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Abstract. Let S be a metric space, G a σ-field of subsets of S and (µn : n ≥ 0)

a sequence of probability measures on G. Say that (µn) admits a Skorokhod
representation if, on some probability space, there are random variables Xn

with values in (S,G) such that

Xn ∼ µn for each n ≥ 0 and Xn → X0 in probability.

We focus on results of the following type: (µn) has a Skorokhod representation

if and only if J(µn, µ0) → 0, where J is a suitable distance (or discrepancy
index) between probabilities on G. One advantage of such results is that, unlike

the usual Skorokhod representation theorem, they apply even if the limit law

µ0 is not separable. The index J is taken to be the bounded Lipschitz metric
and the Wasserstein distance.

1. Introduction

Throughout, (S, d) is a metric space, G a σ-field of subsets of S and (µn : n ≥ 0) a
sequence of probability measures on G. A probability µ on G is said to be separable
if there is a separable set A ∈ G such that µ(A) = 1. We let R denote the ball
σ-field on S and B the Borel σ-field on S. (Thus, R and B are generated by the
balls and by the open sets, respectively). Also, M is the class of those functions
f : S → R satisfying

−1 ≤ f ≤ 1, f is G-measurable, |f(x)− f(y)| ≤ d(x, y) for all x, y ∈ S.
Slightly generalizing the usual statement, the Skorokhod representation theorem

(SRT) can be stated as follows.

Theorem 1. (SRT). Suppose R ⊂ G ⊂ B. If

µ0 is separable and µn(f)→ µ0(f) for each f ∈M,

there are a probability space (Ω,A, P ) and measurable maps Xn : (Ω,A) → (S,G)
such that Xn ∼ µn for all n ≥ 0 and Xn → X0 almost uniformly.

The usual version of SRT is the special case of Theorem 1 obtained for G = B.
See Skorokhod [16], Dudley [10] and Wichura [20]; see also [11, page 130] and [19,
page 77] for historical notes. Theorem 1 is just a slight improvement of the usual
version, more suitable for our purposes, which follows trivially from well known
facts. For completeness, a proof of Theorem 1 is given in Section 2.

This paper originates from the following questions: Is it possible to drop sepa-
rability of µ0 from Theorem 1 ? And if no, are there (reasonable) versions of SRT
not requesting separability of µ0 ? Let us start by the first question.
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Example 2. Let d be the uniform distance on

S =
{
x ∈ D[0, 1] : x(t) ∈ {0, 1} for each t ∈ [0, 1]

}
,

where D[0, 1] is the set of real cadlag functions on [0, 1]. Take G to be the Borel
σ-field on S under Skorokhod topology and define

X = I[U, 1] and µ0(A) = Prob(X ∈ A) for A ∈ G,
where U is a (0, 1)-valued random variable with any non-atomic distribution. Such
a µ0 is not separable, as the jump time U of the process X does not have a discrete
distribution (see the remarks at the end of this example). Also, since G is countably
generated and µ0{x} = 0 for all x ∈ S, then (S,G, µ0) is a non-atomic probability
space. Hence, (S,G, µ0) supports an i.i.d. sequence (fn) of exponential random
variables with mean 1; see e.g. [4, Theorem 3.1]. Let µn(A) = Eµ0

(IA fn) for n ≥ 1
and A ∈ G. If A ∈ σ(f1, . . . , fk), then

µn(A) = Eµ0(IA fn) = Eµ0(IA)Eµ0(fn) = µ0(A) for all n > k.

Thus, µn(A) → µ0(A) for each A in the field
⋃
k σ(f1, . . . , fk). By standard argu-

ments, this implies µn(A)→ µ0(A) for all A ∈ G. Hence, µn(f)→ µ0(f) whenever
f ∈ M . Finally, take a probability space (Ω,A, P ) and a sequence of measurable
maps Xn : (Ω,A)→ (S,G) such that Xn ∼ µn for all n ≥ 0. Then,

P
(
d(Xn, X0) > 1/2

)
= P (Xn 6= X0) ≥ sup

A∈G
|µn(A)−µ0(A)| = (1/2)

∫
|fn−1| dµ0.

Since (fn) is i.i.d. with a non-degenerate distribution,
∫
|fn − 1| dµ0 does not con-

verge to 0. Thus, Xn fails to converge to X0 in probability (so that Xn does not
converge to X0 almost uniformly).

Example 2 is less artificial than it appears. Take in fact a real cadlag process X
on [0, 1] and define

S = D[0, 1], d = uniform distance,

G = Borel σ-field on S under Skorokhod topology,

µ(A) = Prob(X ∈ A) for all A ∈ G.
It is not hard to see that µ is separable if and only if each jump time of X has a
discrete distribution; see [7, page 2]. Thus, a plenty of meaningful probability laws
on G are actually non-separable.

Anyhow, in view of Example 2, separability of µ0 can not be dropped from
Theorem 1. This leads to our second question, namely, to the search of some
alternative version of SRT not requesting separability of µ0.

A first remark is that, if µ0 needs not be separable, almost uniform convergence
should be weakened into convergence in probability. In fact, it may be that Xn ∼ µn
for all n ≥ 0 and Xn → X0 in probability, for some sequence (Xn) of random
variables, but no sequence (Yn) satisfies Yn ∼ µn for all n ≥ 0 and Yn → Y0
almost uniformly or even almost surely. This can be seen by a slight modification
of Example 2.

Example 3. Take S, d, G and µ0 as in Example 2 but a different sequence (fn).
Precisely, (fn) is now an independent sequence of random variables on (S,G, µ0)
satisfying

µ0

(
fn = (n+ 1)/n

)
= n/(n+ 1) and µ0

(
fn = 0

)
= 1/(n+ 1).
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For n ≥ 1 and A ∈ G, define again µn(A) = Eµ0(IA fn). Since Eµ0(fn) = 1, the µn
are probabilities on G and

sup
A∈G
|µn(A)− µ0(A)| = (1/2)

∫
|fn − 1| dµ0 −→ 0.

Hence, by [15, Theorem 2.1], on some probability space (Ω,A, P ) there is a sequence
(Xn) of random variables such that Xn ∼ µn for all n ≥ 0 and

P
(
d(Xn, X0) > ε

)
= P (Xn 6= X0) −→ 0 for all ε ∈ (0, 1).

Finally, fix any sequence (Yn) of random variables on a probability space (Ω0,A0, P0)
such that Yn ∼ µn for all n ≥ 0. By the Borel-Cantelli lemma, lim infn fn(x) = 0
for µ0-almost all x ∈ S. In particular,

µ0

(
lim inf

n
fn < 1

)
> 0

and this implies

P0

(
d(Yn, Y0)→ 0

)
= P0(Yn = Y0 eventually) < 1

by results in [15, Theorem 3.1] and [17, Section 5.4]. Therefore, Yn fails to converge
to Y0 almost uniformly or even almost surely.

In view of Example 3, when µ0 is not separable we must be content with con-
vergence in probability. Thus, in the sequel, the sequence (µn) is said to admit a
Skorokhod representation if

Skorokhod representation for (µn): On some probability space, there
are random variables Xn with values in (S,G) such that Xn ∼ µn for all
n ≥ 0 and Xn → X0 in probability.

We aim to conditions for a Skorokhod representation, possibly necessary and suffi-
cient. To this end, we assume

σ(d) ⊂ G ⊗ G,
namely, d : S × S → R measurable with respect to G ⊗ G.

For any probabilities µ and ν on G, define

B(µ, ν) = sup
f∈M

|µ(f)− ν(f)|.

If f ∈ M and Xn ∼ µn for each n ≥ 0, with the Xn all defined on the probability
space (Ω,A, P ), then

|µn(f)− µ0(f)| = |EP {f(Xn)} − EP {f(X0)}| ≤ EP |f(Xn)− f(X0)|

≤ EP
(
d(Xn, X0) I{d(Xn,X0)≤ε}

)
+ EP

(
|f(Xn)− f(X0)| I{d(Xn,X0)>ε}

)
≤ ε+ 2P

(
d(Xn, X0) > ε

)
for all ε > 0.

Hence, a necessary condition for (µn) to have a Skorokhod representation is

lim
n
B(µn, µ0) = 0.

A (natural) question is whether such condition suffices as well. This actually hap-
pens if G = B and d is 0-1-distance. In this case, in fact, (µn) admits a Skorokhod
representation if and only if B(µn, µ0)→ 0; see [15, Theorem 2.1].
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More generally, B could be replaced by some other distance (or discrepancy
index) between probability measures. This leads to

Conjecture: The sequence (µn) admits a Skorokhod representation if and
only if J(µn, µ0) → 0, where J is some (reasonable) discrepancy index
between probabilities on G.

Such a conjecture is the object of this paper. Special attention is paid to J =
B and J = W , where W is a Wasserstein-type distance. Our main concern is
to connect and review some results from [5]-[8], using the conjecture as unifying
criterion. In addition to report known facts, some new examples are given as well.
The previous Examples 2-3 are actually new. Lemma 4 and Example 11, while
implicit in the existing literature, are also of potential interest. Besides [5]-[8],
related references are [1], [4], [13], [15], [17], [18].

2. Basic definitions

Let (X , E) and (Y,F) be measurable spaces.
A kernel on (X , E), (Y,F) is a collection

α = {α(x) : x ∈ X}

such that

− α(x) is a probability on F for each x ∈ X ,
− x 7→ α(x)(B) is E-measurable for each B ∈ F .

Let γ be a probability measure on the product space (X × Y, E ⊗ F). A disin-
tegration for γ is a kernel α on (X , E), (Y,F) satisfying

γ(A×B) =

∫
A

α(x)(B)µ(dx) for all A ∈ E and B ∈ F

where µ is the marginal of γ on E . A disintegration for γ can fail to exist. However,
γ admits a disintegration provided F is countably generated and the marginal of γ
on F is perfect, where perfect probability measures are defined as follows.

A probability ν on (Y,F) is perfect if, for each measurable function f : Y → R,
there is a Borel subset A of R such that A ⊂ f(Y) and ν(f ∈ A) = 1. If Y is
separable metric and F the Borel σ-field, then ν is perfect if and only if it is tight.
Therefore, the following result is available. Recall that a metric space T is said to
be universally measurable if, for any completion of T and any Borel probability λ
on such completion, T is λ-measurable.

Lemma 4. Let Y be a separable metric space. Each Borel probability on Y is
perfect if and only if Y is universally measurable.

Proof. Borel laws on Polish spaces are tight and every completion of Y is Polish (for
Y is separable). Therefore, if Y is universally measurable, each Borel probability
on Y is tight (and thus perfect). Conversely, suppose that every Borel law on Y is
perfect. Denote by F the Borel σ-field on Y and fix a measurable space (X , E) and
a law γ on E ⊗ F . Then, γ admits a disintegration since F is countably generated
and the marginal of γ on F is perfect. Hence, Y is universally measurable by a
result in [9]. �
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As already noted, Theorem 1 is a quick consequence of well known results. It
follows, for instance, from [19, Part 1].

A proof of Theorem 1. Fix a separable A ∈ G such that µ0(A) = 1. Since
R ⊂ G ⊂ B and R includes every separable Borel subset of S, one can define

ν(B) = µ0(A ∩B) for each B ∈ B.

Let (Ω0,A0, P0) = (S,B, ν), (Ωn,An, Pn) = (S,G, µn) if n > 0, and take In to be
the identity map on (Ωn,An, Pn) for each n ≥ 0. By [19, Theorem 1.7.2], since
ν is separable and µn(f) → µ0(f) = ν(f) for all f ∈ M , one obtains In → I0 in
distribution according to Hoffmann-Jørgensen. Thus, Theorem 1 follows from [19,
Theorem 1.10.3].

Finally, to investigate the conjecture of Section 1, we introduce some discrepancy
indices between probability measures. One is the index B defined in Section 1.
Another is the following version B0 of B. Let P be the set of all probabilities on G.
Say that a function f : S → R is universally measurable with respect to G if f is
µ-measurable for every µ ∈ P. Then, B0 is defined as

B0(µ, ν) = sup
f
|µ(f)− ν(f)|

where µ, ν ∈ P and sup is over those f : S → [−1, 1] which are 1-Lipschitz and
universally measurable with respect to G.

Let us turn to Wasserstein-type indices. For µ, ν ∈ P, denote by F(µ, ν) the
collection of those probabilities γ on G ⊗ G such that

γ(A× S) = µ(A) and γ(S ×A) = ν(A) for all A ∈ G.

Define also

D(µ, ν) =
{
γ ∈ F(µ, ν) : γ admits a disintegration

}
and note that D(µ, ν) 6= ∅ for it includes at least the product law µ× ν.

A basic assumption of this paper is σ(d) ⊂ G ⊗ G. Under this assumption, one
can define Eγ(1 ∧ d) =

∫
1 ∧ d(x, y) γ(dx, dy) for each γ ∈ F(µ, ν) and

W (µ, ν) = inf
γ∈F(µ,ν)

Eγ(1 ∧ d),

W0(µ, ν) = inf
γ∈D(µ,ν)

Eγ(1 ∧ d).

Both W and W0 look reasonable discrepancy indices between elements of P. Also,

W (µ, ν) = W0(µ, ν) if one between µ and ν is separable.

However, we do not know whether W and W0 are distances on all of P.
To be precise, we first recall that M is a G-determining class if

µ = ν ⇔ µ(f) = ν(f) for each f ∈M,

whenever µ, ν ∈ P. For instance, M is G-determining if G = B or G = R. Now, if
M is G-determining, then

W (µ, ν) = 0 ⇔ W0(µ, ν) = 0 ⇔ µ = ν.

Furthermore, W (µ, ν) = W (ν, µ) and W0 meets the triangle inequality. However,
we do not know whether W0(µ, ν) = W0(ν, µ) (unless one between µ and ν is
separable) and whether W satisfies the triangle inequality; see [5, Theorem 4.1]
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and [8, Lemma 7]. Note also that W = W0 and W is a distance on the subset
{separable laws on G}.

A last remark is that, as easily seen, the previous indices are connected via

B ≤ B0 ≤ 2W ≤ 2W0.

3. Results

This section collects some (essentially known) results on the conjecture stated in
Section 1. The latter is briefly referred to as ”the conjecture”. Proofs are omitted,
except when simple and informative. All the examples are postponed to Section 4.

Our starting point is the following.

Theorem 5. (Theorem 4.2 of [5]). Suppose σ(d) ⊂ G ⊗ G. If W0(µ0, µn)→ 0,
then (µn) admits a Skorokhod representation.

Proof. Let (Ω,A) = (S∞,G∞). For each n ≥ 0, take Xn : Ω = S∞ → S to be the n-
th canonical projection. Fix γn ∈ D(µ0, µn) such that Eγn(1∧d) < 1

n +W0(µ0, µn)
and a disintegration αn for γn. By Ionescu-Tulcea theorem, there is a unique
probability P on A = G∞ such that X0 ∼ µ0 and

βn(x0, x1, . . . , xn−1)(A) = αn(x0)(A), (x0, x1, . . . , xn−1) ∈ Sn, A ∈ G,

is a regular version of the conditional distribution of Xn given (X0, X1, . . . , Xn−1).
To conclude the proof just note that, under P , one obtains (X0, Xn) ∼ γn for all
n ≥ 1. Thus, Xn ∼ µn for all n ≥ 0 and

EP
{

1 ∧ d(X0, Xn)
}

= Eγn(1 ∧ d) <
1

n
+W0(µ0, µn) −→ 0.

�

Theorem 5 is surprisingly simple. Its underlying idea is to exploit Ionescu-Tulcea
theorem and to take Xn conditionally independent of (X1, . . . , Xn−1) given X0.
Incidentally, this form of conditional independence holds true in every proof (known
to us) of SRT. More importantly, Theorem 5 partially addresses the conjecture.
The ”partially” is because W0(µ0, µn)→ 0 is sufficient, but not necessary, for (µn)
to admit a Skorokhod representation. To get equivalent conditions, some more
assumptions are needed.

Theorem 6. (Theorem 1.1 of [7]). Suppose

(i) µn perfect for all n > 0,
(ii) G countably generated and σ(d) ⊂ G ⊗ G.

Then,

W0(µ0, µn) = W (µ0, µn) = B0(µ0, µn) for all n > 0 and

(µn) has a Skorokhod representation ⇔ lim
n
B0(µ0, µn) = 0.

Proof. We just give a sketch of the proof. Fix n > 0. Since µn is perfect and G
countably generated, each γ ∈ F(µ0, µn) admits a disintegration. Hence, D(µ0, µn) =
F(µ0, µn) and W0(µ0, µn) = W (µ0, µn). In turn, exploiting a duality result in op-
timal transportation theory [14], it can be shown that W (µ0, µn) = B0(µ0, µn).
Having proved W0(µ0, µn) = B0(µ0, µn), an application of Theorem 5 concludes
the proof of ”⇐”, while ”⇒” is straightforward. �
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From the point of view of this paper, the main content of Theorem 6 is that,
under (i)-(ii), the conjecture is true with J = W and J = B0.

A stronger (and nicer) result would be the equivalence between B(µ0, µn) → 0
and a Skorokhod representation. We do not know whether this is true under (i)-(ii).
However, it turns out to be true if (ii) is slightly strengthened. Precisely, under
(ii), G is the Borel σ-field under some separable distance d∗ on S. If d is lower
semicontinuous (and not only Borel measurable) with respect to such d∗, then B0

can be replaced with B.

Theorem 7. (Theorem 1.2 of [7]). In addition to (i), suppose

(jj) G is the Borel σ-field under a separable distance d∗ on S and d : S×S → R
is lower semicontinuous when S is given the d∗-topology.

Then,

W0(µ0, µn) = W (µ0, µn) = B0(µ0, µn) = B(µ0, µn) for all n > 0 and

(µn) has a Skorokhod representation ⇔ lim
n
B(µ0, µn) = 0.

A consequence of Theorem 7 is the following.

Corollary 8. (Corollary 1.3 of [7]). For each n ≥ 0, let αn = {αn(x) : x ∈ X}
be a kernel on (X , E), (S,G), where (X , E) is a measurable space. In addition to (i)
and (jj), suppose

µn(A) =

∫
αn(x)(A)Q(dx) for all n ≥ 0 and A ∈ G

where Q is a probability on E. Then, (µn) has a Skorokhod representation provided
(αn(x)) has a Skorokhod representation for Q-almost all x ∈ X . In particular, (µn)
admits a Skorokhod representation whenever G ⊂ B and, for Q-almost all x ∈ X ,

α0(x) is separable and α0(x)(f) = lim
n
αn(x)(f) for each f ∈M.

Corollary 8 states that Skorokhod representations are preserved under mixtures.
This is quite useful in applications, as shown by various examples in Section 4.

Under conditions (i) and (jj), not only the conjecture is true but J can be
taken to be W0, W , B0 or B indifferently. We next focus on J = W under the
only assumption that σ(d) ⊂ G ⊗ G. In a sense, this is the natural choice of J .
Contrary to W0, in fact, W (µn, µ0)→ 0 is a necessary condition for (µn) to admit
a Skorokhod representation. Moreover, since 2W ≥ B, the conjecture holds with
J = W provided it holds with J = B.

Hence, suppose W (µn, µ0) → 0. Then, by definition of W , there is a sequence
γn ∈ F(µ0, µn) such that

lim
n
γn
{

(x, y) : d(x, y) > ε
}

= 0 whenever ε > 0.

Thus, the conjecture is automatically true with J = W if one can obtain a sequence
(Xn) of random variables, all defined on the same probability space, such that

(X0, Xn) ∼ γn for all n ≥ 1.

In turn, one could try to construct such sequence (Xn) by a gluing argument.
Unfortunately, this line of proof seems to be precluded by [8, Example 1]. However,
if G = B, the gluing argument works in a finitely additive framework.
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Theorem 9. (Theorem 8 of [8]). Suppose G = B and σ(d) ⊂ B ⊗ B. Then,
limnW (µn, µ0) = 0 if and only if, on a finitely additive probability space (Ω,A, P ),
there are measurable maps Xn : (Ω,A)→ (S,B) satisfying

− Xn
P−→ X0,

− P (X0 ∈ A) = µ0(A) for all A ∈ B,
− There is a sequence γn ∈ F(µ0, µn), n ≥ 1, such that

P
[
(X0, Xn) ∈ C

]
= γn(C) if C ∈ B ⊗ B and γ∗n(∂C) = 0

where γ∗n is the outer measure.

A drawback of Theorem 9 is that, since P is finitely additive but not necessarily
σ-additive, it does not follow that P

[
(X0, Xn) ∈ C

]
= γn(C) for all C ∈ B ⊗ B. In

particular, for n > 0, one only obtains EP
{
f(Xn)

}
= µn(f) if f is bounded and

continuous, but not necessarily P (Xn ∈ A) = µn(A) for all A ∈ B.

4. Examples

Apart from Example 11, the material of this section comes from [6]-[7].
In a sense, most our results are suggested by the following example.

Example 10. (Motivating example). Let S = D[0, 1], G = R and d the uniform
distance, where D[0, 1] is the set of real cadlag functions on [0, 1]. Such a G agrees
with the Borel σ-field on S under Skorokhod topology. Since the latter is a Polish
topology, each probability on G is perfect. Also, d is lower semicontinuous when S is
given the Skorokhod topology. Thus, Theorem 7 applies, and (µn) has a Skorokhod
representation if and only if limnB(µn, µ0) = 0.

Example 10 has a quite natural extension.

Example 11. (A general version of Example 10). Let G = R where (S, d)
is any metric space. Suppose σ(d) ⊂ R ⊗ R and µn perfect for all n > 0. Since
σ(d) ⊂ R⊗R, as proved below, R is countably generated. Hence, by Theorem 6,
(µn) has a Skorokhod representation if and only if limnB0(µn, µ0) = 0. It remains
to prove that R is countably generated. Let I be the class of intervals with rational
endpoints. For each I ∈ I, since {d ∈ I} ∈ R ⊗R, there are AIn, B

I
n ∈ R, n ≥ 1,

such that {d ∈ I} ∈ σ
(
AIn × BIn : n ≥ 1

)
. Define U = σ

(
AIn, B

I
n : n ≥ 1, I ∈ I

)
.

Then, U is countably generated, U ⊂ R and σ(d) ⊂ U ⊗ U . Given x ∈ S and
r > 0, the ball {y : d(x, y) < r} is the x-section of the set {d < r} ∈ U ⊗ U . Thus,
{y : d(x, y) < r} ∈ U . It follows that R = U is countably generated.

In view of Example 11, it would be useful that R supports perfect probability
measures only. Suppose σ(d) ⊂ R⊗R. Then, R is countably generated (as shown
in Example 11) and includes the singletons. Thus, R is the Borel σ-field under a
separable distance d∗ on S. By Lemma 4, each probability on R is perfect if and
only if S is universally measurable under such d∗.

The next example comes into play if we are given the sequence (µn) but not the
distance d.

Example 12. (Uniform convergence over a given class of measurable func-
tions). Suppose G is the Borel σ-field under a distance d∗ on S such that (S, d∗)
is separable and universally measurable. Then, G is countably generated and each
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µn is perfect. Let F be a countable collection of real G-measurable functions on S
such that

− supf∈F |f(x)| <∞ for all x ∈ S,
− If x, y ∈ S and x 6= y, then f(x) 6= f(y) for some f ∈ F .

Then,

dF (x, y) = sup
f∈F
|f(x)− f(y)|

is a distance on S and σ(dF ) ⊂ G ⊗ G. If we are given (µn) but not d, it could
be reasonable to select a class F as above and to ask for random variables Xn

satisfying

Xn ∼ µn for all n ≥ 0 and sup
f∈F
|f(Xn)− f(X0)| −→ 0 in probability.

This is exactly a Skorokhod representation for (µn) with d = dF . Thus, by Theorem
6, such Xn exist if and only if limnB0(µn, µ0) = 0. Also, by Theorem 7, B0 can
be replaced with B whenever each f ∈ F is continuous in the d∗-topology. In this
case, in fact, dF : S × S → R is lower semicontinuous (even if F is uncountable)
when S is given the d∗-topology.

Unless µ0 is separable, checking whether B(µn, µ0)→ 0 looks very hard. Thus,
even if theoretically intriguing, Theorem 7 has a little practical scope. An analogous
criticism can be made to Theorems 5 and 6. To address this criticism, we make two
remarks. First, even if difficult to check, B(µn, µ0)→ 0 is a necessary condition for
(µn) to admit a Skorokhod representation. Hence, it can not be eluded. Second,
there are situations where SRT does not work, and yet B(µn, µ0)→ 0 is easily seen
to be true. The remaining examples exhibit some of these situations.

Example 13. (Exchangeable empirical processes). Let (ξn) be an exchange-
able sequence of [0, 1]-valued random variables and

F (t) = E
(
I{ξ1≤t} | τ

)
,

where τ is the tail σ-field of (ξn). Take F to be regular, i.e., each F -path is a
distribution function. The empirical process can be defined as

Zn(t) =
√
n
{
Fn(t)− F (t)

}
, 0 ≤ t ≤ 1, n ≥ 1,

where Fn(t) = (1/n)
∑n
i=1 I{ξi≤t} is the empirical distribution function.

Take (S, d) and G as in Example 10, that is, S = D[0, 1], d the uniform distance
and G = R. Define also

Z0(t) = W 0
H(t),

with W 0 a standard Brownian bridge and H an independent copy of F . Since each
Zn is a measurable map with values in (S,G), we can let

µn(A) = Prob
(
Zn ∈ A

)
for all n ≥ 0 and A ∈ G.

Then, SRT does not apply for µ0 may fail to be separable; see [3, Example 11].
However, (µn) admits a Skorokhod representation because of Theorem 7. In fact,
B(µn, µ0) → 0 in the special case where (ξn) is i.i.d. (since µ0 is separable if
(ξn) is i.i.d.). Therefore, by Corollary 8 and de Finetti’s representation theorem,
B(µn, µ0)→ 0 in the general case as well.
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Example 14. (Pure jump processes). Take again S = D[0, 1], G = R, d the
uniform distance and µn(·) = Prob(Zn ∈ ·). Here, for each n ≥ 0, Zn is the process

Zn(t) =

∞∑
j=1

Cn,j I{Yn,j≤t}, 0 ≤ t ≤ 1,

where Cn = (Cn,j : j ≥ 1) and Yn = (Yn,j : j ≥ 1) are sequences of real random
variables satisfying

0 ≤ Yn,j ≤ 1 and

∞∑
j=1

|Cn,j | <∞.

Then, by Theorem 7, (µn) has a Skorokhod representation under reasonable con-
ditions on Cn and Yn. For instance, for (µn) to admit a Skorokhod representation,
it suffices that

Cn independent of Yn for every n ≥ 0,
∞∑
j=1

|Cn,j − C0,j | −→ 0 in probability,

dTV
(
νn,k, ν0,k

)
−→ 0 for all k ≥ 1,

where dTV is total variation distance and νn,k the probability distribution of (Yn,1, . . . , Yn,k).
Note that νn,k = ν0,k (so that the last condition is trivially true) in case Yn,j = Vn+j
with V1, V2, . . . a stationary sequence. Also, independence between Cn and Yn can
be replaced by

σ(Cn,j) ⊂ σ(Yn,1, . . . , Yn,j) for all n ≥ 0 and j ≥ 1.

To prove B(µn, µ0)→ 0, define Zn,k(t) =
∑k
j=1 Cn,j I{Yn,j≤t}. For each f ∈M ,

|µn(f)− µ0(f)| ≤ |Ef(Zn)− Ef(Zn,k)|+ |Ef(Zn,k)− Ef(Z0,k)|+ |Ef(Z0,k)− Ef(Z0)|
≤ E

{
2 ∧ d(Zn, Zn,k)

}
+ |Ef(Zn,k)− Ef(Z0,k)|+ E

{
2 ∧ d(Z0, Z0,k)

}
≤ E

{
2 ∧

∑
j>k

|Cn,j |
}

+ |Ef(Zn,k)− Ef(Z0,k)|+ E
{

2 ∧
∑
j>k

|C0,j |
}
.

Given ε > 0, take k ≥ 1 such that E
{

2 ∧
∑
j>k|C0,j |

}
< ε. Then,

lim sup
n

B(µn, µ0) < 2 ε+ lim sup
n

sup
f∈M

|Ef(Zn,k)− Ef(Z0,k)|.

Further, since Cn is independent of Yn, up to a change of the underlying probability
space, it can be assumed

Prob
(
Yn,j 6= Y0,j for some j ≤ k

)
= dTV

(
νn,k, ν0,k

)
;

see [15, Theorem 2.1]. Similarly, if σ(Cn,j) ⊂ σ(Yn,1, . . . , Yn,j) for all n and j.
Then, letting An,k = {Yn,j = Y0,j for all j ≤ k}, one obtains

sup
f∈M

|Ef(Zn,k)− Ef(Z0,k)| ≤ E
{
IAn,k

2 ∧ d(Zn,k, Z0,k)
}

+ 2 Prob(Acn,k)

≤ E
{

2 ∧
∞∑
j=1

|Cn,j − C0,j |
}

+ 2 dTV
(
νn,k, ν0,k

)
−→ 0 as n→∞.

Therefore, B(µn, µ0)→ 0.
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Example 15. (Functions with finite p-variation). Given p > 1, let S be the
space of real continuous functions x on [0, 1] such that

‖x‖ :=
{
|x(0)|p + sup

∑
i

|x(ti)− x(ti−1)|p
}1/p

<∞

where sup is over all finite partitions 0 = t0 < t1 < . . . < tm = 1. Define

d(x, y) = ‖x− y‖, d∗(x, y) = sup
t
|x(t)− y(t)|,

and take G to be the Borel σ-field on S under d∗. Since S is a Borel subset of the
Polish space (C[0, 1], d∗), each law on G is perfect. Further, d : S × S → R is lower
semicontinuous when S is given the d∗-topology.

In [2] and [12], some attention is paid to those processes Zn of the type

Zn(t) =
∑
k

Tn,kNk xk(t), n ≥ 0, t ∈ [0, 1].

Here, xk ∈ S while (Nk, Tn,k : n ≥ 0, k ≥ 1) are real random variables, defined on
some probability space (X , E , Q), satisfying

(Nk) independent of (Tn,k) and (Nk) i.i.d. with N1 ∼ N (0, 1).

Usually, Zn has paths in S a.s. but the probability measure

µn(A) = Q(Zn ∈ A), A ∈ G,
is not separable. For instance, this happens when

0 < lim inf
k
|Tn,k| ≤ lim sup

k
|Tn,k| <∞ a.s. and

xk(t) = q−k/p
{

log (k + 1)
}−1/2

sin (qkπ t)

where q = 41+[p/(p−1)]. See Theorem 4.1 and Lemma 4.4 of [12].
Since µ0 fails to be separable, SRT does not apply. Instead, under some condi-

tions, Corollary 8 yields a Skorokhod representation for (µn). To fix ideas, suppose

Tn,k = Un φk(Vn, C)

where φk : R2 → R and Un, Vn, C are real random variables such that

(a) (Un) and (Vn) are conditionally independent given C;

(b) E
{
f(Un) | C

} Q−→ E
{
f(U0) | C

}
for each bounded continuous f : R→ R;

(c) Q
(
(Vn, C) ∈ ·

)
converges to Q

(
(V0, C) ∈ ·

)
in total variation distance.

We finally prove that (µn) has a Skorokhod representation. To this end, as
noted in point (vj) of [7], it suffices to show that each subsequence (µ0, µnj : j ≥
1) contains a further subsequence (µ0, µnjk

: k ≥ 1) which admits a Skorokhod

representation. Further, condition (c) can be shown to be equivalent to

sup
A

∣∣∣Q(Vn ∈ A | C)−Q(V0 ∈ A | C)∣∣∣ Q−→ 0

where sup is over all Borel sets A ⊂ R. Thus (up to selecting a suitable subsequence)
conditions (b)-(c) can be strengthened into

(b*) E
{
f(Un) | C

} a.s.−→ E
{
f(U0) | C

}
for each bounded continuous f : R→ R;

(c*) supA

∣∣∣Q(Vn ∈ A | C)−Q(V0 ∈ A | C)∣∣∣ a.s.−→ 0.
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Let Pc denote a version of the conditional distribution of the array

(Nk, Un, Vn, C : n ≥ 0, k ≥ 1)

given C = c. Because of Corollary 8, it suffices to prove that
(
Pc(Zn ∈ ·) : n ≥ 0

)
has a Skorokhod representation for almost all c ∈ R. Fix c ∈ R. By (a), the
sequences (Nk), (Un) and (Vn) can be assumed to be independent under Pc. By
(b*) and (c*), up to a change of the underlying probability space, (Un) and (Vn)
can be realized in the most convenient way. Indeed, by applying SRT to (Un) and
[15, Theorem 2.1] to (Vn), it can be assumed that

Un
Pc−a.s.−→ U0 and Pc(Vn 6= V0) −→ 0.

But in this case, one trivially obtains Zn
Pc−→ Z0, for

1 ∧ ‖Zn − Z0‖ ≤ I{Vn 6=V0} + |Un − U0| ‖
∑
k

φk(V0, C)Nk xk‖.

Thus,
(
Pc(Zn ∈ ·) : n ≥ 0

)
admits a Skorokhod representation, and this concludes

the proof.

The conditions of Example 15 are not so strong as they appear. Actually, they

do not imply even d∗(Zn, Z0)
a.s.−→ 0 for the original processes Zn (those defined on

(X , E , Q)). In addition, by slightly modifying Example 15, S could be taken to be
the space of α-Holder continuous functions, α ∈ (0, 1), and

d(x, y) = |x(0)− y(0)|+ sup
t 6=s

|x(t)− y(t)− x(s) + y(s)|
|t− s|α

.
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