TWO VERSIONS OF THE FTAP

Patrizia Berti, Luca Pratelli and Pietro Rigo

Università di Modena e Reggio Emilia Accademia Navale di Livorno Università di Pavia

Torino, June 22, 2017

THE PROBLEM

Given

- (Ω, \mathcal{A}, P) probability space
- \bullet L linear space of real random variables

say that a probability Q on A nullifies L if

$$
E_Q|X| < \infty \quad \text{and} \quad E_Q(X) = 0 \text{ for all } X \in L
$$

We aim to prove the existence of a probability Q on A such that

 $Q \sim P$ and Q nullifies L

Such a Q may be finitely additive or σ -additive (depending on the problem at hand)

MOTIVATIONS

A number of problems reduce to the existence of a probability Q nullifying L (possibly, without requesting $Q \sim P$):

- Equivalent martingale measures
- de Finetti's coherence principle
- Equivalent probability measures with given marginals
- Compatibility of conditional distributions
- Stationary and reversible Markov chains

NOTE: All results we are going to state hold even if L is a convex cone only, up to replacing $E_Q(X) = 0$ with $E_Q(X) \leq 0$

EQUIVALENT MARTINGALE MEASURES

Let $(S_t : t \in T)$ be a real process indexed by $T \subset \mathcal{R}$, where $0 \in T$. Suppose S adapted to a filtration $(\mathcal{G}_t : t \in T)$ and S_0 constant. An EMM is precisely a (σ -additive) solution Q of our problem, with L the linear space generated by

 $I_A(S_u - S_t)$

for all $t, u \in T$ with $t < u$ and $A \in \mathcal{G}_t$

In the sequel, abusing terminology, given any linear space L of real random variables, an EMM is meant as a solution Q of our problem (namely, $Q \sim P$ and Q nullifies L)

FIRST VERSION OF THE FTAP

If $L \subset L_{\infty}$, the following conditions are equivalent:

(a) There is a finitely additive EMM

(b) $\{P \circ X^{-1} : X \in L, X \ge -1 \text{ a.s.}\}\)$ is tight

(c) There are a constant $k \geq 0$ and a probability measure $T \sim P$ such that

 $E_T(X) \le k$ ess sup($-X$) for all $X \in L$

(d) $\overline{L-L_{\infty}^{+}}\cap L_{\infty}^{+}=\{0\}$ with the closure in the norm-topology of L_{∞}

REM 1: (a) \Leftrightarrow (d) has been proved by G. Cassese and D.B. Rokhlin long before us. (It is life !).

REM 2: Since $L \subset L_{\infty}$, condition (d) agrees with the NFLVR condition of Delbaen and Schachermayer

REM 3: Since $L \subset L_{\infty}$, there is an EMM if and only if

 $\overline{L-L_{\infty}^{+}}\cap L_{\infty}^{+}=\{0\}$ with the closure in $\sigma(L_{\infty},L_{1})$

But the geometric meaning of $\sigma(L_{\infty}, L_1)$ is not so transparent. Hence, a question is what happens if the closure is taken in the normtopology. The answer is just given by the previous theorem

REM 4: The assumption $L \subset L_{\infty}$ can be dropped (but at the price of a less clean characterization)

SECOND VERSION OF THE FTAP

There is an EMM if and only if there are a constant $k \geq 0$ and a probability measure $T \sim P$ such that $E_T |X| < \infty$ and

$$
\left| E_T(X) \leq k \, E_T(X^-) \right| \text{ for all } X \in L
$$

REM 1: The above condition can be written as

$$
\boxed{\text{sup}_X \frac{E_T(X)}{E_T|X|} < 1}
$$

where sup is over those $X \in L$ with $P(X \neq 0) > 0$

REM 5: To apply such result in real problems, one has to select T . A natural choice is $T = P$. In fact, the following corollary is available:

There is an EMM Q such that

 $r P \le Q \le s P$ for some constants $0 < r \le s$

if and only if $E_P|X| < \infty$ and

 $E_P(X) \leq k E_P(X^-)\,$, $X \in L$, for some constant $k \geq 0$.

Our last result is in the spirit of the previous one (to avoid the choice of T). It is a sort of *localized* version of the FTAP.

Suppose $E_P |X| < \infty$ for all $X \in L$. There is an EMM Q such that

 $Q \leq s P$ for some constant $s > 0$

if and only if

 $E_P(X|A_n) \leq k_n E_P(X^-)$, $X \in L$, $n \geq 1$,

for some constants $k_n \geq 0$ and some events $A_n \in \mathcal{A}$ with $P(A_n) \to 1$