This session aims to

mix a few talks concerning the asymptotics of

$E(\cdot|\mathcal{G}_n)$

when the conditioning σ -fields \mathcal{G}_n move. In the spirit of the martingale convergence theorem. Among the various questions:

- Is there a σ -field \mathcal{G} such that $E(Z|\mathcal{G}_n) \to E(Z|\mathcal{G})$, in some sense, for sufficiently many random variables Z ?
- What about $E(Z_n|\mathcal{G}_n)$ if the Z_n move as well ? Example:

 $\mathcal{G}_n = \sigma(X_1, \ldots, X_n),$

for some sequence X_n , and $Z_n = 1_{\{X_{n+1} \in B\}}$, so that $E(Z_n | \mathcal{G}_n) = P(X_{n+1} \in B | X_1, \dots, X_n)$ predictive measure • Assume a regular version of the conditional distribution given \mathcal{G}_n exists and define

 $a_n(\omega)(A) = P_{\omega}(A|\mathcal{G}_n)$

for each ω and each A in some sub- σ -field. Let μ_n be a sequence of random probability measures and d a distance between probability measures. What about

 $d[a_n(\omega), \mu_n(\omega)] ?$ Example: $\mathcal{G}_n = \sigma(X_1, \dots, X_n),$ $a_n(\cdot) = P(X_{n+1} \in \cdot | X_1, \dots, X_n) \text{ predictive measure,}$ $\mu_n = (1/n) \sum_{i=1}^n \delta_{X_i} \text{ empirical measure}$

In some frameworks, μ_n can be regarded as an "estimate" of a_n and it is natural to investigate the asymptotics of $d(a_n, \mu_n)$

ASYMPTOTIC PREDICTIVE INFERENCE WITH EXCHANGEABLE DATA

Patrizia Berti, Luca Pratelli, Pietro Rigo

Universita' di Modena e Reggio-Emilia Accademia Navale di Livorno Universita' di Pavia

Torino, June 20, 2017

Framework

- (X_n : n ≥ 1) sequence of random variables with values in a (nice) measurable space (S, B)
- $\mu_n = (1/n) \sum_{i=1}^n \delta_{X_i}$ empirical measure
- $a_n(\cdot) = P(X_{n+1} \in \cdot | X_1, \dots, X_n)$ predictive measure

Under some conditions, $\mu_n(B) - a_n(B) \rightarrow 0$ a.s. for each $B \in \mathcal{B}$. Thus, we fix $\mathcal{D} \subset \mathcal{B}$, and we investigate **uniform** convergence over \mathcal{D} , i.e., we focus on

$$||\mu_n - a_n|| = \sup_{B \in \mathcal{D}} |\mu_n(B) - a_n(B)||$$

Motivations

- Bayesian predictive inference
- Empirical processes for non-ergodic data
- Predictive distributions of exchangeable sequences
- Frequentistic approximations of Bayesian procedures

Assumptions and possible generalizations

• From now on, (X_n) is **exchangeable**. However, most results are still valid if (X_n) is **conditionally identically distributed**, namely,

$$P(X_k \in \cdot | X_1, ..., X_n) = P(X_{n+1} \in \cdot | X_1, ..., X_n)$$
 a.s.

for each $k > n \ge 0$

- Similarly, in most results, $\sigma(X_1, \ldots, X_n)$ can be replaced by any filtration \mathcal{G}_n which makes (X_n) adapted
- To avoid measurability problems, \mathcal{D} is countably determined, i.e.

$$\sup_{B \in \mathcal{D}} |\alpha(B) - \beta(B)| = \sup_{B \in \mathcal{D}_0} |\alpha(B) - \beta(B)|$$

for some countable $\mathcal{D}_0 \subset \mathcal{D}$ and all probabilities α and β on \mathcal{B}

Goals

• To give conditions for

$$||\mu_n - a_n|| \rightarrow 0$$
 a.s. or in probability

• To determine the **rate of convergence**, i.e., to fix the asymptotic behavior of

$$r_n \left| \left| \mu_n - a_n \right| \right|$$

for suitable constants $r_n > 0$, e.g.

$$r_n = \sqrt{n}$$
 or $r_n = \sqrt{\frac{n}{\log \log n}}$

• Another issue, not discussed in this talk, is the limiting distribution (if any) of $r_n (\mu_n - a_n)$ under some distance on the space $l^{\infty}(\mathcal{D})$

Recall that, because of exchangeability, there is a random probability measure μ on \mathcal{B} such that

$$\mu_n(B) \to \mu(B)$$
 a.s. for each $B \in \mathcal{B}$

If $||\mu_n - \mu|| \rightarrow 0$ a.s. then $||\mu_n - a_n|| \rightarrow 0$ a.s.

Examples: $||\mu_n - a_n|| \rightarrow 0$ a.s. provided

- ${\mathcal D}$ is a universal Glivenko-Cantelli-class
- $\mathcal{D} = \mathcal{B}$ and μ a.s. discrete (usual in Bayesian nonparametrics !)
- $S = \mathcal{R}^k$, $\mathcal{D} = \{$ closed convex sets $\}$ and $\mu << \lambda$ a.s. where λ is a (non random) σ -finite product measure

Fix the constants $r_n > 0$ and define $M = \sup_n r_n ||\mu_n - \mu||$. Define also the "exchangeable empirical process"

$$W_n = \sqrt{n} \left(\mu_n - \mu \right)$$

If $E(M) < \infty$ then $\limsup_n ||\mu_n - a_n|| < \infty$ a.s.

Examples:

•
$$\sqrt{\frac{n}{\log n}} ||\mu_n - a_n|| \to 0$$
 a.s. if $\sup_n E\{||W_n||^p\} < \infty$ for some $p > 2$

•
$$\sqrt{\frac{n}{\log \log n}} ||\mu_n - a_n|| \le \frac{1}{\sqrt{2}}$$
 a.s. if \mathcal{D} is a VC-class

8

If $\sup_n E\{||W_n||^p\} < \infty$, for some $p \ge 1$, then

 $r_n ||\mu_n - a_n|| \to 0$ in probability

whenever $\left| \frac{r_n}{\sqrt{n}} \to 0 \right|$

Remark: Thus, if $\sup_n E\{||W_n||^p\} < \infty$, then

$$\sqrt{\frac{n}{\log \log n}} ||\mu_n - a_n|| \to 0$$
 in probability

but a.s. convergence can not be obtained by the LIL

Define

$$h_n(B) = P\{X_{n+1} \in B \mid \mu_n(B)\}$$

Suppose that $\mu(B)$ has absolutely continuous distribution for each $B \in \mathcal{D}$ such that $0 < P(X_1 \in B) < 1$. Then, **under mild technical conditions**, one obtains

$$\sqrt{n} \left| \left| \mu_n - a_n \right| \right|
ightarrow 0$$
 in probability

if and only if

 $\sqrt{n} \{a_n(B) - h_n(B)\} \to 0$ in probability for each $B \in \mathcal{D}$

Open problem: Characterize the above condition. More generally, in addition to $\mu_n(B)$, which further information is required to evaluate $a_n(B)$?