ Cb(R).

To this purpose, note that

φ(Cn) =
√
n
{ 1
n

n∑
k=1

φ(Xk,1, . . . , Xk,d) − E
(
φ(Xn+1,1, . . . , Xn+1,d) | Gn

) }
,

φ(Dn) =
√
n
{
E
(
φ(Xn+1,1, . . . , Xn+1,d) | Gn

)
− φ(Z(1), . . . , Z(d))

}
,

and repeat again the proof of Corollary 7 with φ(Xn,1, . . . , Xn,d) in the place of
Xn. �
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A nice consequence of Corollary 10 is that

Wn = Cn + Dn −→ Nd(0,U + V) stably

provided conditions (∗∗)-(6)-(7) hold, where Wn =
(
Wn,1, . . . ,Wn,d

)
and

Wn,j =
√
n
(

1
n

∑n
k=1Xk,j − Z(j)

)
.

APPENDIX

In the notation of Subsection 4.3, let Sn = b+ r +
∑n

k=1

(
BkXk +Rk(1−Xk)

)
.

Lemma 11. Under the assumptions of Corollary 7,

n

Sn
−→ 1

m
a.s. and in Lp for all p > 0.

Proof. Let Yn = BnXn +Rn(1−Xn). By (∗) and EBn+1 = ERn+1,

E
(
Yn+1 | Gn

)
= EBn+1E

(
Xn+1 | Gn

)
+ ERn+1E

(
1−Xn+1 | Gn

)
= ZnEBn+1 + (1− Zn)EBn+1 = EBn+1

a.s.−→ m.

Since m > 0, Lemma 3 implies n
Sn

= 1
Sn/n

a.s.−→ 1
m . To conclude the proof, it suffices

to see that E(S−p
n ) = O(n−p) for all p > 0. Given c > 0, define

S(c)
n =

n∑
k=1

{
Xk

(
Bk ∧ c− E(Bk ∧ c)

)
+ (1−Xk)

(
Rk ∧ c− E(Rk ∧ c)

)}
.

By a classical martingale inequality (see e.g. Lemma 1.5 of [14])

P
(
|S(c)

n | > x
)
≤ 2 exp

(
−x2/2 c2 n

)
for all x > 0.

Since EBn = ERn −→ m and both (Bn), (Rn) are uniformly integrable (as
supn

(
EB2

n + ER2
n

)
<∞), there are c > 0 and an integer n0 such that

mn :=
n∑

k=1

min
{
E(Bk ∧ c), E(Rk ∧ c)

}
> n

m

2
for all n ≥ n0.

Fix one such c > 0 and let l = m/4 > 0. For every p > 0, one can write

E(S−p
n ) = p

∫ ∞
b+r

t−p−1P (Sn < t) dt

≤ p

(b+ r)p+1

∫ b+r+n l

b+r

P (Sn < t) dt + p

∫ ∞
b+r+n l

t−p−1 dt.

Clearly, p
∫∞

b+r+n l
t−p−1 dt = (b + r + n l)−p = O(n−p). Further, for each n ≥ n0

and t < b+ r + n l, since mn > n 2 l one obtains

P (Sn < t) ≤ P
(
S(c)

n < t− b− r −mn

)
≤ P

(
S(c)

n < t− b− r − n 2 l
)

≤ P
(
|S(c)

n | > b+ r + n 2 l − t
)
≤ 2 exp

(
−(b+ r + n 2 l − t)2/2 c2 n

)
.

Hence,
∫ b+r+n l

b+r
P (Sn < t) dt ≤ n 2 l exp

(
−n l2

2 c2

)
for every n ≥ n0, so that

E(S−p
n ) = O(n−p). �
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Remark 12. As in Subsection 4.4, let Sn =
∑d

i=1 ai +
∑n

k=1

∑d
i=1Ak,iXk,i. Under

conditions (∗∗)-(6)-(7), the previous proof still applies to such Sn. Thus, n
Sn
−→ 1

m

a.s. and in Lp for all p > 0.

Proof of Corollary 7. By Lemma 1, it is enough to prove Cn → N (0, U) stably
and Dn meets condition (4). Recall from Subsection 4.3 that

Zn+1 − Zn =
(1− Zn)Xn+1Bn+1 − Zn (1−Xn+1)Rn+1

Sn+1

and E
{
|E(Zn+1 | Gn)− Zn|p

}
= O(n−2p) for all p > 0.

In particular, condition (3) holds and
∑

k

√
k E
∣∣∣E(Zk | Gk−1)− Zk−1

∣∣∣ <∞.

”Dn meets condition (4)”. By (5) and Lemma 11,

E
{
|Zk−1 − Zk|u

}
≤ E

{ (Bk +Rk)u

Su
k−1

}
= E

{
(Bk +Rk)u

}
E(S−u

k−1) = O(k−u).

Thus, E
{

supk

√
k |Zk−1−Zk|

}u ≤
∑

k k
u
2E
{
|Zk−1−Zk|u

}
<∞ as u > 2. In view

of Proposition 4, it remains only to prove that

n
∑
k≥n

(Zk−1 − Zk)2 = n
∑
k≥n

( (1− Zk−1)XkBk

Sk
− Zk−1(1−Xk)Rk

Sk

)2
= n

∑
k≥n

(1− Zk−1)2XkB
2
k

(Sk−1 +Bk)2
+ n

∑
k≥n

Z2
k−1(1−Xk)R2

k

(Sk−1 +Rk)2

converges a.s. to V = Z(1− Z) (1−Z)q+Zs
m2 . It is enough to show that

n
∑
k≥n

(1− Zk−1)2XkB
2
k

(Sk−1 +Bk)2
a.s.−→ Z(1−Z)2

q

m2
and n

∑
k≥n

Z2
k−1(1−Xk)R2

k

(Sk−1 +Rk)2
a.s.−→ Z2(1−Z)

s

m2
.

These two limit relations can be proved by exactly the same argument, and thus we
just prove the first one. Let Un = BnI{Bn≤

√
n}. Since P (Bn >

√
n) ≤ n

−u
2 EBu

n,
condition (5) yields P (Bn 6= Un, i.o.) = 0. Hence, it suffices to show that

n
∑
k≥n

(1− Zk−1)2XkU
2
k

(Sk−1 + Uk)2
a.s.−→ Z(1− Z)2

q

m2
. (9)

Let Yn = n2 (1−Zn−1)
2XnU2

n

(Sn−1+Un)2 . Since (B2
n) is uniformly integrable, EU2

n −→ q. Fur-

thermore, Sn

n

a.s.−→ m and Zn
a.s.−→ Z. Thus,

E
(
Yn+1 | Gn

)
≤ (1− Zn)2(n+ 1)2E

(Xn+1U
2
n+1

S2
n

| Gn

)
= Zn(1− Zn)2

(n+ 1)2

S2
n

EU2
n+1

a.s.−→ Z(1− Z)2
q

m2
and

E
(
Yn+1 | Gn

)
≥ (1− Zn)2(n+ 1)2E

( Xn+1U
2
n+1

(Sn +
√
n+ 1)2

| Gn

)
= Zn(1− Zn)2

(n+ 1)2

(Sn +
√
n+ 1)2

EU2
n+1

a.s.−→ Z(1− Z)2
q

m2
.
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By Lemma 3, for getting relation (9), it suffices that
∑

n
EY 2

n

n2 <∞. Since

EU4
n

n2
≤
E
{
B2

nI{B2
n≤
√

n}
}

n
3
2

+
E
{
B2

nI{B2
n>
√

n}
}

n
≤ EB2

n

n
3
2

+
EBu

n

n1+ u−2
4

,

condition (5) implies
∑

n
EU4

n

n2 <∞. By Lemma 11, E(S−4
n−1) = O(n−4). Then,∑

n

EY 2
n

n2
≤
∑

n

n2E
{ U4

n

S4
n−1

}
=
∑

n

n2E(S−4
n−1)EU4

n ≤ c
∑

n

EU4
n

n2
<∞

for some constant c. Hence, condition (9) holds.

”Cn → N (0, U) stably”. By Theorem 2, it suffices to check conditions (a) and
(b) with U = Z(1−Z)

( (1−Z)q+Zs
m2 −1

)
. As to (a), since E

{
|Zk−1−Zk|u

}
= O(k−u),(

n−
1
2 E
{

max
1≤k≤n

k |Zk−1 − Zk|
} )u ≤ n−u

2

n∑
k=1

kuE
{
|Zk−1 − Zk|u

}
−→ 0.

We next prove condition (b). After some algebra, one obtains

E
{

(Xn − Zn−1)(Zn−1 − Zn) | Gn−1

}
= −Zn−1(1− Zn−1)E

{ Bn

Sn−1 +Bn
| Gn−1

}
+

+Z2
n−1(1− Zn−1)E

{ Bn

Sn−1 +Bn
− Rn

Sn−1 +Rn
| Gn−1

}
a.s..

Arguing as in the first part of this proof (”Dn meets condition (4)”),

nE
{ Bn

Sn−1 +Bn
| Gn−1

} a.s.−→ 1 and nE
{ Rn

Sn−1 +Rn
| Gn−1

} a.s.−→ 1.

Thus, nE
{

(Xn − Zn−1)(Zn−1 − Zn) | Gn−1

} a.s.−→ −Z(1− Z). Further,

E
{(
Xn − Zn−1)2 | Gn−1

}
= Zn−1 − Z2

n−1
a.s.−→ Z(1− Z).

Thus, Lemma 3 implies

1
n

n∑
k=1

(Xk − Zk−1)2 +
2
n

n∑
k=1

k (Xk − Zk−1) (Zk−1 − Zk) a.s.−→ −Z(1− Z).

Finally, write 1
n

∑n
k=1 k

2(Zk−1−Zk)2 = 1
n

∑n
k=1 k

2
{ (1−Zk−1)

2XkB2
k

(Sk−1+Bk)2 +Z2
k−1(1−Xk)R2

k

(Sk−1+Rk)2

}
.

By Lemma 3 and the same truncation technique used in the first part of this proof,
1
n

∑n
k=1 k

2(Zk−1 − Zk)2 a.s.−→ V . Squaring,

1
n

n∑
k=1

{
Xk − Zk−1 + k(Zk−1 − Zk)

}2 a.s.−→ V − Z(1− Z) = U,

that is, condition (b) holds. This concludes the proof. �
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