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Abstract. Let (Ω,F , P ) be a probability space and N the class of those

F ∈ F satisfying P (F ) ∈ {0, 1}. For each G ⊂ F , define G = σ
�
G ∪ N

�
.

Necessary and sufficient conditions for A∩B = A ∩ B, where A,B ⊂ F are sub-
σ-fields, are given. These conditions are then applied to the (two component)

Gibbs sampler. Suppose X and Y are the coordinate projections on (Ω,F) =

(X×Y,U⊗V) where (X ,U) and (Y,V) are measurable spaces. Let (Xn, Yn)n≥0

be the Gibbs-chain for P . Then, the SLLN holds for (Xn, Yn) if and only if

σ(X) ∩ σ(Y ) = N , or equivalently if and only if P (X ∈ U)P (Y ∈ V ) = 0

whenever U ∈ U , V ∈ V and P (U×V ) = P (Uc×V c) = 0. The latter condition
is also equivalent to ergodicity of (Xn, Yn), on a certain subset S0 ⊂ Ω, in case

F = U ⊗ V is countably generated and P absolutely continuous with respect

to a product measure.

1. The problem

Let (Ω,F , P ) be a probability space and A, B ⊂ F sub-σ-fields. Letting

N = {F ∈ F : P (F ) ∈ {0, 1}} and G = σ
(
G ∪ N

)
,

for any subclass G ⊂ F , we aim at giving conditions for

(1) A ∩ B = A ∩ B.

2. Motivations

Apart from its possible theoretical interest, there are three (non independent)
reasons for investigating (1).

2.1. Iterated conditional expectations. Given a real random variable Z satis-
fying E{|Z| log(1+ |Z|)} < ∞, define Z0 = Z and Gn = A or Gn = B as n is even or
odd. By a classical result of Burkholder-Chow [2] and Burkholder [4], one obtains

(2) Zn := E(Zn−1 | Gn) → E
(
Z | A ∩ B

)
a.s..

A natural question is whether E(Z | A ∩ B) can be taken as the limit in (2).

Corollary 2.1. Zn → E(Z | A∩B) a.s., for all real random variables Z such that
E{|Z| log(1 + |Z|)} < ∞, if and only if condition (1) holds.
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Proof. Under (1), just note that E(Z | A ∩ B) is a version of E(Z | A ∩ B). Con-
versely, suppose Zn → E(Z | A ∩ B) a.s. for all Z. Since A ∩ B ⊂ A ∩ B, it
suffices to prove that A ∩ B ⊂ A ∩ B. Given F ∈ A ∩ B, condition (2) implies
IF = E

(
IF | A∩B

)
= E(IF | A∩B) a.s.. Letting F0 = {E(IF | A∩B) 6= IF }, and

noting that P (F0) = 0, yields

F = (F ∩ F0) ∪
(
{E(IF | A ∩ B) = 1} ∩ F c

0

)
∈ A ∩ B.

�

As an application, think of a problem where E(· | A) and E(· | B) are easy to
evaluate while E(· | A ∩ B) is not. In order to estimate E(Z | A ∩ B), one strategy
is using condition (2), but this is possible precisely when (1) holds.

2.2. Sufficiency. Suppose that, rather than a single probability measure P , we are
given a collection M of probability measures Q on (Ω,F). For any G ⊂ F define
GM = σ

(
G ∪ NM

)
, where NM is the class of those F ∈ F such that Q(F ) = 0 for

all Q ∈ M or Q(F ) = 1 for all Q ∈ M . In this framework, condition (1) turns into

(1*) AM ∩ BM =
(
A ∩ B

)
M

.

A sub-σ-field G ⊂ F is sufficient (for M) in case, for each F ∈ F , there is a
G-measurable function f : Ω → R which is a version of EQ(IF | G) for all Q ∈ M .

Generally, sufficiency of both A and B does not imply that of A∩B. By Theorem
4 of [3], however, A ∩ B is sufficient provided A and B are sufficient and at least
one of them includes NM . This implies the following result.

Corollary 2.2. A∩B is sufficient whenever A and B are sufficient and condition
(1*) holds.

Proof. We first verify that G is sufficient if and only if GM is sufficient, where G ⊂ F
is any sub-σ-field. The ”only if” part is trivial. Suppose GM is sufficient, fix F ∈ F ,
and take a GM -measurable function f which is a version of EQ(IF | GM ) for all
Q ∈ M . Since

GM = {F ∈ F : there is G ∈ G such that Q(F∆G) = 0 for all Q ∈ M},

for each n there is a G-measurable function φn such that Q(|f − φn| < 1
n ) = 1 for

all Q ∈ M . For ω ∈ Ω, define φ(ω) = limn φn(ω) if the limit exists and φ(ω) = 0
otherwise. Then, φ is G-measurable and Q(f = φ) = 1 for all Q ∈ M . Thus, φ is a
version of EQ(IF | G) for all Q ∈ M , which shows that G is sufficient. Next, since A
and B are sufficient, AM and BM are still sufficient, and thus

(
A∩B

)
M

= AM ∩BM

is sufficient by Theorem 4 of [3]. Therefore, A ∩ B is sufficient. �

2.3. Two component Gibbs sampler. Suppose (Ω,F) = (X × Y,U ⊗ V) is
the product of two measurable spaces (X ,U) and (Y,V) and let X : Ω → X ,
Y : Ω → Y be the coordinate projections. Suppose also that regular versions of
the conditional distribution of Y given X and X given Y are available under P
(precise definitions are given in Section 4). Roughly speaking, the Gibbs-chain
(Xn, Yn)n≥0 can be described as follows. Starting from ω = (x, y), the next state
ω∗ = (x∗, y∗) is obtained by first choosing y∗ from the conditional distribution of
Y given X = x and then x∗ from the conditional distribution of X given Y = y∗.
Iterating this procedure produces an homogeneous Markov chain (Xn, Yn) with
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stationary distribution P . Let P denote the law of such a chain when (X0, Y0) ∼ P ,
and let

mn(φ) =
1
n

n−1∑
i=0

φ(Xi, Yi)

for each function φ : Ω → R.
In real problems, (Xn, Yn) is constructed mainly for sampling from P . To this

end, it is crucial that the SLLN is available under P, that is

(3) mn(φ) →
∫

φdP, P-a.s., for all φ ∈ L1(P ).

Note that, under (3), for each probability measure Q � P one also obtains

mn(φ) →
∫

φdP, Q-a.s., for each φ ∈ L1(P )

where Q is the law of the chain (Xn, Yn) when (X0, Y0) ∼ Q.
In addition to (3), various other properties are usually requested to (Xn, Yn),

mainly ergodicity, CLT and the convergence rate. Nevertheless, condition (3) seems
(to us) a fundamental one. It is a sort of necessary condition, since the Gibbs
sampling procedure does not make sense without (3). Accordingly, we say that P
is Gibbs-admissible in case (3) holds.

But what about condition (1) ? The link is that P turns out to be Gibbs-
admissible precisely when

σ(X) ∩ σ(Y ) = N = σ(X) ∩ σ(Y ).

In other terms, the Gibbs sampling procedure makes sense for P (in the SLLN-
sense) if and only if P meets condition (1) with A = σ(X) and B = σ(Y ).

In fact, something more is true. Let K be the transition kernel of (Xn, Yn) and
S0 = {ω ∈ Ω : K(ω, ·) � P}. Under mild conditions (F countably generated and P
absolutely continuous with respect to a product measure), one obtains P (S0) = 1
and

σ(X) ∩ σ(Y ) = N ⇔ (Xn, Yn) is ergodic on S0.

For proving the previous statements, a key ingredient is a result of Diaconis et
al., connecting the Gibbs-chain (Xn, Yn) with Burkholder-Chow result of Subsection
2.1; see Theorem 4.1 of [6]. Indeed, σ(X) ∩ σ(Y ) = N appears as an assumption
in various results from [6] (Corollary 3.1, Propositions 5.1, 5.2 and 5.3). Also,
investigating σ(X) ∩ σ(Y ) = N was suggested to us by Persi Diaconis.

One of our main results (Corollary 3.5) is that σ(X) ∩ σ(Y ) = N is equivalent
to the following property of P :

P (X ∈ U) = 0 or P (Y ∈ V ) = 0 whenever

U ∈ U , V ∈ V and P (U × V ) = P (U c × V c) = 0.

This paper is organized into two parts. Section 3 gives general results on con-
ditions (1) and (1*). It includes characterizations, examples, and various working
sufficient conditions in case P is absolutely continuous with respect to a product
measure. Under this assumption, it is also shown that P is atomic on σ(X)∩σ(Y )
(with X and Y as in previous Subsection 2.3). The main results are Theorems 3.1
and 3.10 and Corollaries 3.5, 3.7 and 3.9. Section 4 deals with the Gibbs sampler
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and contains the material sketched above. The main results are Theorems 4.2, 4.4
and 4.5.

3. General Results

This section is split into three subsections. All examples are postponed to the
last one.

3.1. Necessary and sufficient conditions. Condition (1) admits a surprisingly
simple characterization.

Theorem 3.1. Let

J = {A ∩B : A ∈ A, B ∈ B and P (A ∩B) + P (Ac ∩Bc) = 1}.

Then, A ∩ B = J . Moreover, A ∩ B = A ∩ B if and only if

A ∈ A, B ∈ B and P (A ∩B) = P (Ac ∩Bc) = 0(4)

implies P (A∆D) = 0 or P (B∆D) = 0 for some D ∈ A ∩ B.

Proof. First note that, for any sub-σ-field G ⊂ F , one has

G = {F ∈ F : P (F∆G) = 0 for some G ∈ G}.

Let F ∈ A ∩ B. Then, P (A∆F ) = P (B∆F ) = 0, for some A ∈ A and B ∈ B, and

1− P (A ∩B)− P (Ac ∩Bc) = P (A∆B) ≤ P (A∆F ) + P (B∆F ) = 0.

Hence, J := A ∩ B ∈ J . Since P (F∆J) ≤ P (A∆F ) + P (B∆F ) = 0, then F ∈ J .
Conversely, let J = A∩B ∈ J where A ∈ A, B ∈ B and P (A∩B)+P (Ac∩Bc) = 1.
Define H = (A ∩ B) ∪ (Ac ∩ Bc). Since P (H) = 1 and J = A ∩ H = B ∩ H, it
follows that J ∈ A∩B. Therefore, A∩B = J . In particular, A∩B = A ∩ B if and
only if J ⊂ A ∩ B, and thus it remains only to show that J ⊂ A ∩ B is equivalent
to condition (4). Suppose (4) holds and fix J ∈ J . Then, J can be written as
J = A ∩Bc for some A ∈ A and B ∈ B with P (A ∩B) = P (Ac ∩Bc) = 0. By (4),
it follows that A ∈ A ∩ B or B ∈ A ∩ B, say A ∈ A ∩ B. Since P (A ∩ B) = 0, one
obtains J = A ∩ Bc = A − (A ∩ B) ∈ A ∩ B. Finally, suppose J ⊂ A ∩ B and fix
A ∈ A and B ∈ B with P (A ∩ B) = P (Ac ∩ Bc) = 0. Since A ∩ Bc ∈ J ⊂ A ∩ B
and P (A ∩ B) = 0, then A = (A ∩ B) ∪ (A ∩ Bc) ∈ A ∩ B, that is, P (A∆D) = 0
for some D ∈ A ∩ B. �

The case of k ≥ 2 sub-σ-fields can be settled essentially as in Theorem 3.1.

Theorem 3.2. Let A1, . . . ,Ak ⊂ F be sub-σ-fields, k ≥ 2. Then,

∩k
i=1Ai = ∩k

i=1Ai

if and only if

A1 ∈ A1, . . . , Ak ∈ Ak and P
(
∩k

i=1Ai

)
+ P

(
∩k

i=1A
c
i

)
= 1

implies P (Ai∆D) = 0 for some i and D ∈ ∩k
i=1Ai.

The simple argument which leads to Theorem 3.1 allows to find conditions for
sufficiency of A ∩ B as well.
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Theorem 3.3. In the notation of Subsection 2.2, AM ∩ BM =
(
A ∩ B

)
M

if and
only if

A ∈ A, B ∈ B and Q(A ∩B) = Q(Ac ∩Bc) = 0 for all Q ∈ M(4*)
implies the existence of D ∈ A ∩ B such that

Q(A∆D) = 0 for all Q ∈ M or Q(B∆D) = 0 for all Q ∈ M.

Hence, by Corollary 2.2 and Theorem 3.3, A∩B is sufficient whenever A and B
are sufficient and condition (4*) holds.

The proofs of both Theorems 3.2 and 3.3 have been omitted since they are quite
analogous to that of Theorem 3.1.

Let us come back to the main concern of this paper, that is, a single probability
measure P and two sub-σ-fields A and B. Condition (4) of Theorem 3.1 trivially
holds provided

A ∈ A, B ∈ B and P (A ∩B) = P (Ac ∩Bc) = 0(5)

implies P (A) = 0 or P (B) = 0.

Generally, condition (5) is stronger than (4) (just take A = B, so that (4) trivially
holds, and choose P such that (5) fails). However, (4) and (5) are equivalent in a
significant particular case.

Corollary 3.4. If A ∩ B ⊂ N , then

A ∩ B = N ⇔ condition (4) holds ⇔ condition (5) holds.

Proof. Suppose (4) holds and fix A ∈ A, B ∈ B with P (A ∩B) = P (Ac ∩Bc) = 0.
Then, P (A∆D)P (B∆D) = 0 for some D ∈ A ∩ B, say P (A∆D) = 0. Since
A∩B ⊂ N , one obtains P (A) = P (D) ∈ {0, 1}. If P (A) = 0, then P (A)P (B) = 0.
If P (A) = 1, then P (B) = P (A ∩ B) = 0 and again P (A)P (B) = 0. Thus, (5)
holds. Since A ∩ B = N , an application of Theorem 3.1 concludes the proof. �

In the sequel, we deal with product measurable spaces. Let (X ,U) and (Y,V)
be measurable spaces and

(Ω,F) = (X × Y, U ⊗ V), X(x, y) = x, Y (x, y) = y,

where (x, y) ∈ X × Y. We focus on A = σ(X) and B = σ(Y ) and we let

D = σ(X) ∩ σ(Y ).

On noting that σ(X)∩σ(Y ) = {∅,Ω}, Corollary 3.4 implies the following statement.

Corollary 3.5. D = N if and only if

U ∈ U , V ∈ V and P (U × V ) = P (U c × V c) = 0(6)

implies P (X ∈ U) = 0 or P (Y ∈ V ) = 0.

By Corollary 3.5, if D 6= N then D includes a rectangle U × V such that U ∈ U ,
V ∈ V and 0 < P (U × V ) < 1. This fact implies a first sufficient condition for
D = N .

Corollary 3.6. For D = N , it is sufficient that

E
(
E(IU×V | σ(X)) | σ(Y )

)
+ E

(
E(IU×V | σ(Y )) | σ(X)

)
> 0 a.s.(7)

whenever U ∈ U , V ∈ V and 0 < P (U × V ) < 1.
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Proof. Let U ∈ U and V ∈ V. If U × V ∈ D, then

E
(
E(IU×V | σ(X)) | σ(Y )

)
+ E

(
E(IU×V | σ(Y )) | σ(X)

)
= 2IU×V a.s..

Thus, (7) implies U × V /∈ D in case 0 < P (U × V ) < 1. �

3.2. Sufficient conditions in case P is absolutely continuous with respect
to a product measure. In real problems, P usually has a density with respect to
some product measure. Let µ and ν be σ-finite measures on U and V, respectively.
In this subsection, P � µ × ν and f is a version of the density of P with respect
to µ× ν.

Corollary 3.7. For D = N , it is sufficient that P � µ× ν and

(U0 × Y) ∪ (X × V0) ⊃ {f > 0} ⊃ U0 × V0

for some U0 ∈ U and V0 ∈ V such that P (U0 × V0) > 0.

Proof. By Corollary 3.5, it suffices to prove condition (6). Let U ∈ U and V ∈ V
be such that P (U × V ) = P (U c × V c) = 0. Since f > 0 on U0 × V0 and∫

U∩U0×V ∩V0

f d(µ× ν) = P
(
(U ∩ U0)× (V ∩ V0)

)
≤ P (U × V ) = 0,

it follows that

µ(U ∩ U0)ν(V ∩ V0) = µ× ν
(
(U ∩ U0)× (V ∩ V0)

)
= 0,

say µ(U ∩ U0) = 0. Similarly, P (U c × V c) = 0 and f > 0 on U0 × V0 imply
µ(U0 − U)ν(V0 − V ) = 0. Since P (X ∈ U0) > 0 and µ(U ∩ U0) = 0, it must be
µ(U0 − U) > 0 and thus ν(V0 − V ) = 0. Let H0 = (U0 × Y) ∪ (X × V0). Since
P (H0) = 1 and P (X ∈ U ∩ U0) = P (Y ∈ V0 − V ) = 0, one obtains

P (X ∈ U) = P
(
{X ∈ U − U0} ∩H0

)
= P

(
(U − U0)× V0

)
= P

(
(U − U0)× (V ∩ V0)

)
≤ P (U × V ) = 0.

Therefore, condition (6) holds. �

Corollary 3.7 applies in particular if {f > 0} ⊃ U0 × Y for some U0 ∈ U with
P (X ∈ U0) > 0 (just take V0 = Y). Likewise, it applies if {f > 0} ⊃ X × V0 for
some V0 ∈ V such that P (Y ∈ V0) > 0.

Let µ0 be a probability measure on U equivalent to µ, i.e., µ0 � µ and µ � µ0.
Similarly, let ν0 be a probability measure on V equivalent to ν. Then, µ0 × ν0 is
equivalent to µ × ν and, for each H ∈ F with µ × ν(H) > 0, one can define the
probability measure

QH(F ) =
µ0 × ν0(F ∩H)

µ0 × ν0(H)
, F ∈ F .

Say that H has the trivial intersection property, or briefly that H is TIP, in case
H ∈ F , µ× ν(H) > 0 and D = N holds when P = QH . Note that whether or not
H is TIP does not depend on the choice of µ0 and ν0. Note also that

D = N ⇔ the set {f > 0} is TIP.

Corollary 3.8. Suppose P � µ × ν and {f > 0} = ∪nHn, where H1 ⊂ H2 ⊂ . . .
is an increasing sequence of TIP sets. Then, D = N .
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Proof. Let H = {f > 0} and U ∈ U , V ∈ V with QH(U × V ) = QH(U c × V c) = 0.
Since Hn ⊂ H, then QHn

(U × V ) = QHn
(U c × V c) = 0 for all n. Since Hn is

TIP, Corollary 3.5 (applied to QHn
) yields QHn

(X ∈ U)QHn
(Y ∈ V ) = 0 for all n.

Thus, Hn ↑ H implies

QH(X ∈ U)QH(Y ∈ V ) = lim
n

QHn
(X ∈ U)QHn

(Y ∈ V ) = 0.

By Corollary 3.5, H = {f > 0} is TIP. �

In order to generalize Corollary 3.8, one more piece of terminology is useful.
Given two sets F, G ∈ F , say that F communicates with G in case at least one of
the following conditions (i) and (ii) holds:

(i) There is V0 ∈ V with ν(V0) > 0 and µ(F y) > 0, µ(Gy) > 0 for all y ∈ V0;
(ii) There is U0 ∈ U with µ(U0) > 0 and ν(Fx) > 0, ν(Gx) > 0 for all x ∈ U0;

where Fx = {y ∈ Y : (x, y) ∈ F} and F y = {x ∈ X : (x, y) ∈ F} denote the sections
of F .

Corollary 3.9. Suppose P � µ × ν and {f > 0} = ∪nHn, where Hn is TIP and
Hn communicates with Hn+1 for each n. Then, D = N .

Proof. It is enough to prove that F ∪ G is TIP whenever F and G are TIP and
F communicates with G. In that case, in fact, since ∪n−1

i=1 Hi communicates with
Hn, a simple induction implies that ∪n

i=1Hi is TIP for all n. Hence, D = N by
Corollary 3.8.

Suppose F and G are TIP and condition (i) holds (the proof is the same if (ii)
holds). Set H = F ∪G and fix U ∈ U , V ∈ V with QH(U×V ) = QH(U c×V c) = 0.
Since F and G are TIP and

QF (U × V ) = QF (U c × V c) = QG(U × V ) = QG(U c × V c) = 0,

one obtains

QF (X ∈ U) = 0 or QF (Y ∈ V ) = 0, and QG(X ∈ U) = 0 or QG(Y ∈ V ) = 0.

Let V0 be as in condition (i). If QF (X ∈ U) = 0, then QF (Y ∈ V ) = 1. By (i) and
since µ0 and ν0 are equivalent to µ and ν, it follows that

QF (Y ∈ V ∩ V0) = QF (Y ∈ V0) =

∫
V0

µ0(F y)ν0(dy)

µ0 × ν0(F )
> 0.

Hence ν0(V ∩ V0) > 0, and this implies

QG(Y ∈ V ) ≥ QG(Y ∈ V ∩ V0) =

∫
V ∩V0

µ0(Gy)ν0(dy)

µ0 × ν0(G)
> 0.

Therefore, QF (X ∈ U) = 0 implies QG(Y ∈ V ) > 0, and similarly QG(X ∈ U) = 0
implies QF (Y ∈ V ) > 0. It follows that QF (X ∈ U) = QG(X ∈ U) = 0 or
QF (Y ∈ V ) = QG(Y ∈ V ) = 0, which implies QH(X ∈ U) = 0 or QH(Y ∈ V ) = 0.
Thus, condition (6) holds for QH , and H = F ∪G is TIP by Corollary 3.5. �

So far, conditions for P to be 0-1-valued on D have been given. A weaker but
useful result is that the latter property holds locally, in the sense that Ω can be
partitioned into sets H1,H2, . . . ∈ D such that P (Hn) > 0 and P (· | Hn) is 0-1-
valued on D for each n. We now prove that this is always true provided P � µ×ν.
In that case, in fact, P is atomic on D. Recall that, given a probability space
(Z, E , Q), a Q-atom is a set K ∈ E such that Q(K) > 0 and Q(· | K) is 0-1-valued.
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In general, there are three possible situations: (j) Q is nonatomic, i.e., there are
no Q-atoms; (jj) Q is atomic, i.e., the Q-atoms form a partition of Z; (jjj) there is
K ∈ E , 0 < Q(K) < 1, such that Q(· | K) is nonatomic and Kc is a disjoint union
of Q-atoms.

Theorem 3.10. If P � µ × ν, then P is atomic on D (i.e., the restriction of P
to D is atomic).

Proof. Fix H ∈ D with P (H) > 0 and let PH denote the restriction of P (· | H) to D.
If PH is nonatomic, the probability space (Ω,D, PH) supports a real random variable
with uniform distribution on (0, 1); see e.g. Theorem 3.1 of [1]. Hence, it suffices
to prove that each D-measurable function Z : Ω → R satisfies PH(Z ∈ C) = 1 for
some countable set C ⊂ R. Let Z : Ω → R be D-measurable. Since σ(Z) ⊂ σ(X),
there is a U-measurable function h : X → R satisfying Z = h(X) a.s.. Similarly,
σ(Z) ⊂ σ(Y ) yields Z = k(Y ) a.s. for some V-measurable function k : Y → R. Let
C = {c ∈ R : ν{y : k(y) = c} > 0}. Since ν is σ-finite, C is countable and

µ× ν
(
h(X) /∈ C, h(X) = k(Y )

)
=

∫
{x:h(x)/∈C}

ν{y : k(y) = h(x)}µ(dx) = 0.

Since P � µ× ν and Z = h(X) = k(Y ) a.s., it follows that

P (Z ∈ C) = 1− P (h(X) /∈ C, h(X) = k(Y )
)

= 1.

Thus, PH � P implies PH(Z ∈ C) = 1. This concludes the proof. �

3.3. Examples. In this subsection, X and Y are topological spaces and U and V
the corresponding Borel σ-fields. Moreover, µ and ν have full topological support
(i.e., they are strictly positive on nonempty open sets) and P has a density f with
respect to µ× ν.

We note that, since µ and ν have full topological support, F communicates with
G whenever F, G ∈ F and F ∩G has nonempty interior. Further, by Corollary 3.9
(see also its proof), F ∪G is TIP whenever F and G are TIP and F communicates
with G.

Example 3.11. Let X and Y be second countable topological spaces.
If {f > 0} is open and connected, then D = N .
Suppose in fact that H ⊂ Ω is open and connected. Since H is open, H = ∪nHn

where each Hn is open and TIP (for instance, take the Hn as open rectangles). For
ω1, ω2 ∈ H, say that ω1 ∼ ω2 in case there are a finite number of indices j1, . . . , jn

such that ω1 ∈ Hj1 , ω2 ∈ Hjn and Hji ∩ Hji+1 6= ∅ for each i. Then, ∼ is an
equivalence relation on H. Since H is connected and the equivalence classes of ∼
are open, there is precisely one equivalence class, i.e., ω1 ∼ ω2 for all ω1, ω2 ∈ H.
Fix ω0 ∈ H. For each k, take ωk ∈ Hk and define Mk = Hk ∪

(
∪n

i=1Hji

)
, where

j1, . . . , jn are such that ωk ∈ Hj1 , ω0 ∈ Hjn and Hji ∩ Hji+1 6= ∅ for all i. By
Corollary 3.9, Mk is TIP. Thus, H = ∪kMk is TIP as well, since ω0 ∈ Mk ∩Mk+1

for each k.

Note that {f > 0} is open provided f is lower semicontinuous. Thus, when f
is lower semicontinuous (and X , Y are second countable and locally connected),
a sufficient condition for D = N is that the connected components H1,H2, . . . of
{f > 0} can be arranged in such a way that Hn communicates with Hn+1 for all n.
This follows from Example 3.11 and Corollary 3.9. Note also that, in case X = Rn,
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Y = Rm and µ, ν the Lebesgue measures, P admits a lower semicontinuous density
as far as it admits a Riemann-integrable density.

Example 3.12. Let X = Rn, Y = Rm and µ, ν the Lebesgue measures.
If {f > 0} is convex, then D = N .
Suppose in fact that H ∈ F is convex and µ × ν(H) > 0. Since H is convex,

µ × ν(H − H0) ≤ µ × ν(∂H) = 0 where H0 and ∂H are the interior and the
boundary of H. Thus, it suffices noting that H0 is open and connected.

In various frameworks, for instance in Bayesian statistics, P is usually a mixture
of some other probability laws.

Example 3.13. Let (Θ, E , π) be a probability space and {Pθ : θ ∈ Θ} a collection
of probabilities on F such that θ 7→ Pθ(H) is E-measurable for fixed H ∈ F . Define

P =
∫

Pθ π(dθ).

Then, condition (6) can be written as

U ∈ U , V ∈ V and Pθ(U × V ) = Pθ(U c × V c) = 0, π-a.s.,(8)

implies Pθ(X ∈ U) = 0, π-a.s., or Pθ(Y ∈ V ) = 0, π-a.s..

Several sufficient conditions for D = N can be deduced from (8). For instance,
D = N provided each Pθ meets condition (6) (i.e., (6) holds when P = Pθ) and

(9) π{θ : Pθ(U × V ) = 1} > 0 =⇒ Pθ(U × V ) > 0, π-a.s.,

for all U ∈ U and V ∈ V. Suppose in fact Pθ(U × V ) = Pθ(U c × V c) = 0, π-a.s.,
for some U ∈ U and V ∈ V. Since each Pθ meets (6), then Pθ(U × V c) ∈ {0, 1},
π-a.s.. If Pθ(U × V c) = 0, π-a.s., then Pθ(X ∈ U) = 0, π-a.s.. Otherwise, if

π{θ : Pθ(U × V c) = 1} = π{θ : Pθ(U × V c) > 0} > 0,

condition (9) yields Pθ(U × V c) > 0, π-a.s.. Hence, Pθ(Y ∈ V ) = 0, π-a.s.. One
more sufficient condition for D = N applies when each Pθ has a density fθ with
respect to µ× ν. In that case, D = N whenever

{fθ > 0} is TIP for all θ and(10)

{fθ1 > 0} communicates with {fθ2 > 0} for all θ1, θ2.

Suppose in fact Pθi(U × V ) = Pθi(U
c × V c) = 0, i = 1, 2, for some U ∈ U , V ∈ V

and θ1, θ2 ∈ Θ. By (10),

{fθ1 > 0} ∪ {fθ2 > 0} is TIP.

Using this fact, it is straightforward to verify that Pθ1(X ∈ U) = Pθ2(X ∈ U) = 0
or Pθ1(Y ∈ V ) = Pθ2(Y ∈ V ) = 0. Therefore, condition (8) holds.

Next two examples answer questions posed by Persi Diaconis and David Freed-
man.

Example 3.14. Let (X , d1) and (Y, d2) be metric spaces and Ω = X × Y be
equipped with anyone of the usual distances

d(ω, ω∗) =
√

d1(x, x∗)2 + d2(y, y∗)2, d(ω, ω∗) = d1(x, x∗) ∨ d2(y, y∗),

d(ω, ω∗) = d1(x, x∗) + d2(y, y∗), where ω = (x, y) and ω∗ = (x∗, y∗).
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By Corollary 3.7, under any such d, the balls in Ω are TIP. Let D1 ⊂ X and
D2 ⊂ Y be countable subsets and (x1, y1), (x2, y2), . . . any enumeration of the points
of D1 ×D2. Suppose {f > 0} = ∪nHn, where Hn ∈ F is an open ball centered at
(xn, yn). For some k, the ball Hk is centered at (x1, y2). Then, H1 communicates
with Hk and Hk communicates with H2, and we let j1 = 1, j2 = k and j3 = 2.
Next, for some m, the ball Hm is centered at (x2, y3). Then, H2 communicates
with Hm and Hm communicates with H3, and we let j4 = m and j5 = 3. Arguing
in this way, {f > 0} can be written as {f > 0} = ∪nHjn

where Hjn
communicates

with Hjn+1 for all n. Since each Hjn
is TIP, Corollary 3.9 implies D = N .

Example 3.15. In the notation of Example 3.14, suppose {f > 0} =
(
∪nHn

)c.
Let In = {x : (x, y) ∈ Hn for some y} be the projection of Hn on X . Since Hn is
open, In is open as well. Suppose also that

∑
n µ(In) < µ(X ). Then, Corollary 3.7

yields D = N . In fact, {f = 0} ⊂
(
∪nIn

)
× Y and µ(∪nIn) ≤

∑
n µ(In) < µ(X ).

Letting U0 = X − (∪nIn), thus, one obtains {f > 0} ⊃ U0×Y and P (X ∈ U0) > 0.

Let us turn now to D 6= N . Generally, the complement of a TIP set need not
be TIP. One consequence is that, in spite of Corollary 3.8, the intersection of a
decreasing sequence of TIP sets need not be TIP.

Example 3.16. Let X = Y = (0, 1), µ = ν = Lebesgue measure, F = (0, 1
2 )×(0, 1

2 )
and Gn = ( 1

2−
1
n , 1)×( 1

2 , 1). Since F and Gn are TIP and F communicates with Gn,
then Hn = F ∪Gn is TIP. Further, Hn is a decreasing sequence of sets. However,

H = ∩nHn = F ∪
(
[
1
2
, 1)× (

1
2
, 1)

)
is not TIP. In fact, 0 < QH(F ) < 1, QH(H) = 1 and

F = ((0,
1
2
)× (0, 1)) ∩H = ((0, 1)× (0,

1
2
)) ∩H.

Finally, we exhibit a situation where D 6= N though P is absolutely continuous
(with respect to Lebesgue measure) and has full topological support.

Example 3.17. Let X = Y = (0, 1) and µ = ν = Lebesgue measure. Suppose
{f > 0} = {(x, y) : x, y ∈ I or x, y ∈ (0, 1)− I}, where I is a Borel subset of (0, 1)
satisfying

0 < µ(I ∩ J) < µ(J) for each nonempty open set J ⊂ (0, 1).

Since 0 < P (I × I) < 1 and

I × I = (I × (0, 1)) ∩ {f > 0} = ((0, 1)× I) ∩ {f > 0},
then D 6= N . Moreover, P (J1×J2) ≥ P

(
I∩J1×I∩J2

)
> 0 whenever J1, J2 ⊂ (0, 1)

are nonempty open sets, since µ(I∩Ji) > 0 for i = 1, 2. Thus, P has full topological
support.

4. Two component Gibbs sampler

The Gibbs sampler, also known as Glauber dynamics, plays an important role
in scientific computing. A detailed treatment can be found in various papers or
textbooks; see e.g. [5], [7], [8], [10] and references therein. In this section, the
Gibbs-chain is shown to meet the SLLN (Gibbs-admissibility of P ) if and only if
condition (6) holds. Moreover, under mild conditions (F countably generated and



TRIVIAL INTERSECTION OF σ-FIELDS 11

P � µ × ν), condition (6) is also equivalent to ergodicity of the Gibbs-chain on a
certain subset S0 ⊂ Ω.

In order to define the Gibbs sampler, Y is assumed to admit a regular version of
the conditional distribution given X, say α = {α(x) : x ∈ X}. Thus: (i) α(x) is a
probability measure on V for x ∈ X ; (ii) x 7→ α(x)(V ) is U-measurable for V ∈ V;
(iii) P (U × V ) =

∫
U

α(x)(V )P ◦ X−1(dx) for U ∈ U and V ∈ V. Similarly, X is
supposed to admit a regular version of the conditional distribution given Y , say
β = {β(y) : y ∈ Y}.

The Gibbs-chain (Xn, Yn)n≥0 has been informally described in Subsection 2.3.
Formally, (Xn, Yn) is the homogeneous Markov chain with state space (Ω,F) and
transition kernel

K
(
ω, U × V

)
= K

(
(x, y), U × V

)
=

∫
V

β(b)(U)α(x)(db)

where U ∈ U , V ∈ V and ω = (x, y) ∈ Ω.

Note that P is a stationary distribution for the chain (Xn, Yn). Denote P the law of
(Xn, Yn) when (X0, Y0) ∼ P , and Pω the law of (Xn, Yn) given that (X0, Y0) = ω.

Any distributional requirement of (Xn, Yn) (such us SLLN, CLT, ergodicity, rate
of convergence) depends only on the choice of the conditional distributions α and
β. At least if U and V are countably generated, however, α and β are determined
by P up to null sets. Thus, one can try to characterize properties of (Xn, Yn) via
properties of P . Here, we first focus on the SLLN and then on ergodicity. Recall
that, in Subsection 2.3, P has been called Gibbs-admissible if

mn(φ) →
∫

φdP, P-a.s., for all φ ∈ L1(P )

where mn(φ) = 1
n

∑n−1
i=0 φ(Xi, Yi).

We need the following result.

Theorem 4.1. (Diaconis, Freedman, Khare and Saloff-Coste) Given a bounded
measurable function φ : Ω → R, define φ0 = φ, Gn = σ(X) or Gn = σ(Y ) as n is
even or odd, and φn = E(φn−1 | Gn). Then,

E
(
φ(Xn, Yn) | (X0, Y0) = ω

)
= φ2n(ω) for all n and P -almost all ω.

The previous Theorem 4.1 is a version of Theorem 4.1 of [6]. In the latter paper,
the authors focus on densities so that P is assumed absolutely continuous with
respect to a product measure. However, such an assumption can be dropped, as it
is easily seen from the proof given in [6].

In view of Theorem 4.1 and Burkholder-Chow result mentioned in Subsection
2.1, Gibbs-admissibility and D = N look like very close conditions. In fact, they
are exactly the same thing.

Theorem 4.2.

P is Gibbs-admissible ⇔ D = N ⇔ condition (6) holds.

Proof. The equivalence between (6) and D = N has been already proved in Corol-
lary 3.5.

Suppose that P is Gibbs-admissible. In order to check (6), fix U ∈ U and V ∈ V
with P (U × V ) = P (U c × V c) = 0. Then, P (U × V c) > 0 or P (U c × V ) > 0, say
P (U × V c) > 0. Let

M1 = {y ∈ V c : β(y)(U c) > 0}, U1 = {x ∈ U : α(x)(V ) = α(x)(M1) = 0}.
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Then, P (U c × V c) = 0 yields P (Y ∈ M1) = 0, and P (Y ∈ M1) = 0 together with
P (U × V ) = 0 imply P (X ∈ U − U1) = 0. By induction, for each j ≥ 2, define

Mj = {y ∈ V c : β(y)(U c
j−1) > 0}, Uj = {x ∈ Uj−1 : α(x)(Mj) = 0}

and verify that P (Y ∈ Mj) = 0 = P (X ∈ Uj−1 − Uj). Define further U∞ = ∩jUj

and note that P (X ∈ U∞) = P (X ∈ U). Fix ω = (x, y) ∈ U∞ × V c. Given j, since
α(x)(Mj+1) = 0 and β(b)(Uj) = 1 for each b ∈ V c −Mj+1, the transition kernel K
satisfies

K
(
ω, Uj × V c

)
=

∫
V c

β(b)(Uj)α(x)(db)

=
∫

V c−Mj+1

β(b)(Uj)α(x)(db) = α(x)(V c) = 1.

Thus, K
(
ω, U∞ × V c

)
= 1 for all ω ∈ U∞ × V c and this implies

Pω

(
Xn ∈ U∞, Yn ∈ V c for all n

)
= 1 for all ω ∈ U∞ × V c.

Next, by Gibbs-admissibility of P (with φ = IU×V c), there is a set S ∈ F with
P (S) = 1 and

lim
n

mn

(
IU×V c

)
= P (U × V c), Pω-a.s., for all ω ∈ S.

Since P
(
S ∩ (U∞ × V c)

)
= P (U × V c) > 0, there is a point ω0 ∈ S ∩ (U∞ × V c).

For such an ω0, one obtains

P (U × V c) = lim
n

mn

(
IU×V c

)
= 1, Pω0-a.s..

Therefore P (Y ∈ V ) = 0, that is, condition (6) holds.
Finally, suppose D = N . By the ergodic theorem, since (Xn, Yn) is stationary

under P, for P to be Gibbs-admissible it is enough that P be 0-1-valued on the
shift-invariant sub-σ-field of F∞. Let h be a bounded harmonic function, i.e.,
h : Ω → R is bounded measurable and h(ω) =

∫
h(t)K(ω, dt) for all ω ∈ Ω.

Because of Theorem 4.1 and h harmonic,

h(ω) = E
(
h(Xn, Yn) | (X0, Y0) = ω

)
= h2n(ω) for all n and P -almost all ω.

By Burkholder-Chow result (Subsection 2.1) and D = N , one also obtains

h2n → E
(
h | D

)
=

∫
h dP P -a.s..

Hence, h(ω) =
∫

h dP for P -almost all ω. Let H ∈ F∞ be such that H = θ−1H,
where θ is the shift transformation on Ω∞. Then,

h(ω) = Pω(H)

is a bounded harmonic function satisfying IH = limn h(Xn, Yn), P-a.s.; see e.g.
Theorem 17.1.3 of [9]. Since (Xn, Yn) is stationary under P, then IH = h(X0, Y0), P-
a.s.. Hence, P (h = 0) = 1 or P (h = 1) = 1, which implies P(H) =

∫
h dP ∈ {0, 1}.

This concludes the proof. �

Theorem 4.2 is potentially useful in real problems as well, since it singles out
those P such that Gibbs sampling makes sense; see Subsection 2.3.

Next example is motivated by, in Gibbs sampling applications, the available
information typically consist of the conditionals α and β.
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Example 4.3. Condition (6) can be stated in terms of the conditional distribution
α = {α(x) : x ∈ X} of Y given X. Let V ∈ V. If P (U × V ) = P (U c × V c) = 0 for
some U ∈ U , then α(X)(V ) = IUc(X) ∈ {0, 1} a.s.. Conversely, α(X)(V ) ∈ {0, 1}
a.s. implies P (U × V ) = P (U c × V c) = 0 with U = {x : α(x)(V ) = 0}. It follows
that (6) is equivalent to

(11) α(X)(V ) ∈ {0, 1} a.s. =⇒ α(X)(V ) = 0 a.s. or α(X)(V ) = 1 a.s.

for all V ∈ V. Thus, whether or not P is Gibbs-admissible depends only on the
”supports” of the probability laws α(x), x ∈ X . Condition (11) also suggests various
sufficient criterions. Let

V0 = {V ∈ V : 0 < P
(
α(X)(V ) = 1

)
< 1}.

Condition (11) trivially holds whenever V /∈ V0. Hence, a first (obvious) sufficient
condition for Gibbs-admissibility of P is

(12) α(X)(V ) > 0 a.s. for each V ∈ V0.

A second condition is the following. Let X be a metric space and U the Borel
σ-field. Then, P is Gibbs-admissible provided there is a set T ∈ U satisfying

(i) P (X ∈ T ) = 1 and P (X ∈ U) > 0 for all open U ⊂ X such that T ∩ U 6= ∅;
(ii) For each V ∈ V0, the map x 7→ α(x)(V ) is continuous on T ;
(iii) For each V ∈ V0, there is x ∈ T such that 0 < α(x)(V ) < 1.

Fix in fact V ∈ V0. Then, (ii)-(iii) imply {x ∈ T : 0 < α(x)(V ) < 1} = T∩U 6= ∅ for
some open U ⊂ X . Thus, P

(
0 < α(X)(V ) < 1

)
= P (X ∈ U) > 0 by (i). Therefore,

condition (11) holds. Note that, in view of (ii), condition (iii) is certainly true if T
is connected. Similarly, (iii) holds if, for each V ∈ V0, the map x 7→ α(x)(V ) is not
constant on some connected component of T .

In applications, it is useful that (Xn, Yn) is ergodic on some known set S ∈ F .
By ergodicity on S, we mean S ∈ F and

P (S) = 1, K(ω, S) = 1 and ‖Kn(ω, ·)− P‖ → 0 for all ω ∈ S,

where ‖·‖ is total variation norm and Kn the n-th iterate of K. If (Xn, Yn) is
ergodic on S, for each ω ∈ S one obtains

mn(φ) →
∫

φ dP, Pω-a.s., for all φ ∈ L1(P ).

Thus, ergodicity on some S implies Gibbs-admissibility of P . We now seek condi-
tions for the converse to be true.

To this end, an intriguing choice of S is

S0 = {ω ∈ Ω : K(ω, ·) � P}.

A simple condition for S0 ∈ F is F countably generated.

Theorem 4.4. If F is countably generated, condition (6) holds and P (S0) = 1,
then (Xn, Yn) is ergodic on S0.

Proof. Since P (S0) = 1, the definition of S0 gives K(ω, S0) = 1 for all ω ∈ S0.
Let P0 and K0(ω, ·) be the restrictions of P and K(ω, ·) to F0, where ω ∈ S0 and
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F0 = {F ∩ S0 : F ∈ F}. Then, (Xn, Yn) can be seen as a Markov chain with state
space (S0,F0), transition kernel K0 and stationary distribution P0. Also,

‖Kn(ω, ·)− P‖ = ‖Kn
0 (ω, ·)− P0‖ for all ω ∈ S0.

By standard arguments on Markov chains, thus, it is enough to prove that K0 is
aperiodic and every bounded harmonic function (with respect to K0) is constant
on S0. Let h0 be one such function, i.e., h0 : S0 → R is bounded measurable and
h0(ω) =

∫
h0(t)K0(ω, dt) for all ω ∈ S0. Define h = h0 on S0 and h = 0 on Sc

0.
Then, h : Ω → R is bounded measurable and h(ω) =

∫
h(t)K(ω, dt) for P -almost

all ω. Letting A = {ω ∈ Ω : h(ω) =
∫

h dP} and arguing as in the proof of Theorem
4.2, condition (6) implies P (A) = 1. Thus, K(ω, A) = 1 for each ω ∈ S0, so that

h0(ω) =
∫

h0(t)K0(ω, dt) =
∫

A

h(t)K(ω, dt) =
∫

h dP for all ω ∈ S0.

It remains to prove aperiodicity of K0. Toward a contradiction, suppose there are
d ≥ 2 nonempty disjoint sets F1, . . . , Fd ∈ F0 such that

K0(ω, Fi+1) = 1 for all ω ∈ Fi and i = 1, . . . , d, where Fd+1 = F1.

If P (F1) = 1, then K0(ω, F1) = 1 for all ω ∈ S0, contrary to K0(ω, F1) = 0 for
ω ∈ F1. Hence, P (F1) < 1. Applying Theorem 4.1 to φ = IF1 , one obtains

Knd(ω, F1) = φ2nd(ω) for all n and P -almost all ω.

Hence, the Burkholder-Chow result (Subsection 2.1) and condition (6) yield

Knd(·, F1) = φ2nd → E
(
φ | D

)
=

∫
φ dP = P (F1) a.s..

Since limn Knd(ω, F1) = 1 6= P (F1) for all ω ∈ F1, it follows that P (F1) = 0. But
this is a contradiction, since P (F1) = 0 implies K0(ω, F1) = 0 for all ω ∈ S0. Thus,
K0 is aperiodic. �

By Theorem 4.4, Gibbs-admissibility implies ergodicity on S0 whenever P (S0) =
1 (and F is countably generated). In turn, for P (S0) = 1, it is enough that
P � µ× ν.

Theorem 4.5. If F is countably generated and P � µ×ν, then (Xn, Yn) is ergodic
on S0 if and only if condition (6) holds, that is, if and only if P is Gibbs-admissible.

Proof. It suffices to prove P (S0) = 1. Let f be a version of the density of P with
respect to µ× ν and

f1(x) =
∫

f(x, y)ν(dy), f2(y) =
∫

f(x, y)µ(dx).

Define D1 = {x : 0 < f1(x) < ∞}, D2 = {y : 0 < f2(y) < ∞} and

D = {x ∈ D1 : α(x)(D2) = 1}.

Since P (X ∈ D1) = P (Y ∈ D2) = 1, then P (X ∈ D) = 1. Fix ω = (x, y) ∈ D × Y.
Then, α(x) has density f(x, ·)/f1(x) with respect to ν. Also, β(b) has density
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f(·, b)/f2(b) with respect to µ for each b ∈ D2, and α(x)(D2) = 1. Hence, for
C ∈ F ,

K(ω, C) =
∫ ∫

IC(a, b)β(b)(da)α(x)(db)

=
∫ ∫

IC(a, b)
f(a, b)
f2(b)

µ(da)
f(x, b)
f1(x)

ν(db)

=
1

f1(x)

∫ ∫
IC(a, b)

f(x, b)
f2(b)

f(a, b)µ(da)ν(db)

=
1

f1(x)

∫
IC(a, b)

f(x, b)
f2(b)

P (d(a, b)).

Therefore, K(ω, ·) � P , so that P (S0) ≥ P (D × Y) = 1. �

Example 4.3 (continued). Suppose F is countably generated and P � µ × ν.
By Theorem 4.5, (Xn, Yn) is ergodic on S0 if and only if α meets condition (11).
Let f and f1 be as in the proof of Theorem 4.5 and

Ix = {y : f(x, y) > 0}.

Then, condition (11) holds provided

ν(Ix ∩ Iz) > 0 whenever 0 < f1(x), f1(z) < ∞.

Suppose in fact α(x)(V ) = 1 for some x with 0 < f1(x) < ∞ and V ∈ V0. For
every z satisfying 0 < f1(z) < ∞, one obtains α(z)(Ix) > 0 (since ν(Ix ∩ Iz) > 0)
and this implies α(z)(V ) > 0. Hence, condition (12) holds. Next, suppose X is a
metric space, U the Borel σ-field and µ has full topological support. Then, another
sufficient condition for (11) is

(j) f(x, y) ≤ h(y) for all (x, y) and some ν-integrable function h;
(jj) x 7→ f(x, y) is continuous for fixed y ∈ Y;
(jjj) For each V ∈ V0, there is x ∈ X with ν(Ix ∩ V ) > 0 and ν(Ix ∩ V c) > 0.

Under (j)-(jj), in fact, f1 is a real continuous function and x 7→ α(x)(V ) is contin-
uous on the set {f1 > 0} for all V ∈ V0. Also, since {f1 > 0} is open and µ has
full topological support, P (X ∈ U) > 0 whenever U is open and U ∩ {f1 > 0} 6= ∅.
Hence, conditions (i)-(ii)-(iii) (mentioned in the first part of this Example) are sat-
isfied with T = {f1 > 0}. Recall that (jjj) holds if {f1 > 0} is connected (as well
as in some other situations).

We close the paper with two remarks.

Remark 4.6. (Uniform and geometric ergodicity) Let f , f1, f2 and D be
as in the proof of Theorem 4.5, where F is countably generated and P � µ × ν.
Suppose that

s IU×V ≤ f and f1 ≤ t IU

for some constants s, t > 0 and U ∈ U , V ∈ V with P (U × V ) > 0.
Then, (Xn, Yn) is ergodic on S0. In addition, (Xn, Yn) is uniformly ergodic on

D × Y, in the sense that

sup
ω∈D×Y

‖Kn(ω, ·)− P‖ ≤ q rn
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for some constants q > 0 and r < 1. Also, the convergence rate r can be taken such
that r ≤ 1− (s/t)ν(V ).

In fact, f1 = 0 on U c implies f = 0 on U c × Y, µ × ν-a.e.. Thus, (6) holds
by Corollaries 3.5 and 3.7, and (Xn, Yn) is ergodic on S0 by Theorem 4.5. Since
µ(U) > 0, ν(V ) > 0 and

s µ(U) ν(V ) ≤
∫

U×V

f d(µ× ν) = P (U × V ),

then 0 < ν(V ) < ∞, and one can define the probability measure

γ(C) =
1

ν(V )

∫
IC(a, b)IV (b)

1
f2(b)

P (d(a, b)), C ∈ F .

Since f1 = 0 on U c, then D ⊂ {f1 > 0} ⊂ U . Therefore, for each ω = (x, y) ∈ D×Y,
one obtains

K(ω, C) =
1

f1(x)

∫
IC(a, b)

f(x, b)
f2(b)

P (d(a, b))

≥ s

t

∫
IC(a, b)IV (b)

1
f2(b)

P (d(a, b)) =
s

t
ν(V ) γ(C), C ∈ F .

Thus, D × Y is a small set such that P (D × Y) = 1, and this implies uniform
ergodicity of (Xn, Yn) on D × Y; see pages 1714-1715 and Proposition 2 of [10].

The previous assumptions can be adapted to obtain geometric ergodicity, in the
sense that (Xn, Yn) is ergodic on S0 and ‖Kn(ω, ·)−P‖ ≤ q(ω) rn for P -almost all
ω, where r ∈ (0, 1) is a constant and q a function in L1(P ). As an example (we
omit calculations), (Xn, Yn) is geometrically ergodic whenever

f and f1 are bounded, f ≥ s on U × V, f = 0 on U c × V c,

for some s > 0, U ∈ U , V ∈ V such that

P (U × V ) > 0 and sup
ω∈Uc×V

f(ω) < s
µ(U)
µ(U c)

.

Note that, for the above conditions to apply, µ must be a finite measure. Even if
long to be stated, such conditions can be useful. They apply, for instance, when
(Ω,F) is the Borel unit square, µ = ν = one-dimensional Lebesgue measure, and
P uniform on the lower or upper half triangle.

Remark 4.7. (The k-component case) This paper has been thought and written
for the 2-component case, but its contents extend to the k-component case, with
k ≥ 2 any integer. In particular, Theorems 4.2, 4.4 and 4.5 can be adapted to
the k-component Gibbs sampler. We just mention that, in general, the involved
sub-σ-fields are Ai = σ(Z1, . . . , Zi−1, Zi+1, . . . , Zk), i = 1, . . . , k, where Zi denotes
the i-th coordinate projection on the product of some k measurable spaces.

Acknowledgements: We are grateful to Persi Diaconis for suggesting the problem
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