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1. General remarks. Let K be a reversible Markov kernel on a

measurable space (S,B) with stationary distribution P . Regard K as

a linear operator, K : L2(P )→ L2(P ), and suppose that L2(P ) admits

an orthonormal basis of (real) eigenfunctions ϕ0, ϕ1, . . . for K. Thus,

ϕ0 = 1 and

Kϕj(s) =

∫
ϕj(t)K(s, dt) = βj ϕj(s), s ∈ S, j = 1, 2, . . . ,

for some (real) eigenvalue βj. Under mild additional conditions,

(1) 4 ‖K`(s, ·)− P‖2 ≤
∑
j>0

β2`
j ϕ

2
j(s) for all s ∈ S,

where ‖·‖ is total variation norm andK` the `-th iterate ofK. Using (1)

is quite natural in MCMC where information on the convergence rate

is crucial. For the 2-component Gibbs sampler, however, one drawback

is that K is generally not reversible.

Diaconis, Khare and Saloff Coste (DKS, in the sequel) go through

this problem by noting that the marginal chains (the x-chain and the θ-

chain) are reversible, and bounding the marginal chains yields bounds

on the bivariate chain. More importantly, in a few examples, DKS are

able to diagonalize the marginal kernels, that is to evaluate their eigen-

values and eigenfunctions. A basic fact is that, in such examples, the
1
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eigenfunctions agree with the orthogonal polynomials corresponding to

the marginals of P .

Following this route, DKS give explicit sharp estimates, both lower

and upper, on the convergence rate of a 2-component Gibbs sampler.

Their results are interesting, elegant and promising of some generaliza-

tions. On the other hand, since an explicit diagonalization is required,

they cover a few particular cases only. In real problems, when sampling

from P , the available information is usually not enough for a diagonal-

ization. Moreover, it is not clear how to handle the k-component Gibbs

sampler for k > 2 using DKS’s argument. Thus, in addition to DKS’s

bounds, it could be useful to have other estimates of the convergence

rate, possibly less sharp but with a broader scope.

Here, we adopt the latter point of view and look for estimates based

on classical drift conditions. In a sense, we investigate the extent of

DKS’s words ”Finding useful V and q is currently a matter of art”

(where V and q are the ingredients of a drift condition); Section 1, p.

8. We will play the devil’s advocate, of course.

2. Plain ergodicity. As far as possible, our notation agrees with

DKS’s. Thus, (X ,F) and (Θ,G) are measurable spaces, with F and

G countably generated, and P is a probability measure on the product

σ-field F ⊗ G. We let

X : X ×Θ→ X and T : X ×Θ→ Θ

denote the canonical projections. It is assumed that P has a density f

with respect to µ×π, where µ is a σ-finite measure on F and π = P◦T−1

is the prior. Also, m(x) =
∫
f(x, θ)π(dθ) is the density of P ◦X−1 with

respect to µ. As DKS, we assume 0 < m(x) <∞ for all x ∈ X .
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We always refer to the Gibbs sampler with kernel

J
(
(x, θ), C

)
=

1

m(x)

∫ ∫
IC(a, b)f(x, b)f(a, b)µ(da)π(db)

where (x, θ) ∈ X × Θ and C ∈ F ⊗ G. Loosely speaking, this is

the version of the Gibbs sampler where the initial state (x, θ) is first

updated into (x, b) and then into (a, b). Abusing notation, since J only

depends on x, we write J(x, ·) instead of J((x, θ), ·). Note that DKS

denote our J by
∼
K.

A first point to be settled, before discussing rates of convergence,

is ergodicity. Indeed, for Gibbs sampling to make sense, J should be

ergodic, in the sense that

‖J `(x, ·)− P‖ → 0, for all x ∈ X , as `→∞.

A simple equivalent condition is in Berti et al. (2008, Theorem 4.5).

Letting N = {C ∈ F ⊗ G : P (C) = 0}, J is ergodic if and only if

(2) σ(X) ∩ σ(T ) = N

where σ(X) = σ
(
σ(X) ∪ N

)
and σ(T ) = σ

(
σ(T ) ∪ N

)
. A more

transparent version of (2) is

P (X ∈ A) = 0 or P (T ∈ B) = 0 whenever

A ∈ F , B ∈ G and P (A×B) = P (Ac ×Bc) = 0.

Moreover, a working sufficient condition for (2) is

(3) {X ∈ A} ∩ {T ∈ B} ⊂ {f > 0} ⊂ {X ∈ A} ∪ {T ∈ B}

for some A ∈ F , B ∈ G with P (A × B) > 0; see Berti et al. (2008,

Corollary 3.7).

3. Uniform ergodicity. Let K be a Markov kernel on (S,B) with

stationary distribution P . If K(s, ·) ≥ εQ(·), s ∈ S, for some ε > 0
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and probability Q on B, then ‖K`(s, ·)−P‖ ≤ (1− ε)`, s ∈ S. Coming

back to the Gibbs sampler, this fact implies

Proposition 1. If m is bounded, then

‖J `(x, ·)− P‖ ≤ (1− u

supm
)` for all x ∈ X ,

where u = sup
B∈G

π(B) inf
x∈X , θ∈B

f(x, θ).

Proof. This is essentially Remark 4.6 of Berti et al. (2008). For defi-

niteness, we repeat the calculations here. Let (S,B) = (X ×Θ, F⊗G),

K = J and u(B) = π(B) infX×B f . It can be assumed u(B) > 0 for

some B ∈ G (otherwise, u = 0 and the Proposition holds trivially).

Fix one such B and define ε = u(B)/ supm and Q(·) = P (· | T ∈ B).

Then,

J(x,C) ≥ J
(
x, C ∩ {T ∈ B}

)
=

1

m(x)

∫ ∫
IC(a, b)IB(b)f(x, b)f(a, b)µ(da)π(db)

≥ infX×B f

supm
P
(
C ∩ {T ∈ B}

)
= εQ(C)

for all x ∈ X and C ∈ F ⊗ G. Since P is stationary for J , it follows

that

‖J `(x, ·)− P‖ ≤ (1− u(B)

supm
)` for all x ∈ X .

Taking sup over B concludes the proof. �

By Proposition 1, if m is bounded and u > 0 then J is uniformly

ergodic, in the sense that ‖J `(x, ·) − P‖ ≤ q ρ`, x ∈ X , for some

constants q and ρ ∈ (0, 1) (here, q = 1 and ρ = 1− u
supm

). To fix ideas,

this happens in case X is compact, Θ a Polish space, m bounded, and

f strictly positive and continuous. An example of DKS falls in this

class.



DISCUSSION ON ”GIBBS SAMPLING, ...” 5

Example 4.1.1 (Beta/Binomial). Let π be uniform, so that m(x) =

1/(n + 1) for all x ∈ X = {0, 1, . . . , n}. Taking sup over those B of

the form B = [δ, 1 − δ], 0 < δ < 1/2, yields u ≥ 1
n+1

( n
2(n+1)

)n. Thus,

Proposition 1 gives ‖J `(x, ·)− P‖ ≤ ρ` for all x with

ρ = 1−
(

n

2(n+ 1)

)n
.

Instead, DKS obtain bounds for x = n only; see Proposition 1.1. More

precisely,

1

2
β`1 ≤ ‖J `(n, ·)− P‖ ≤

β
−1/2
1

1− β2`−1
1

β`1 where β1 = 1− 2

n+ 2
.

Hence, DKS’s estimate of the convergence rate, that is β1, is (much)

better than our ρ for large values of n.

4. Geometric ergodicity. We first recall a general result on Markov

chains.

Theorem 2. (Rosenthal [95]) Let K be an ergodic Markov kernel

on (S,B) with stationary distribution P . Suppose

(4) Kg(s) ≤ α + β g(s), s ∈ S,

for some measurable function g : S → R+ and constants α and β ∈

(0, 1). Fix d > 2α/(1− β), define D = {s ∈ S : g(s) ≤ d} and suppose

also that

(5) K(s, ·) ≥ εQ(·), s ∈ D,
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for some ε > 0 and probability Q on B. Then, for all r ∈ (0, 1) and

s ∈ S,

‖K`(s, ·)− P‖ ≤ (1− ε)r ` + t` (1 +
α

1− β
+ g(s))

where t =
(1 + 2α + 2β d)r (1 + 2α + β d)1−r

(1 + d)1−r .

In a Gibbs sampling framework, Theorem 2 turns into

Proposition 3. Suppose condition (2) holds and

(6) Jφ(x) ≤ α + β φ(x), x ∈ X ,

for some measurable function φ : X → R+ and constants α and β ∈

(0, 1). Fix d > 2α/(1−β), define A = {x ∈ X : φ(x) ≤ d} and suppose

also that

(7) sup
A
m <∞ and inf

A×B
f > 0 for some B ∈ G with P (A×B) > 0.

Then, for all r ∈ (0, 1) and x ∈ X ,

‖J `(x, ·)− P‖ ≤ (1− ε)r ` + t` (1 +
α

1− β
+ φ(x))

with t as in Theorem 2 and ε = π(B) infA×B f

supA m
.

Proof. By (2), J is ergodic. By (6), condition (4) holds with K = J

and g(x, θ) = φ(x). By (7), there is B ∈ G with infA×B f > 0 and

π(B) ≥ P (A× B) > 0. Since supAm <∞, the same calculation as in

the proof of Proposition 1 yields

J(x,C) ≥ π(B) infA×B f

supAm
P (C | T ∈ B) for all x ∈ A and C ∈ F⊗G.

Thus, (5) holds with ε = π(B) infA×B f

supA m
and Q(·) = P (· | T ∈ B). An

application of Theorem 2 concludes the proof. �
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Proposition 3 applies to most DKS’s examples providing reasonable

estimates. Note that: (i) Condition (2) holds (in fact, (3) holds) in

such examples. (ii) If (7) holds for all d, then t can be made arbitrarily

close to β for suitable r, d. There is a trade-off, however, since the

choice of r, d affects (1− ε)r `. (iii) Letting ψ = 1 + α/(1− β) + φ, one

has

t` ψ(x) ≤ e−c whenever ` ≥ {c + logψ(x)}/|log t|

for all x ∈ X and c > 0. This can serve to estimate the impact of the

initial state x. It is roughly of the same order of some DKS’s estimates.

Example 4.2.1 (Poisson/Gamma). Let π be standard exponential,

so that m(x) = 2−x−1 for x ∈ X = {0, 1, . . .}. We take φ(x) = x. In

that case, the set A = {φ ≤ d} meets condition (7) for all d > 0. As

to (6), it suffices noting that

Jφ(x) =
1

m(x)

∫ ∫
a f(a, b)µ(da) f(x, b)π(db) = 2x+1

∫ ∞
0

b f(x, b) e−b db

=
2x+1

x!

∫ ∞
0

bx+1e−2b db =
x+ 1

2
.

Hence, Proposition 3 applies with α = β = 1/2. Now, acting on r, d,

upper bounds on the convergence rate can be easily obtained. At this

stage, using numerical evaluations is convenient.

Example 4.3 (Gaussian). Suppose σ2 + τ 2 = 1/2 and π is N(0, τ 2),

so that the posterior distribution π(· | x) is N(2 τ 2x, 2 τ 2σ2). We take

φ(x) = |x|. Again, A = {φ ≤ d} meets (7) for all d > 0. Recalling

E|N(0, 1)| =
√

2/π, one obtains

Jφ(x) =

∫ ∫
|a|f(a, b)da π(db | x) ≤

∫
{ |b|+ σ

√
2/π} π(db | x)

≤ σ
√

2/π +
√

2σ τ
√

2/π + 2τ 2|x| = α + 2τ 2|x|,
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say. Since 2τ 2 < 2 (σ2 + τ 2) = 1, condition (6) holds with β = 2τ 2.

Again, acting on r, d, one gets estimates (even if non optimal) of the

convergence rate.

5. Higher component problems and concluding remarks. Ap-

parently, DKS’s argument does not apply to the k-component Gibbs

sampler when k > 2. On the other hand, Propositions 1 and 3 can

be adapted to any value of k. We illustrate this point with regard to

Proposition 1 for k = 3. To this end, notation needs to be updated.

Suppose (X ,F) is the product of two measurable spaces (X1,F1),

(X2,F2) and P has a density f with respect to µ1 × µ2 × π, where

µi is a σ-finite measure on Fi, i = 1, 2. The marginal densities of the

pairs x = (x1, x2), (x1, θ) and (x2, θ) are assumed finite and strictly

positive everywhere. Also, h denotes the density of (x1, θ). Then,

Proposition 1 takes the form

Proposition 4. Let J be the Markov kernel of the 3-component Gibbs

sampler. If m and h are bounded, then

‖J `(x, ·)− P‖ ≤ (1− v

supm
)` for all x ∈ X ,

where v = µ2(X2) sup
B∈G

π(B)
{infx∈X , θ∈B f(x, θ)}2

supx1∈X1, θ∈B h(x1, θ)
.

Incidentally, we note that µ2(X2) < ∞ whenever infX×B f > 0 for

some B ∈ G with π(B) > 0.

Next, we would like to draw the Authors’ attention to an issue that

might potentially enlarge the scope of their argument. Consonni and

Veronese (2001) introduced the concept of Conditionally reducible nat-

ural exponential families. Basically, they are multivariate natural expo-

nential families whose densities can be expressed as a product of lower
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dimensional (possibly univariate) conditional exponential families, each

being indexed by its own natural parameter. The underlying idea is in-

timately related to that of a cut. Examples include the multinomial and

Wishart sampling families. We wonder whether the methods described

by the Authors could be applied recursively to conditionally reducible

families admitting a factorization in terms of univariate exponential

families, such as the multinomial family.

To sum up, DKS’s estimates behave excellently, indeed very close to

optimum, in those examples for which they are thought. One further

merit is that lower bounds are provided as well. On the other hand,

Propositions 1 and 3, presented in this discussion, have a broader scope,

can be applied for any initial state x (while DKS’s bounds are some-

times available for certain x only), but can provide less sharp bounds.
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