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Abstract. Let (S, d) be a metric space, G a σ-field on S and (µn : n ≥ 0)

a sequence of probabilities on G. Suppose G countably generated, the map
(x, y) 7→ d(x, y) measurable with respect to G ⊗ G, and µn perfect for n > 0.

Say that (µn) has a Skorohod representation if, on some probability space,

there are random variables Xn such that

Xn ∼ µn for all n ≥ 0 and d(Xn, X0)
P−→ 0.

It is shown that (µn) has a Skorohod representation if and only if

lim
n

sup
f
|µn(f)− µ0(f)| = 0,

where sup is over those f : S → [−1, 1] which are G-universally measurable

and satisfy |f(x)−f(y)| ≤ 1∧d(x, y). An useful consequence is that Skorohod

representations are preserved under mixtures. The result applies even if µ0
fails to be d-separable. Some possible applications are given as well.

1. Motivations and results

Throughout, (S, d) is a metric space, G a σ-field of subsets of S and (µn : n ≥ 0)
a sequence of probability measures on G. For each probability µ on G, we write
µ(f) =

∫
f dµ provided f ∈ L1(µ) and we say that µ is d-separable if µ(B) = 1 for

some d-separable B ∈ G. Also, we let B denote the Borel σ-field on S under d.
If

G = B, µn → µ0 weakly, µ0 is d-separable,

there are S-valued random variables Xn, defined on some probability space, such
that Xn ∼ µn for all n ≥ 0 and Xn → X0 almost uniformly. This is Skorohod
representation theorem (SRT) as it appears after Skorohod [12], Dudley [5] and
Wichura [14]. See page 130 of [6] and page 77 of [13] for some historical notes.

Versions of SRT which allow for G ⊂ B are also available; see Theorem 1.10.3 of
[13]. However, separability of µ0 is still fundamental. Furthermore, unlike µn for
n > 0, the limit law µ0 must be defined on all of B.

Thus SRT does not apply, neither indirectly, when µ0 is defined on some G 6= B
and is not d-separable. This precludes some potentially interesting applications.

For instance, G could be the Borel σ-field under some distance d∗ on S weaker
than d, but one aims to realize the µn by random variables Xn which converge
under the stronger distance d. To fix ideas, S could be some collection of real
bounded functions, G the σ-field generated by the canonical projections and d the
uniform distance. Then, in some meaningful situations, G agrees with the Borel
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σ-field under a distance d∗ on S weaker than d. Yet, one can try to realize the
µn by random variables Xn which converge uniformly (and not only under d∗). In
such situations, SRT and its versions do not apply unless µ0 is d-separable.

The following two remarks are also in order.
Suppose first G = B. Existence of non d-separable laws on B can not be excluded

a priori, unless some assumption beyond ZFC (the usual axioms of set theory) is
made; see Section 1 of [2]. And, if non d-separable laws on B exist, d-separability of
µ0 cannot be dropped from SRT, even if almost uniform convergence is weakened
into convergence in probability. Indeed, it may be that µn → µ0 weakly but no
random variables Xn satisfy Xn ∼ µn for all n ≥ 0 and Xn → X0 in probability.
We refer to Example 4.1 of [2] for details.

More importantly, if G 6= B, non d-separable laws on G are quite usual. There
are even laws µ on G such that µ(B) = 0 for all d-separable B ∈ B. A popular
example is

S = D[0, 1], d = uniform distance, G = Borel σ-field under Skorohod topology,

where D[0, 1] is the set of real cadlag functions on [0, 1]. To be concise, this par-
ticular case is called the motivating example in the sequel. In this framework, G
includes all d-separable members of B. Further, the probability distribution µ of
a cadlag process with jumps at random time points is typically non d-separable.
Suppose in fact that one of the jump times of such process, say τ , has a diffuse
distribution. If B ∈ B is d-separable, then

JB = {t ∈ (0, 1] : ∆x(t) 6= 0 for some x ∈ B}

is countable. Since τ has a diffuse distribution, it follows that

µ(B) ≤ Prob(τ ∈ JB) = 0.

This paper provides a version of SRT which applies to G 6= B and does not
request d-separability of µ0. We begin with a definition.

The sequence (µn) is said to admit a Skorohod representation if

On some probability space (Ω,A, P ), there are measurable maps
Xn : (Ω,A)→ (S,G) such that Xn ∼ µn for all n ≥ 0 and

P ∗
(
d(Xn, X0) > ε

)
−→ 0, for all ε > 0,

where P ∗ denotes the P -outer measure.

Note that almost uniform convergence has been weakened into convergence in
(outer) probability. In fact, it may be that (µn) admits a Skorohod representation
and yet no random variables Yn satisfy Yn ∼ µn for all n ≥ 0 and Yn → Y0 on a set
of probability 1. See Example 7 of [3].

Note also that, if the map d : S×S → R is measurable with respect to G⊗G, con-

vergence in outer probability reduces to d(Xn, X0)
P−→ 0. In turn, d(Xn, X0)

P−→ 0
if and only if

each subsequence (nj) contains a further subsequence (njk)(1)

such that Xnjk
−→ X0 almost uniformly.

Thus, in a sense, Skorohod representations are in the spirit of [8]. Furthermore, as
noted in [8], condition (1) is exactly what is needed in most applications.
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Let L denote the set of functions f : S → R satisfying

−1 ≤ f ≤ 1, σ(f) ⊂ Ĝ, |f(x)− f(y)| ≤ 1 ∧ d(x, y) for all x, y ∈ S,

where Ĝ is the universal completion of G. If Xn ∼ µn for each n ≥ 0, with the Xn

all defined on the probability space (Ω,A, P ), then

|µn(f)− µ0(f)| = |EP f(Xn)− EP f(X0)| ≤ EP |f(Xn)− f(X0)|
≤ ε+ 2P ∗

(
d(Xn, X0) > ε

)
for all f ∈ L and ε > 0.

Thus, a necessary condition for (µn) to admit a Skorohod representation is

lim
n

sup
f∈L
|µn(f)− µ0(f)| = 0.(2)

Furthermore, condition (2) is equivalent to µn → µ0 weakly if G = B and µ0 is
d-separable. So, when G = B, it is tempting to conjecture that: (µn) admits a
Skorohod representation if and only if condition (2) holds. If true, this conjecture
would be an improvement of SRT, not requesting separability of µ0. In particular,
the conjecture is actually true if d is 0-1 distance; see Proposition 3.1 of [2] and
Theorem 2.1 of [11].

We do not know whether such conjecture holds in general, since we were able
to prove the equivalence between Skorohod representation and condition (2) only
under some conditions on G, d and µn. Our main results are in fact the following.

Theorem 1. Suppose µn is perfect for all n > 0, G is countably generated, and
d : S × S → R is measurable with respect to G ⊗ G. Then, (µn : n ≥ 0) admits a
Skorohod representation if and only if condition (2) holds.

Under the assumptions of Theorem 1, G is the Borel σ-field for some separable
distance d∗ on S. Condition (2) can be weakened into

lim
n

sup
f∈M

|µn(f)− µ0(f)| = 0, where M = {f ∈ L : σ(f) ⊂ G},(3)

provided d : S × S → R is lower semicontinuous in the d∗-topology.

Theorem 2. Suppose

(i) µn is perfect for all n > 0;
(ii) G is the Borel σ-field under a distance d∗ on S such that (S, d∗) is separable;

(iii) d : S × S → R is lower semicontinuous when S is given the d∗-topology.

Then, (µn : n ≥ 0) admits a Skorohod representation if and only if condition (3)
holds.

One consequence of Theorem 2 is that Skorohod representations are preserved
under mixtures. Since this fact is useful in real problems, we discuss it in some
detail. Let (X , E , Q) be a probability space, and for every n ≥ 0, let

{αn(x) : x ∈ X}

be a measurable collection of probability measures on G. Measurability means that
x 7→ αn(x)(A) is E-measurable for fixed A ∈ G.

Corollary 3. Assume conditions (i)-(ii)-(iii) and

µn(A) =

∫
αn(x)(A)Q(dx) for all n ≥ 0 and A ∈ G.
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Then, (µn : n ≥ 0) has a Skorohod representation provided (αn(x) : n ≥ 0) has a
Skorohod representation for Q-almost all x ∈ X . In particular, (µn : n ≥ 0) admits
a Skorohod representation whenever G ⊂ B and, for Q-almost all x ∈ X ,

α0(x) is d-separable and αn(x)(f) −→ α0(x)(f) for each f ∈M.

Various examples concerning Theorems 1-2 and Corollary 3 are given in Section
3. Here, we close this section by some remarks.

(j) Theorems 1-2 unify some known results; see Examples 6 and 7.
(jj) Theorems 1-2 are proved by joining some ideas on disintegrations and a

duality result from optimal transportation theory; see [2] and [10].
(jjj) Each probability on G is perfect if G is the Borel σ-field under some distance

d∗ such that (S, d∗) is a universally measurable subset of a Polish space.
This happens in the motivating example.

(jv) Even if perfect for n > 0, the µn may be far from being d-separable. In
the motivating example, each probability µ on G is perfect and yet various
interesting µ satisfy µ(B) = 0 for each d-separable B ∈ B.

(v) Theorems 1-2 are essentially motivated from the application mentioned at
the beginning, where G is the Borel σ-field under a distance d∗ weaker than
d. This actually happens in the motivating example and in most examples
of Section 3.

(vj) By Theorem 1, to prove existence of Skorohod representations, one can
“argue by subsequences”. Precisely, under the conditions of Theorem 1,
(µn : n ≥ 0) has a Skorohod representation if and only if each subsequence
(µ0, µnj

: j ≥ 1) contains a further subsequence (µ0, µnjk
: k ≥ 1) which

admits a Skorohod representation.
(vjj) In real problems, unless µ0 is d-separable, checking conditions (2)-(3) is

usually hard. However, conditions (2)-(3) are necessary for a Skorohod
representation (so that they can not be eluded). Furthermore, in some
cases, conditions (2)-(3) may be verified with small effort. One such case
is Corollary 3. Other cases are exchangeable empirical processes and pure
jump processes, as defined in Examples 9-10 of [3]. One more situation,
where SRT does not work but conditions (2)-(3) are easily checked, is dis-
played in forthcoming Example 11.

2. Proofs

2.1. Preliminaries. Let (X , E) and (Y,F) be measurable spaces.
In the sequel, P(E) denotes the set of probability measures on E . The universal

completion of E is

Ê =
⋂

µ∈P(E)

Eµ

where Eµ is the completion of E with respect to µ.
Let H ⊂ X ×Y and let Π : X ×Y → X be the canonical projection onto X . By

the projection theorem, if Y is a Borel subset of a Polish space, F the Borel σ-field
and H ∈ E ⊗ F , then

Π(H) = {x ∈ X : (x, y) ∈ H for some y ∈ Y} ∈ Ê ;

see e.g. Theorem A1.4, page 562, of [9]. Another useful fact is the following.
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Lemma 4. Let X and Y be metric spaces. If Y is compact and H ⊂ X ×Y closed,
then Π(H) is a countable intersection of open sets (i.e., Π(H) is a Gδ-set).

Proof. Let Hn = {(x, y) : ρ
[
(x, y), H

]
< 1/n}, where ρ is any distance on X × Y

inducing the product topology. Since H is closed, H = ∩nHn. Since Hn is open,
Π(Hn) is still open. Thus, it suffices to prove Π(H) = ∩nΠ(Hn). Trivially, Π(H) ⊂
∩nΠ(Hn). Fix x ∈ ∩nΠ(Hn). For each n, take yn ∈ Y such that (x, yn) ∈ Hn.
Since Y is compact, ynj

→ y for some y ∈ Y and subsequence (nj). Hence,

ρ
[
(x, y), H

]
= lim

j
ρ
[
(x, ynj

), H
]
≤ lim inf

j

1

nj
= 0.

Since H is closed, (x, y) ∈ H. Hence, x ∈ Π(H) and Π(H) = ∩nΠ(Hn). �

A probability µ ∈ P(E) is perfect if, for each E-measurable function f : X → R,
there is a Borel subset B of R such that B ⊂ f(X ) and µ(f ∈ B) = 1. If X is
separable metric and E the Borel σ-field, then µ is perfect if and only if it is tight.
In particular, every µ ∈ P(E) is perfect if X is a universally measurable subset of
a Polish space and E the Borel σ-field.

Finally, in this paper, a disintegration is meant as follows. Let γ ∈ P(E ⊗ F)
and let µ(·) = γ(· × Y) and ν(·) = γ(X × ·) be the marginals of γ. Then, γ is said
to be disintegrable if there is a collection {α(x) : x ∈ X} such that:

− α(x) ∈ P(F) for each x ∈ X ;
− x 7→ α(x)(B) is E-measurable for each B ∈ F ;
− γ(A×B) =

∫
A
α(x)(B)µ(dx) for all A ∈ E and B ∈ F .

The collection {α(x) : x ∈ X} is called a disintegration for γ.
A disintegration can fail to exist. However, for γ to admit a disintegration, it

suffices that F is countably generated and ν perfect.

2.2. Proof of Theorem 1. The “only if” part has been proved in Section 1.
Suppose condition (2) holds. For µ, ν ∈ P(G), define

W0(µ, ν) = inf
γ∈D(µ,ν)

Eγ(1 ∧ d) where

D(µ, ν) = {γ ∈ P(G ⊗ G) : γ disintegrable, γ(· × S) = µ(·), γ(S × ·) = ν(·)}.

Disintegrations have been defined in Subsection 2.1. Note that D(µ, ν) 6= ∅ as
D(µ, ν) includes at least the product law µ× ν.

The proof of the “if” part can be split into two steps.

Step 1. Arguing as in Theorem 4.2 of [2], it suffices to show W0(µ0, µn) → 0.
Define in fact (Ω,A) = (S∞,G∞) and Xn : S∞ → S the n-th canonical projection,
n ≥ 0. For each n > 0, take γn ∈ D(µ0, µn) such that Eγn(1∧d) < 1

n +W0(µ0, µn).
Fix also a disintegration {αn(x) : x ∈ S} for γn and define

βn(x0, x1, . . . , xn−1)(B) = αn(x0)(B)

for all (x0, x1, . . . , xn−1) ∈ Sn and B ∈ G. By Ionescu-Tulcea theorem, there is a
unique probability P on A = G∞ such that X0 ∼ µ0 and βn is a version of the
conditional distribution of Xn given (X0, X1, . . . , Xn−1) for all n > 0. Then,

P
(
X0 ∈ A, Xn ∈ B

)
=

∫
A

αn(x)(B)µ0(dx) = γn(A×B)
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for all n > 0 and A, B ∈ G. In particular, P (Xn ∈ ·) = µn(·) for all n ≥ 0 and

EP
{

1 ∧ d(X0, Xn)
}

= Eγn(1 ∧ d) <
1

n
+W0(µ0, µn).

Step 2. If µ, ν ∈ P(G) and ν is perfect, then

W0(µ, ν) = sup
f∈L
|µ(f)− ν(f)|.(4)

Under (4), W0(µ0, µn) → 0 because of condition (2) and µn perfect for n > 0.
Thus, the proof is concluded by Step 1.

To get condition (4), it is enough to prove W0(µ, ν) ≤ supf∈L |µ(f)−ν(f)|. (The
opposite inequality is in fact trivial). Define Γ(µ, ν) to be the collection of those
γ ∈ P(G ⊗ G) satisfying γ(· × S) = µ(·) and γ(S × ·) = ν(·). By a duality result in
[10], since ν is perfect and 1 ∧ d bounded and G ⊗ G-measurable, one obtains

inf
γ∈Γ(µ,ν)

Eγ(1 ∧ d) = sup
(g,h)

{
µ(g) + ν(h)

}
where sup is over those pairs (g, h) of real G-measurable functions on S such that

g ∈ L1(µ), h ∈ L1(ν), g(x) + h(y) ≤ 1 ∧ d(x, y) for all x, y ∈ S.(5)

Since G is countably generated and ν perfect, each γ ∈ Γ(µ, ν) is disintegrable.
Thus, Γ(µ, ν) = D(µ, ν) and W0(µ, ν) = infγ∈Γ(µ,ν)Eγ(1 ∧ d). Given ε > 0, take a
pair (g, h) satisfying condition (5) as well as W0(µ, ν) < ε+ µ(g) + ν(h).

Since {(x, x) : x ∈ S} = {d = 0} ∈ G ⊗ G, then G includes the singletons. As
G is also countably generated, G is the Borel σ-field on S under some distance d∗

such that (S, d∗) is separable; see [4]. Then ν is tight, with respect to d∗, for it is
perfect. By tightness, ν(A) = 1 for some σ-compact set A ∈ G. For (x, a) ∈ S ×A,
define

u(x, a) = 1 ∧ d(x, a)− h(a) and φ(x) = inf
a∈A

u(x, a).

Since A is σ-compact, A is homeomorphic to a Borel subset of a Polish space.
(In fact, A is easily seen to be homeomorphic to a σ-compact subset of [0, 1]∞).
Let b ∈ R and GA = {A ∩B : B ∈ G}. Since {u < b} ∈ G ⊗ GA, one obtains

{φ < b} = {x ∈ S : u(x, a) < b for some a ∈ A} ∈ Ĝ
by the projection theorem applied with (X , E) = (S,G), (Y,F) = (A,GA) and

H = {u < b}. Thus, φ is Ĝ-measurable. Furthermore,

φ(x)− φ(y) = inf
a∈A

u(x, a) + sup
a∈A

{
−u(y, a)

}
≤ sup
a∈A

{
1 ∧ d(x, a)− 1 ∧ d(y, a)

}
≤ 1 ∧ d(x, y) for all x, y ∈ S.

Fix x0 ∈ S and define f = φ−φ(x0). Since |f(x)| = |φ(x)−φ(x0)| ≤ 1∧d(x, x0) ≤ 1
for all x ∈ S, then f ∈ L. On noting that

g(x) ≤ u(x, a) for (x, a) ∈ S ×A and φ(x) + h(x) ≤ 1 ∧ d(x, x) = 0 for x ∈ A,
one also obtains g−φ(x0) ≤ f on all of S and h+φ(x0) ≤ −f on A. Since ν(A) = 1,

W0(µ, ν)− ε < µ(g) + ν(h) = µ
{
g − φ(x0)

}
+ ν
{
h+ φ(x0)

}
≤ µ(f)− ν(f) ≤ sup

ϕ∈L
|µ(ϕ)− ν(ϕ)|.

This concludes the proof.
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2.3. Proof of Theorem 2. Assume conditions (i)-(ii)-(iii). Arguing as in Subsec-
tion 2.2 (and using the same notation) it suffices to prove that φ is G-measurable.

Since A is σ-compact (under d∗),

φ(x) = inf
n

inf
a∈An

u(x, a)

where theAn are compacts such thatA = ∪nAn. Hence, for proving G-measurability
of φ, it can be assumed A compact. On noting that

ν(h) = sup{ ν(k) : k ≤ h, k upper semicontinuous},

the function h can be assumed upper semicontinuous. (Otherwise, just replace h
with an upper semicontinuous k such that k ≤ h and ν(h − k) is small). In this
case, u is lower semicontinuous, since both 1∧ d and −h are lower semicontinuous.

Since A is compact and u lower semicontinuous, φ can be written as
φ(x) = mina∈A u(x, a) and this implies

{φ ≤ b} = {x ∈ S : u(x, a) ≤ b for some a ∈ A} for all b ∈ R.

Therefore, {φ ≤ b} ∈ G because of Lemma 4 applied with X = S, Y = A and
H = {u ≤ b} which is closed for u is lower semicontinuous. This concludes the
proof.

2.4. Proof of Corollary 3. Fix a countable subset M∗ ⊂M satisfying

sup
f∈M∗

|µn(f)− µ0(f)| = sup
f∈M

|µn(f)− µ0(f)| for all n > 0.

The first part of Corollary 3 follows from Theorem 2 and

sup
f∈M

|µn(f)− µ0(f)| ≤
∫

sup
f∈M∗

|αn(x)(f)− α0(x)(f)|Q(dx) −→ 0.

As to the second part, suppose G ⊂ B and fix a sequence (νn : n ≥ 0) of probabilities
on G. It suffices to show that (νn) has a Skorohod representation whenever

(6) ν0 is d-separable and νn(f)→ ν0(f) for each f ∈M.

Let U be the σ-field on S generated by the d-balls. For all r > 0 and x ∈ S, since
{d < r} ∈ G ⊗ G then {y : d(x, y) < r} ∈ G. Thus, U ⊂ G. Next, assume condition
(6) and take a d-separable set A ∈ G with ν0(A) = 1. Since A is d-separable,

A ∩B ∈ U ⊂ G for all B ∈ B.

Define λ0(B) = ν0(A ∩B) for all B ∈ B and

(Ω0,A0, P0) = (S,B, λ0), (Ωn,An, Pn) = (S,G, νn) for each n > 0,

In = identity map on S for each n ≥ 0.

In view of (6), since U ⊂ G and I0 has a d-separable law, In → I0 in distribution
(under d) according to Hoffmann-Jørgensen’s definition; see Theorem 1.7.2, page
45, of [13]. Thus, since G ⊂ B, a Skorohod representation for (νn) follows from
Theorem 1.10.3, page 58, of [13]. This concludes the proof.

Remark 5. Let N be the collection of functions f : S → R of the form

f(x) = min
1≤i≤n

{
1 ∧ d(x,Ai)− bi

}
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for all n ≥ 1, b1, . . . , bn ∈ R and A1, . . . , An ∈ G. Theorems 1 and 2 are still true if
conditions (2) and (3) are replaced by

lim
n

sup
f∈L∩N

|µn(f)− µ0(f)| = 0 and lim
n

sup
f∈M∩N

|µn(f)− µ0(f)| = 0,

respectively. In fact, in the notation of the above proofs, it is not hard to see that
h can be taken to be a simple function. In this case, writing down φ explicitly, one
verifies that f = φ− φ(x0) ∈ N .

3. Examples

As remarked in Section 1, Theorems 1-2 unify some known results and yield new
information as well. We illustrate these facts by a few examples.

Example 6. Consider the motivating example, that is, S = D[0, 1], d the uniform
distance and G the Borel σ-field under Skorohod distance d∗. Given x, y ∈ D[0, 1],
we recall that d∗(x, y) is the infimum of those ε > 0 such that

sup
t
|x(t)− y ◦ λ(t)| ≤ ε and sup

s6=t

∣∣∣ log
λ(s)− λ(t)

s− t

∣∣∣ ≤ ε
for some strictly increasing homeomorphism λ : [0, 1] → [0, 1]. Since D[0, 1] is
Polish under d∗, conditions (i)-(ii) are trivially true. We now prove that (iii) holds
as well. Suppose d∗(xn, x) + d∗(yn, y) → 0 where xn, x, yn, y ∈ D[0, 1]. Define
I = {t ∈ [0, 1] : x and y are both continuous at t}. Given ε > 0, one obtains

d(x, y) = sup
t
|x(t)− y(t)| < ε+ |x(t0)− y(t0)| for some t0 ∈ I ∪ {1}.

Since x(t0) = limn xn(t0) and y(t0) = limn yn(t0), it follows that d(x, y) ≤ supn d(xn, yn).
Hence, if D[0, 1] is equipped with the d∗-topology, {d ≤ b} is a closed subset of
D[0, 1]×D[0, 1] for all b ∈ R, that is, d is lower semicontinuous. Thus, conditions
(i)-(ii)-(iii) are satisfied, and Theorem 2 implies the main result of [3].

Example 7. Suppose G countably generated, {(x, x) : x ∈ S} ∈ G ⊗ G and µn
perfect for n > 0. By Theorem 1, applied with d the 0-1 distance, µn → µ0 in
total variation norm if and only if, on some probability space (Ω,A, P ), there are
measurable maps Xn : (Ω,A)→ (S,G) satisfying

P (Xn 6= X0) −→ 0 and Xn ∼ µn for all n ≥ 0.

As remarked in Section 1, however, such statement holds without any assumptions
on G or µn (possibly, replacing P (Xn 6= X0) with P ∗(Xn 6= X0)). See Proposition
3.1 of [2] and Theorem 2.1 of [11].

Example 8. Suppose G is the Borel σ-field under a distance d∗ such that (S, d∗)
is a universally measurable subset of a Polish space. Take a collection F of real
functions on S such that

− supf∈F |f(x)| <∞ for all x ∈ S;
− If x, y ∈ S and x 6= y, then f(x) 6= f(y) for some f ∈ F .

Then,

d(x, y) = sup
f∈F
|f(x)− f(y)|
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is a distance on S. If F is countable and each f ∈ F is G-measurable, then d is
G ⊗ G-measurable. In this case, by Theorem 1, condition (2) is equivalent to

sup
f∈F
|f(Xn)− f(X0)| P−→ 0

for some random variables Xn such that Xn ∼ µn for all n ≥ 0. In view of Theorem
2, condition (2) can be replaced by condition (3) whenever each f ∈ F is continuous
in the d∗-topology (even if F is uncountable). In this case, in fact, d : S × S → R
is lower semicontinuous in the d∗-topology.

Example 9. In Example 8, one starts with a nice σ-field G and then builds a
suitable distance d. Now, instead, we start with a given distance d (similar to that
of Example 8) and we define G basing on d.

Suppose d(x, y) = supf∈F |f(x)− f(y)| for some countable class F of real func-
tions on S. Fix an enumeration F = {f1, f2, . . .} and define

ψ(x) =
(
f1(x), f2(x), . . .

)
for x ∈ S and G = σ(ψ).

Then, ψ : S → R∞ is injective and d is measurable with respect to G ⊗ G. Also,
(S,G) is isomorphic to (ψ(S),Ψ) where Ψ is the Borel σ-field on ψ(S). Thus,
Theorem 1 applies whenever ψ(S) is a universally measurable subset of R∞.

A remarkable particular case is the following. Let S be a class of real bounded
functions on a set T and let d be uniform distance. Suppose that, for some countable
subset T0 ⊂ T , one obtains

for each t ∈ T, there is a sequence (tn) ⊂ T0

such that x(t) = lim
n
x(tn) for all x ∈ S.

Then, d can be written as d(x, y) = supt∈T0
|x(t) − y(t)|. Given an enumeration

T0 = {t1, t2, . . .}, define ψ(x) =
(
x(t1), x(t2), . . .

)
and G = σ(ψ). It is not hard to

check that G coincides with the σ-field on S generated by the canonical projections
x 7→ x(t), t ∈ T . Thus, Theorem 1 applies to such G and d whenever ψ(S) is a
universally measurable subset of R∞.

Example 10. The following conjecture has been stated in Section 1. If G = B
(and without any assumptions on d and µn) condition (2) implies a Skorohod
representation. As already noted, we do not know whether this is true. However,
suppose that condition (2) holds and d is measurable with respect to B⊗B. Then,
a Skorohod representation is available on a suitable sub-σ-field B0 ⊂ B provided the
µn are perfect on such B0. In fact, let I denote the class of intervals with rational
endpoints. Since d is B ⊗ B-measurable, for each I ∈ I there are AIn, B

I
n ∈ B,

n ≥ 1, such that {d ∈ I} ∈ σ
(
AIn ×BIn : n ≥ 1

)
. Define

B0 = σ
(
AIn, B

I
n : n ≥ 1, I ∈ I

)
.

Then, d is B0⊗B0-measurable, B0 is countably generated and B0 ⊂ B. By Theorem
1, the sequence (µn|B0) admits a Skorohod representation whenever µn|B0 is perfect
for each n > 0.

Unless µ0 is d-separable, checking conditions (2)-(3) looks very hard. This is not
always true, however. Our last example exhibits a situation where SRT does not
work, and yet conditions (2)-(3) are easily verified. Other examples of this type are
exchangeable empirical processes and pure jump processes, as defined in Examples
9-10 of [3].
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Example 11. Given p > 1, let S be the space of real continuous functions x on
[0, 1] such that

‖x‖ :=
{
|x(0)|p + sup

∑
i

|x(ti)− x(ti−1)|p
}1/p

<∞

where sup is over all finite partitions 0 = t0 < t1 < . . . < tm = 1. Define

d(x, y) = ‖x− y‖, d∗(x, y) = sup
t
|x(t)− y(t)|,

and take G to be the Borel σ-field on S under d∗. Since S is a Borel subset of the
Polish space (C[0, 1], d∗), each law on G is perfect. Further, d : S × S → R is lower
semicontinuous when S is given the d∗-topology.

In [1] and [7], some attention is paid to those processes Xn of the type

Xn(t) =
∑
k

Tn,kNk xk(t), n ≥ 0, t ∈ [0, 1].

Here, xk ∈ S while (Nk, Tn,k : n ≥ 0, k ≥ 1) are real random variables, defined on
some probability space (X , E , Q), satisfying

(Nk) independent of (Tn,k) and (Nk) i.i.d. with N1 ∼ N (0, 1).

Usually, Xn has paths in S a.s. but the probability measure

µn(A) = Q(Xn ∈ A), A ∈ G,

is not d-separable. For instance, this happens when

0 < lim inf
k
|Tn,k| ≤ lim sup

k
|Tn,k| <∞ a.s. and

xk(t) = q−k/p
{

log (k + 1)
}−1/2

sin (qkπ t)

where q = 41+[p/(p−1)]. See Theorem 4.1 and Lemma 4.4 of [7].
We aim to a Skorohod representation for (µn : n ≥ 0). Since µ0 fails to be

d-separable, SRT and its versions do not apply. Instead, under some conditions,
Corollary 3 works. To fix ideas, suppose

Tn,k = Un φk(Vn, C)

where φk : R2 → R and Un, Vn, C are real random variables such that

(a) (Un) and (Vn) are conditionally independent given C;

(b) E
{
f(Un) | C

} Q−→ E
{
f(U0) | C

}
for each bounded continuous f : R→ R;

(c) Q
(
(Vn, C) ∈ ·

)
converges to Q

(
(V0, C) ∈ ·

)
in total variation norm.

We next prove the existence of a Skorohod representation for (µn : n ≥ 0). To
this end, as noted in remark (vj) of Section 1, one can argue by subsequences.
Moreover, condition (c) can be shown to be equivalent to

sup
A

∣∣∣Q(Vn ∈ A | C)−Q(V0 ∈ A | C
)∣∣∣ Q−→ 0

where sup is over all Borel sets A ⊂ R. Thus (up to selecting a suitable subsequence)
conditions (b) and (c) can be strengthened into

(b*) E
{
f(Un) | C

} a.s.−→ E
{
f(U0) | C

}
for each bounded continuous f : R→ R;

(c*) supA

∣∣∣Q(Vn ∈ A | C)−Q(V0 ∈ A | C
)∣∣∣ a.s.−→ 0.
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Let Pc denote a version of the conditional distribution of the array

(Nk, Un, Vn, C : n ≥ 0, k ≥ 1)

given C = c. Because of Corollary 3, it suffices to prove that
(
Pc(Xn ∈ ·) : n ≥ 0

)
has a Skorohod representation for almost all c ∈ R. Fix c ∈ R. By (a), the sequences
(Nk), (Un) and (Vn) can be assumed to be independent under Pc. By (b*) and (c*),
up to a change of the underlying probability space, (Un) and (Vn) can be realized
in the most convenient way. Indeed, by applying SRT to (Un) and Theorem 2.1 of
[11] to (Vn), it can be assumed that

Un
Pc−a.s.−→ U0 and Pc(Vn 6= V0) −→ 0.

But in this case, one trivially obtains Xn
Pc−→ X0, for

1 ∧ ‖Xn −X0‖ ≤ I{Vn 6=V0} + |Un − U0| ‖
∑
k

φk(V0, C)Nk xk‖.

Thus,
(
Pc(Xn ∈ ·) : n ≥ 0

)
admits a Skorohod representation.

The conditions of Example 11 are not so strong as they appear. Actually, they

do not imply even d∗(Xn, X0)
a.s.−→ 0 for the original processes Xn (those defined

on (X , E , Q)). In addition, by slightly modifying Example 11, S could be taken to
be the space of α-Holder continuous functions, α ∈ (0, 1), and

d(x, y) = |x(0)− y(0)|+ sup
t 6=s

|x(t)− y(t)− x(s) + y(s)|
|t− s|α

.
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