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Abstract. Let (Xn) be a sequence of random variables, adapted to a filtration

(Gn), and let µn = (1/n)
∑n

i=1 δXi
and an(·) = P (Xn+1 ∈ · | Gn) be the

empirical and the predictive measures. We focus on

‖µn − an‖ = sup
B∈D

|µn(B)− an(B)|

where D is a class of measurable sets. Conditions for ‖µn − an‖ → 0, almost
surely or in probability, are given. Also, to determine the rate of convergence,

the asymptotic behavior of rn ‖µn − an‖ is investigated for suitable constants

rn. Special attention is paid to rn =
√
n and rn =

√
n

log logn
. The sequence

(Xn) is exchangeable or, more generally, conditionally identically distributed.

1. introduction

Throughout, S is a Borel subset of a Polish space and

X = (Xn : n ≥ 1)

a sequence of S-valued random variables on a probability space (Ω,A, P ). Further,
G = (Gn : n ≥ 0) is a filtration on (Ω,A, P ) and B is the Borel σ-field on S (thus, B
is generated by the relative topology that S inherits as a subset of a Polish space).
We fix a subclass D ⊂ B and we let ‖·‖ denote the sup-norm over D, namely

‖α− β‖ = sup
B∈D
|α(B)− β(B)|

whenever α and β are probability measures on B.
Let

µn = (1/n)

n∑
i=1

δXi and an(·) = P (Xn+1 ∈ · | Gn).

Both µn and an are random probability measures on B; µn is the empirical measure
and (if X is G-adapted) an is the predictive measure.

Under some conditions, µn(B) − an(B)
a.s.−→ 0 for fixed B ∈ B. In that case, a

question is whether D is such that ‖µn−an‖
a.s.−→ 0. As discussed in Section 2, such

a question naturally arises in several frameworks, including Bayesian consistency
and frequentistic approximation of Bayesian procedures.

In this paper, conditions for ‖µn−an‖ −→ 0, almost surely or in probability, are
given. Also, to determine the rate of convergence, the limit behavior of rn‖µn−an‖
is investigated for suitable constants rn. Special attention is paid to rn =

√
n and
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rn =
√

n
log logn . Various new results are proved. In addition, to get a reasonably

complete picture, a few known facts from [2]-[5] are connected and unified.
The sequence X is assumed to be exchangeable or, more generally, condition-

ally identically distributed. We refer to Section 3 for conditionally identically
distributed sequences, and we recall that X is exchangeable if (Xj1 , . . . , Xjn) ∼
(X1, . . . , Xn) for all n ≥ 1 and all permutations (j1, . . . , jn) of (1, . . . , n).

We next briefly state some results. We assume a mild measurability condition
on D, called countable determinacy and introduced in Section 3. For the sake of
simplicity, we take X exchangeable and G = GX , where

GX0 = {∅,Ω} and GXn = σ(X1, . . . , Xn), n ≥ 1,

is the filtration induced by X. We also recall that, since X is exchangeable, there

is a (a.s. unique) random probability measure µ on B such that µn(B)
a.s.−→ µ(B)

for each B ∈ B; see e.g. [1].

Then, ‖µn − an‖
a.s.−→ 0 with D = B provided µ is a.s. discrete; see Example 4.

This simple fact may be useful in Bayesian nonparametrics, for µ is a.s. discrete
under most popular priors. Indeed, examples of nonparametric priors which lead
to a discrete µ are: Dirichlet [26], two-parameter Poisson-Dirichlet [24], normalized
completely random measures [20], Gibbs-type priors [12] and beta-stacy [23].

Another useful fact (Theorem 2 and Corollary 3) is that

lim sup
n

√
n

log log n
‖µn − an‖ ≤

√
2 sup
B∈D

µ(B) (1− µ(B)) a.s.(1)

provided D is a VC-class. Unlike the i.i.d. case, inequality (1) is not sharp. If X is
exchangeable, it may be even that n ‖µn−an‖ converges a.s. to a finite limit. This
happens, for instance, when the probability distribution of X is of the Ferguson-
Dirichlet type, as defined in Subsection 4.2; see also forthcoming Theorem 6. Even
if not sharp, however, inequality (1) provides a meaningful information on the rate
of convergence of ‖µn − an‖ when X is exchangeable and D a VC-class.

The notion of VC-class is recalled in Subsection 4.1 (before Corollary 3). VC-
classes are quite popular in frameworks such as empirical processes and statistical
learning, and in real problems D is often a VC-class. If S = Rk, for instance,
D =

{
(−∞, t1] × . . . × (−∞, tk] : (t1, . . . , tk) ∈ Rk

}
, D = {half spaces} and

D = {closed balls} are VC-classes.
A further result (Corollary 8) concerns rn =

√
n. Let

a∗n(B) = P
{
Xn+1 ∈ B | IB(X1), . . . , IB(Xn)

}
where IB(Xi) denotes the indicator of the set {Xi ∈ B}. Roughly speaking, a∗n(B)
is the conditional probability that the next observation falls in B given only the
history of B in the previous observations. Suppose that the random variable µ(B)
has an absolutely continuous distribution (with respect to Lebesgue measure) for
those B ∈ D satisfying 0 < P (X1 ∈ B) < 1. Then, for fixed B ∈ D,

√
n
{
µn(B)− an(B)

} P−→ 0 ⇐⇒
√
n
{
an(B)− a∗n(B)

} P−→ 0.

In addition, under some assumptions on the empirical processes Wn =
√
n (µn−µ)

(satisfied in several real situations), one obtains

√
n ‖µn − an‖

P−→ 0 ⇐⇒
√
n
{
an(B)− a∗n(B)

} P−→ 0 for each B ∈ D.
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However,
√
n
{
an(B)−a∗n(B)

}
may fail to converge to 0 in probability even if µ(B)

has an absolutely continuous distribution; see Example 9.
We finally mention a result (Theorem 10) which, though in the spirit of this

paper, is quite different from those described above. Such a result has been inspired
by [22]. Let S = {0, 1} and C the Borel σ-field on [0, 1]. For C ∈ C, define

πn(C) = P
(
µn{1} ∈ C

)
and π∗n(C) = P

(
an{1} ∈ C

)
and denote by ρ the bounded Lipschitz metric between probability measures on C.
Then,

ρ(πn, π
∗
n) ≤ 1

n

(
1 +

c

3

)
provided the limit frequency µ{1} has an absolutely continuous distribution with
Lipschitz density f . Here, c is the Lipschitz constant of f . This rate of convergence
can not be improved.

2. Motivations

There are various (non-independent) reasons for investigating how close µn and
an are. We now list a few of them under the assumption that

(Ω,A) = (S∞, B∞), Xn = n-th coordinate projection, G = GX .

Most remarks, however, apply to any filtration G which makes X adapted.
Similarly, in most of the subsequent comments, ‖·‖ could be replaced by some

other distance ρ between probability measures. For instance, in [10], the asymp-
totics of ρ(µn, an) is taken into account with ρ the bounded Lipschitz metric and ρ
the Wasserstein distance.

For a general background of Bayesian nonparametrics, often mentioned in what
follows, we refer to [18]-[19]; see also [11].

2.1. Bayesian predictive inference. In a number of frameworks, mainly in Bayesian
nonparametrics and discrete time filtering, one main goal is to evaluate an. Quite
frequently, however, the latter can not be obtained in closed form. For some non-
parametric priors, for instance, no closed form expression of an is known. In these
situations, there are essentially two ways out: to compute an numerically (MCMC)
or to estimate it by the available data. If we take the second route, and if data are
exchangeable or conditionally identically distributed, µn is a reasonable estimate
of an. Then, the asymptotic behavior of the error µn − an plays a role. In a sense,
this is the basic reason for investigating ‖µn − an‖.

2.2. Bayesian consistency. In the spirit of Subsection 2.1, with µn regarded as
an estimate of an, it makes sense to say that µn is consistent if ‖µn − an‖ → 0 a.s.
or in probability. In this brief discussion, to fix ideas, we focus on a.s. convergence.

Suppose X is exchangeable. Let P be the set of all probability measures on
B and µ the random probability measure on B introduced in Section 1. For each
ν ∈ P, let Pν denote the probability measure on B∞ which makes X i.i.d. with
common distribution ν. By de Finetti’s theorem, conditionally on µ, the sequence
X is i.i.d. with common distribution µ; see e.g. [1]. It follows that

P (·) =

∫
P
Pν(·)π(dν)
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where π is the probability distribution of µ. Such a π is usually called the prior
distribution.

In the standard approach to consistency, after Diaconis and Freedman [13], the
asymptotic behavior of any statistical procedure is investigated under Pν for each
ν ∈ P. The procedure is consistent provided it behaves properly for each ν ∈ P
(or at least for each ν in some known subset of P); see e.g. [18], [19] and references
therein. In particular, µn is a consistent estimate of an if

Pν
(
‖µn − an‖ → 0

)
= 1 for each ν ∈ P.

A different point of view is taken in this paper. Indeed, ‖µn−an‖ is investigated
under P and µn is a consistent estimate of an if

P
(
‖µn − an‖ → 0

)
= 1.

In a sense, in the first approach, consistency of Bayesian procedures is evaluated
from a frequentistic point of view. Regarding P as a parameter space, in fact,
µn is demanded to approximate an for each possible value of the parameter ν.
This request is certainly admissible. Furthermore, the first notion of consistency is
technically stronger than the second. On the other hand, it is not so clear why a
Bayesian inferrer should take a frequentistic point of view. Even if P is a mixture
of {Pν : ν ∈ P}, when dealing with X the relevant probability measure is P and not
Pν . Furthermore, according to de Finetti, any probability statement should concern
“observable” facts, while Pν is conditional on the “unobservable” fact µ = ν. Thus,
according to us, the second approach to consistency is in line with the foundations
of Bayesian statistics. A similar opinion is in [10] and [16].

2.3. Frequentistic approximation of Bayesian procedures. In Subsection
2.1, µn is viewed as an estimate of an. A similar view, developed in [10], is to
regard µn as a frequentistic approximation of the Bayesian procedure an. For in-
stance, such an approximation makes sense within the empirical Bayes approach,
where the orthodox Bayesian reasoning is combined in various ways with frequen-
tistic elements; see e.g. [15] and [25]. We also note that, historically, one reason
for introducing exchangeability (possibly, the main reason) was to justify observed
frequencies as predictors of future events; see [9] and [28]. In this sense, to focus
on ‖µn − an‖ is in line with de Finetti’s ideas.

2.4. Predictive distributions of exchangeable sequences. If X is exchange-
able, just very little is known on the general form of an for given n; see e.g. [16].
Indeed, a representation theorem for an would be a major breakthrough. Failing
the latter, to fix the asymptotic behavior of ‖µn − an‖ contributes to fill the gap.

2.5. Empirical processes for non-ergodic data. Slightly abusing terminology,
say that X is ergodic if P is 0-1 valued on the sub-σ-field

σ
(
lim sup

n
µn(B) : B ∈ B

)
.

In real problems, X is often non-ergodic. Most stationary sequences, for instance,
fail to be ergodic. Or else, an exchangeable sequence is ergodic if and only if is i.i.d.
Now, if X is i.i.d., the empirical process is defined as Gn =

√
n (µn−µ0) where µ0 is

the probability distribution of X1. But this definition has various drawbacks when
X is not ergodic; see [6]. In fact, unless X is i.i.d., the probability distribution of X
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is not determined by that of X1. More importantly, if Gn converges in distribution
in l∞(D) (the metric space l∞(D) is recalled before Corollary 8) then

‖µn − µ0‖ = n−1/2‖Gn‖
P−→ 0.

But ‖µn−µ0‖ typically fails to converge to 0 in probability when X is not ergodic.
Thus, empirical processes for non-ergodic data should be defined in some different
way. At least in the exchangeable case, a meaningful option is to center µn by an,
namely, to let Gn =

√
n (µn − an).

3. Assumptions

Let D ⊂ B. To avoid measurability problems, D is assumed to be countably
determined. This means that there is a countable subclass D0 ⊂ D such that

‖α− β‖ = sup
B∈D0

|α(B)− β(B)| for all probability measures α, β on B.

A sufficient condition is that there is a countable subclass D0 ⊂ D such that, for
each B ∈ D and each probability measure α on B, one obtains

lim
n
α(B∆Bn) = 0 for some sequence Bn ∈ D0.

Most classes D involved in applications are countably determined. For instance,
D = B is countably determined (for B is countably generated). Or else, if S = Rk,
then D = {closed convex sets}, D = {half spaces}, D = {closed balls} and

D =
{

(−∞, t1]× . . .× (−∞, tk] : (t1, . . . , tk) ∈ Rk
}

are countably determined.
We next recall the notion of conditionally identically distributed (c.i.d.) random

variables. The sequence X is c.i.d. with respect to G if it is G-adapted and

P
(
Xk ∈ · | Gn

)
= P

(
Xn+1 ∈ · | Gn

)
a.s. for all k > n ≥ 0.

Roughly speaking, at each time n ≥ 0, the future observations (Xk : k > n) are
identically distributed given the past Gn. When G = GX , the filtration G is not
mentioned at all and X is just called c.i.d. Then, X is c.i.d. if and only if

(2)
(
X1, . . . , Xn, Xn+2

)
∼
(
X1, . . . , Xn, Xn+1

)
for all n ≥ 0.

Exchangeable sequences are c.i.d., for they meet (2), while the converse is not
true. Indeed, X is exchangeable if and only if it is stationary and c.i.d. We refer to
[4] for more on c.i.d. sequences. Here, it suffices to mention the strong law of large
numbers and some of its consequences.

If X is c.i.d., there is a random probability measure µ on B satisfying

µn(B)
a.s.−→ µ(B) for every B ∈ B.

As a consequence, if X is c.i.d. with respect to G, for each n ≥ 0 and B ∈ B one
obtains

E
{
µ(B) | Gn

}
= lim

m
E
{
µm(B) | Gn

}
= lim

m

1

m

m∑
k=n+1

P
(
Xk ∈ B | Gn

)
= P

(
Xn+1 ∈ B | Gn

)
= an(B) a.s.

In particular, an(B) = E
{
µ(B) | Gn

} a.s.−→ µ(B) so that µn(B)− an(B)
a.s.−→ 0.
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From now on, X is c.i.d. with respect to G. In particular, X is identically
distributed and µ0 denotes the probability distribution of X1. We also let

Wn =
√
n (µn − µ).

Note that, if X is i.i.d., then µ = µ0 a.s. and Wn reduces to the usual empirical
process.

4. Results

Our results can be sorted into three subsections.

4.1. Two general criterions. Since an(B) = E
{
µ(B) | Gn

}
a.s. and D is count-

ably determined, one obtains

‖µn − an‖ = sup
B∈D0

|µn(B)− an(B)|

= sup
B∈D0

|E
{
µn(B)− µ(B) | Gn

}
| ≤ E

{
‖µn − µ‖ | Gn

}
a.s.

This simple inequality has some nice consequences. Recall that D is a universal

Glivenko-Cantelli class if ‖µn − µ0‖
a.s.−→ 0 whenever X is i.i.d.; see e.g. [14], [17],

[27].

Theorem 1. ([3] and [5]). Suppose D is countably determined and X is c.i.d.
with respect to G. Then,

(i) ‖µn − an‖
a.s.−→ 0 if ‖µn − µ‖

a.s.−→ 0 and ‖µn − an‖
P−→ 0 if ‖µn − µ‖

P−→ 0.

In particular, ‖µn − an‖
a.s.−→ 0 provided X is exchangeable, G = GX and D

is a universal Glivenko-Cantelli class.

(ii) rn‖µn − an‖
P−→ 0 whenever the constants rn satisfy rn/

√
n → 0 and

supnE
{
‖Wn‖p

}
<∞ for some p ≥ 1.

Proof. Since ‖µn − µ‖ ≤ 1, if ‖µn − µ‖
a.s.−→ 0 then

‖µn − an‖ ≤ E
{
‖µn − µ‖ | Gn

} a.s.−→ 0

because of the martingale convergence theorem in the version of [8]. Similarly,

‖µn − µ‖
P−→ 0 implies E

{
‖µn − µ‖ | Gn

} P−→ 0 by an obvious argument based on
subsequences. Next, let X be exchangeable. By de Finetti’s theorem, conditionally
on µ, the sequence X is i.i.d. with common distribution µ. If D is a universal
Glivenko-Cantelli class, it follows that

P
(
‖µn − µ‖ → 0

)
=

∫
P
{
‖µn − µ‖ → 0 | µ

}
dP =

∫
1dP = 1.

This concludes the proof of (i). As to (ii), just note that

E
{(
rn ‖µn − an‖

)p} ≤ rpnE{E{‖µn − µ‖ | Gn}p}
≤ rpnE

{
‖µn − µ‖p

}
= (rn/

√
n)pE

{
‖Wn‖p

}
.

�

While Theorem 1 is essentially known (the proof has been provided for com-
pleteness only) the next result is new.
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Theorem 2. Suppose D is countably determined and X is c.i.d. with respect to G.
Fix the constants rn > 0 and define

Mk = sup
n≥k

rn ‖µn − µ‖.

If E(Mk) <∞ for some k, then

lim sup
n

rn‖µn − an‖ ≤ lim sup
n

rn‖µn − µ‖ <∞ a.s.

Moreover, if X is exchangeable, then E(Mk) <∞ for some k whenever

(iii) rn =
√
n

(logn)1/c
and supnE

{
‖Wn‖p

}
<∞ for some p > 1 and 0 < c < p;

(iv) rn =
√

n
log logn and

sup
n
E
{

exp (u ‖Wn‖)
}
≤ a exp (b u2) for all u > 0 and some a, b > 0.

Proof. Fix j ≥ k. Since E(Mj) ≤ E(Mk) <∞, then

lim sup
n

rn‖µn − an‖ ≤ lim sup
n

E
{
rn‖µn − µ‖ | Gn

}
≤ lim sup

n
E
{
Mj | Gn

}
= Mj a.s.

where the last equality is due to the martingale convergence theorem. Hence,

lim sup
n

rn‖µn − an‖ ≤ inf
j≥k

Mj = lim sup
n

rn‖µn − µ‖ a.s.

Further, E(Mk) <∞ obviously implies lim supn rn‖µn − µ‖ ≤Mk <∞ a.s.
Next, suppose X exchangeable. Then,

Sn = n ‖µn − µ‖ =
√
n ‖Wn‖

is a submartingale with respect to the filtration Un = σ
[
GXn ∪ σ(µ)

]
. In fact,

(n+ 1)E
{
µn+1(B) | Un

}
= nµn(B) + P

{
Xn+1 ∈ B | Un

}
= nµn(B) + P

{
Xn+1 ∈ B | σ(µ)

}
= nµn(B) + µ(B) a.s.

Therefore,

E(Sn+1 | Un) ≥ (n+ 1) sup
B∈D

∣∣∣E{µn+1(B) | Un
}
− µ(B)

∣∣∣ = n sup
B∈D

∣∣∣µn(B)− µ(B)
∣∣∣ = Sn a.s.

(iii) Let rn =
√
n

(logn)1/c
and supnE

{
‖Wn‖p

}
< ∞, where p > 1 and 0 < c < p.

Then,

E(Mp
3 ) = E

{(
sup
n≥1

max
2n<j≤2(n+1)

rj‖µj − µ‖
)p}

≤
∞∑
n=1

E
{

max
2n<j≤2(n+1)

rpj ‖µj − µ‖
p
}
.

If 2n < j ≤ 2(n+1), then

rj‖µj − µ‖ = j−1/2(log j)−1/c Sj ≤ (2n)−1/2
(
log 2n

)−1/c
Sj .
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By such inequality and since (Sj) is a submartingale, one obtains

E(Mp
3 ) ≤

∑
n

(
2n
)−p/2(

log 2n
)−p/c

E
{

max
j≤2(n+1)

Spj
}

≤
(
p/(p− 1)

)p∑
n

(
2n
)−p/2(

log 2n
)−p/c

E
{
Sp
2(n+1)

}
=
(
p/(p− 1)

)p
2p/2

∑
n

(
log 2n

)−p/c
E
{
‖W2(n+1)‖p

}
≤
(

sup
j
E
{
‖Wj‖p

}) (
p/(p− 1)

)p
2p/2 (log 2

)−p/c ∑
n

n−p/c <∞.

(iv) Let rn =
√

n
log logn and supnE

{
exp (u ‖Wn‖)

}
≤ a exp (b u2) for all u > 0

and some a, b > 0. We aim to prove that

P (M4 > t) ≤ c exp
(
−v t2

)
for large t and suitable constants c, v > 0.

In this case, in fact, E(M4) =
∫∞
0
P (M4 > t) dt <∞.

First note that

P (M4 > t) = P
(⋃
n≥1

{
max

3n<j≤3(n+1)
rj‖µj − µ‖ > t

})
≤
∞∑
n=1

P
(

max
j≤3(n+1)

Sj > mn t
)

where mn =
√

3n log log 3n =
√

3n (log n+ log log 3).

Let θ > 0. On noting that exp (θ Sn) is still a submartingale, one also obtains

P
(

max
j≤3(n+1)

Sj > mn t
)

= P
(

max
j≤3(n+1)

exp (θSj) > exp (θmn t)
)

≤ exp (−θmn t)E
{

exp (θS3(n+1))
}

= exp (−θmn t)E
{

exp
(
θ
√

3(n+1) ‖W3(n+1)‖
)}

≤ a exp
(
−θmn t+ θ2 b 3(n+1)

)
.

The minimum over θ is attained at θ = mn t
6 b 3n . Thus,

P
(

max
j≤3(n+1)

Sj > mn t
)
≤ a exp

(−m2
nt

2

12 b 3n
)

= a exp
(−t2 log log 3

12 b

)
n−t

2/12 b.

If t ≥
√

24 b, then t2 > 12 b and t2

t2−12 b ≤ 2. Thus, one finally obtains

P (M4 > t) ≤ a exp
(−t2 log log 3

12 b

) ∑
n

n−t
2/12 b

≤ a exp
(−t2 log log 3

12 b

) t2

t2 − 12 b

≤ 2 a exp
(−t2 log log 3

12 b

)
for every t ≥

√
24 b.

�

Some remarks are in order. In the sequel, if α and β are measures on a σ-field E ,
we write α� β to mean that α is absolutely continuous with respect to β, namely,
α(A) = 0 whenever A ∈ E and β(A) = 0.
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• Sometimes, the condition of Theorem 1-(i) is necessary as well, namely,

‖µn − an‖
a.s.−→ 0 if and only if ‖µn − µ‖

a.s.−→ 0. For instance, this happens
when G = GX and µ� λ a.s., where λ is a (non-random) σ-finite measure

on B. In this case, in fact, ‖an − µ‖
a.s.−→ 0 by [7, Theorem 1].

• Several examples of universal Glivenko-Cantelli classes are available; see
[14], [17], [27] and references therein. Moreover, for many choices of D and p
there is a universal constant c(p) such that supnE

{
‖Wn‖p

}
≤ c(p) provided

X is i.i.d.; see e.g. [27, Sect. 2.14.1-2.14.2]. For such D and p, de Finetti’s
theorem yields supnE

{
‖Wn‖p

}
≤ c(p) even if X is exchangeable. In fact,

conditionally on µ, the sequence X is i.i.d. with common distribution µ.
Hence, E

{
‖Wn‖p | µ

}
≤ c(p) a.s. for all n. By the same argument, if there

are a, b > 0 such that

sup
n
E
{

exp (u ‖Wn‖)
}
≤ a exp (b u2) for all u > 0 if X is i.i.d.,

such inequality is still true (with the same a and b) if X is exchangeable.

• A straightforward consequence of the law of iterated logarithm is that con-
vergence in probability can not be replaced by a.s. convergence in Theorem

1-(ii). Take in fact rn =
√

n
log logn , G = GX and X i.i.d. Then, for each

B ∈ D, the law of iterated logarithm yields

lim sup
n

rn‖µn − an‖ ≥ lim sup
n

rn{µn(B)− an(B)}

= lim sup
n

∑n
i=1{IB(Xi)− µ0(B)}√

n log log n
=
√

2µ0(B) (1− µ0(B)) a.s.

• Let D be countably determined, X exchangeable and G = GX . In view of

Theorem 2, for rn ‖µn−an‖
a.s.−→ 0, it suffices that supnE

{
‖Wn‖p

}
<∞ and

rn (logn)1/c√
n

→ 0, for some p > 1 and 0 < c < p, or that E
{

exp (u ‖Wn‖)
}

can be estimated as in (iv) and rn

√
log logn

n → 0. For instance,√
n

log n
‖µn − an‖

a.s.−→ 0

whenever supnE
{
‖Wn‖p

}
< ∞ for some p > 2. Another example is

provided by Corollary 3. To state it, a definition is to be recalled.

Say that D is a Vapnik-Cervonenkis class, or simply a VC-class, if

card
{
B ∩ I : B ∈ D

}
< 2n

for some integer n ≥ 1 and all subsets I ⊂ S with card (I) = n; see e.g. [14], [17],
[21], [27]. In other terms, the power set of I can not be written as

{
B∩ I : B ∈ D

}
for each collection I of n points from S. As noted in Section 1, VC-classes are
instrumental to empirical processes and statistical learning. If S = Rk, for instance,
D =

{
(−∞, t1] × . . . × (−∞, tk] : (t1, . . . , tk) ∈ Rk

}
, D = {half spaces} and

D = {closed balls} are (countably determined) VC-classes.



10 PATRIZIA BERTI, LUCA PRATELLI, AND PIETRO RIGO

Corollary 3. Let D be a countably determined VC-class. If X is exchangeable and
G = GX , then

lim sup
n

√
n

log log n
‖µn − an‖ ≤

√
2 sup
B∈D

µ(B) (1− µ(B)) a.s.

Proof. Just note that, if X is i.i.d. and D is a countably determined VC-class, then
E
{

exp (u ‖Wn‖)
}

can be estimated as in Theorem 2-(iv) and

lim sup
n

√
n

log log n
‖µn − µ0‖ =

√
2 sup
B∈D

µ0(B) (1− µ0(B)) a.s.

See e.g. [14, Sect. 9.5], [21, Corollary 2.4] and [27, page 246]. �

We finally give a couple of examples concerning Theorem 1.

Example 4. Let D = B. If X is i.i.d., then ‖µn − µ0‖
a.s.−→ 0 if and only if µ0 is

discrete. By de Finetti’s theorem, it follows that ‖µn − µ‖
a.s.−→ 0 whenever X is

exchangeable and µ is a.s. discrete. Thus, under such assumptions and G = GX ,

Theorem 1-(i) implies ‖µn−an‖
a.s.−→ 0. This result has a possible practical interest

in Bayesian nonparametrics. As noted in Section 1, in fact, most nonparametric
priors are such that µ is a.s. discrete.

Example 5. Let S = Rk and D = {closed convex sets}. If X is i.i.d. and µ0 � λ,

where λ is a σ-finite product measure on B, then ‖µn − µ0‖
a.s.−→ 0; see [17, page

198]. Applying Theorem 1-(i) again, one obtains ‖µn − an‖
a.s.−→ 0 provided X is

exchangeable, G = GX and µ � λ a.s. While “morally true”, this argument does
not work for D = {Borel convex sets} since the latter choice of D is not countably
determined.

4.2. The dominated case. In the sequel, as in Section 2, it is convenient to work
on the coordinate space. Accordingly, from now on, we let

(Ω,A) = (S∞, B∞), Xn = n-th coordinate projection, G = GX .

Further, Q is a probability measure on (Ω,A) and

bn(·) = Q(Xn+1 ∈ · | Gn)

is the predictive measure under Q. We say that Q is a Ferguson-Dirichlet law if

bn(·) =
cQ(X1 ∈ ·) + nµn(·)

c+ n
, Q-a.s. for some constant c > 0.

If P � Q, the asymptotic behavior of ‖µn − an‖ under P should be affected by
that of ‖µn − bn‖ under Q. This (rough) idea is realized by the next result.

Theorem 6. (Theorems 1 and 2 of [5]). Suppose D is countably determined,
X is c.i.d., and P � Q. Then,

√
n ‖µn − an‖

P−→ 0

whenever
√
n ‖µn − bn‖

Q−→ 0 and the sequence (Wn) is uniformly integrable under
both P and Q. In addition,

n ‖µn − an‖ converges a.s. to a finite limit
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provided Q is a Ferguson-Dirichlet law, supnEQ
{
‖Wn‖2

}
<∞, and

sup
n

n
{
EQ(f2)− EQ

{
EQ(f | Gn)2

}}
<∞ where f = dP/dQ.

To make Theorem 6 effective, the condition P � Q should be given a simple
characterization. This happens at least when S is finite.

As an example, suppose S = {0, 1}, X exchangeable and Q Ferguson-Dirichlet.
Then, for all n ≥ 1 and x1, . . . , xn ∈ {0, 1},

P
(
X1 = x1, . . . , Xn = xn

)
=

∫
[0,1]

θk(1− θ)n−k πP (dθ),

Q
(
X1 = x1, . . . , Xn = xn

)
=

∫
[0,1]

θk(1− θ)n−k πQ(dθ),

where k =
∑n
i=1 xi and πP and πQ are the probability distributions of µ{1} under

P and Q. Thus, P � Q if and only if πP � πQ. In addition, πQ is known to be
a beta distribution. Let m denote the Lebesgue measure on the Borel σ-field on
[0, 1]. Since any beta distribution has the same null sets as m, one obtains P � Q
if and only if πP � m. This fact is behind the next result.

Theorem 7. (Corollaries 4 and 5 of [5]). Suppose S = {0, 1} and X exchange-

able. Then,
√
n
(
µn{1} − an{1}

) P−→ 0 whenever the distribution of µ{1} is abso-

lutely continuous. Moreover, n
(
µn{1} − an{1}

)
converges a.s. (to a finite limit)

provided the distribution of µ{1} is absolutely continuous with an almost Lipschitz
density.

In Theorem 7, a real function f on (0, 1) is said to be almost Lipschitz in case
x 7→ f(x)xu(1− x)v is Lipschitz on (0, 1) for some reals u, v < 1.

A consequence of Theorem 7 is to be stressed. For each B ∈ B, define

GBn = σ
(
IB(X1), . . . , IB(Xn)

)
and Tn(B) =

√
n
{
an(B)− P

{
Xn+1 ∈ B | GBn

}}
.

Also, let l∞(D) be the set of real bounded functions on D, equipped with uniform
distance. In the next result, Wn is regarded as a random element of l∞(D) and
convergence in distribution is meant in Hoffmann-Jørgensen’s sense; see [27].

Corollary 8. Let D be countably determined and X exchangeable. Suppose that

(j) µ(B) has an absolutely continuous distribution for each B ∈ D such that
0 < P (X1 ∈ B) < 1;

(jj) the sequence (‖Wn‖) is uniformly integrable;

(jjj) Wn converges in distribution, in the space l∞(D), to a tight limit.

Then,

√
n ‖µn − an‖

P−→ 0 ⇐⇒ Tn(B)
P−→ 0 for each B ∈ D.

Proof. Let Un(B) =
√
n
{
µn(B) − P

{
Xn+1 ∈ B | GBn

}}
. Then, Un(B)

P−→ 0

for each B ∈ D. In fact, Un(B) = 0 a.s. if P (X1 ∈ B) ∈ {0, 1}. Otherwise,

Un(B)
P−→ 0 follows from Theorem 7, since (IB(Xn)) is an exchangeable sequence

of indicators and µ(B) has an absolutely continuous distribution. Next, suppose
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Tn(B)
P−→ 0 for each B ∈ D. Letting Cn =

√
n (µn − an), we have to prove that

‖Cn‖
P−→ 0. Equivalently, regarding Cn as a random element of l∞(D), we have to

prove that Cn(B)
P−→ 0 for fixed B ∈ D and the sequence (Cn) is asymptotically

tight; see e.g. [27, Section 1.5]. Given B ∈ D, since both Un(B) and Tn(B)

converge to 0 in probability, then Cn(B) = Un(B)− Tn(B)
P−→ 0. Moreover, since

Cn(B) = E
{
Wn(B) | Gn

}
a.s., the asymptotic tightness of (Cn) follows from (jj)-

(jjj); see [4, Remark 4.4]. Hence, ‖Cn‖
P−→ 0. Conversely, if ‖Cn‖

P−→ 0, one
trivially obtains

|Tn(B)| = |Un(B)− Cn(B)| ≤ |Un(B)|+ ‖Cn‖
P−→ 0 for each B ∈ D.

�

If X is exchangeable, it frequently happens that supnE
{
‖Wn‖2

}
<∞, which in

turn implies condition (jj). Similarly, (jjj) is not unusual. As an example, conditions
(jj)-(jjj) hold if S = R, D = {(−∞, t] : t ∈ R} and µ0 is discrete or P (X1 = X2) = 0;
see [4, Theorem 4.5].

Unfortunately, as shown by the next example, Tn(B) may fail to converge to 0 in
probability even if µ(B) has an absolutely continuous distribution. This suggests
the following general question. In the exchangeable case, in addition to µn(B),
which further information is required to evaluate an(B) ? Or at least, are there

reasonable conditions for Tn(B)
P−→ 0 ? Even if intriguing, to our knowledge, such

a question does not have a satisfactory answer.

Example 9. Let S = R and Xn = Yn Z
−1, where Yn and Z are independent real

random variables, Yn ∼ N(0, 1) for all n, and Z has an absolutely continuous dis-
tribution supported by [1,∞). Conditionally on Z, the sequence X = (X1, X2, . . .)
is i.i.d. with common distribution N(0, Z−2). Thus, X is exchangeable and

µ(B) = P (X1 ∈ B | Z) = fB(Z) a.s. for each B ∈ B

where fB(z) = (2π)−1/2z

∫
B

exp
(
−(xz)2/2

)
dx for z ≥ 1.

Fix B ∈ B, with B ⊂ [1,∞) and P (X1 ∈ B) > 0, and set C = {−x : x ∈
B}. Since fB = fC , then µ(B) = µ(C) and an(B) = an(C) a.s. Further, µ(B)
has an absolutely continuous distribution, for fB is differentiable and f ′B 6= 0.
Nevertheless, one between Tn(B) and Tn(C) does not converge to 0 in probability.
Define in fact g = IB−IC and Rn = n−1/2

∑n
i=1 g(Xi). Since µ(g) = µ(B)−µ(C) =

0 a.s., then Rn converges stably to the kernel N(0, 2µ(B)); see [4, Theorem 3.1].
On the other hand, since an(B) = an(C) a.s., one obtains

Rn =
√
n
{
µn(B)− µn(C)

}
= Tn(C)− Tn(B)+

+
√
n
{
µn(B)− P

{
Xn+1 ∈ B | GBn

}}
−
√
n
{
µn(C)− P

{
Xn+1 ∈ C | GCn

}}
a.s.

Therefore, if Tn(B)
P−→ 0 and Tn(C)

P−→ 0, Theorem 7 implies the contradiction

Rn
P−→ 0.

4.3. Exchangeable sequences of indicators. Let P be the set of all probability
measures on B, equipped with the topology of weak convergence. Since µn and an
are P-valued random variables, we can define their probability distributions on the
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Borel σ-field on P, say πn(·) = P (µn ∈ ·) and π∗n(·) = P (an ∈ ·). Another way to
compare µn and an, different from the one adopted so far, is to focus on ρ(πn, π

∗
n)

where ρ is a suitable distance between the Borel probability measures on P. In this
subsection, we actually take this point of view.

Let C be the Borel σ-field on [0, 1] and ρ the bounded Lipschitz metric between
probability measures on C. We recall that ρ is defined as

ρ(π, π∗) = sup
φ
|π(φ)− π∗(φ)|

where π and π∗ are probability measures on C and sup is over those functions φ on
[0, 1] such that φ is 1-Lipschitz and −1 ≤ φ ≤ 1.

Suppose S = {0, 1} and X exchangeable. Define πn(C) = P
(
µn{1} ∈ C

)
and

π∗n(C) = P
(
an{1} ∈ C

)
for C ∈ C. Because of Theorem 7, n

(
µn{1} − an{1}

)
converges a.s. whenever the distribution of µ{1} is absolutely continuous with
an almost Lipschitz density f . Our last result, inspired by [22], provides a sharp
estimate of ρ(πn, π

∗
n) under the assumption that f is Lipschitz (and not only almost

Lipschitz).

Theorem 10. Suppose S = {0, 1}, X exchangeable, and the distribution of µ{1}
absolutely continuous with a Lipschitz density f . Then,

ρ(πn, π
∗
n) ≤ 1

n

(
1 +

c

3

)
for all n ≥ 1, where c is the Lipschitz constant of f .

Proof. LetXn = (1/n)
∑n
i=1Xi and V = lim supnXn. Since theXn are indicators,

µn{1} = Xn, µ{1} = V and an{1} = E(V | Gn) a.s.

Take Q to be the Ferguson-Dirichlet law such that

bn{1} = EQ(V | Gn) =
1 + nXn

n+ 2
, Q-a.s.

Then, |Xn−EQ(V | Gn)| ≤ 1/(n+ 2). Further, since V is uniformly distributed on
[0, 1] under Q,

P
(
X1 = x1, . . . , Xn = xn

)
=

∫ 1

0

θk(1− θ)n−k f(θ) dθ

=

∫
V k(1− V )n−k f(V ) dQ =

∫
{X1=x1,...,Xn=xn}

f(V ) dQ

for all n ≥ 1 and x1, . . . , xn ∈ {0, 1}, where k =
∑n
i=1 xi. Hence, f(V ) is a density

of P with respect to Q. In particular,

E(V | Gn) =
EQ
{
V f(V ) | Gn

}
EQ
{
f(V ) | Gn

} a.s.

Note also that

EQ
{

(Xn − V )2
}

= EQ

{
EQ
{

(Xn − V )2 | V
}}

= EQ

{V (1− V )

n

}
=

1

6n
.

Next, define Un = f(V )− EQ
{
f(V ) | Gn

}
. Then,

EQ
{
Xn Un | Gn

}
= XnEQ(Un | Gn) = 0, Q-a.s.
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Since P � Q, then EQ
{
Xn Un | Gn

}
= 0 a.s. with respect to P as well. Hence,

|Xn − E(V | Gn)| ≤ |Xn − EQ(V | Gn)|+ |EQ(V | Gn)− E(V | Gn)|

≤ 1

n+ 2
+
∣∣∣EQ(V | Gn)−

EQ
{
V f(V ) | Gn

}
EQ
{
f(V ) | Gn

} ∣∣∣
=

1

n+ 2
+
|EQ

{
V Un | Gn

}
|

EQ
{
f(V ) | Gn

}
=

1

n+ 2
+
|EQ

{
(V −Xn)Un | Gn

}
|

EQ
{
f(V ) | Gn

}
≤ 1

n+ 2
+
EQ
{
|(V −Xn)Un| | Gn

}
EQ
{
f(V ) | Gn

} a.s.

Since f is Lipschitz, one also obtains

EQ(U2
n) = EQ

{(
f(V )− f(Xn)− EQ

{
f(V )− f(Xn) | Gn

})2}
≤ 4EQ

{
(f(V )− f(Xn))2

}
≤ 4 c2EQ

{
(Xn − V )2

}
.

We are finally in a position to estimate ρ(πn, π
∗
n). In fact, if φ is a function on

[0, 1], with φ 1-Lipschitz and −1 ≤ φ ≤ 1, then

|πn(φ)− π∗n(φ)| =
∣∣∣E{φ(Xn)

}
− E

{
φ
(
E(V | Gn)

)}∣∣∣ ≤ E|Xn − E(V | Gn)|

≤ 1

n+ 2
+ E

{ EQ{|(Xn − V )Un| | Gn
}

EQ
{
f(V ) | Gn

} }
=

1

n+ 2
+ EQ

{
f(V )

EQ
{
|(Xn − V )Un| | Gn

}
EQ
{
f(V ) | Gn

} }
=

1

n+ 2
+ EQ|(Xn − V )Un|

≤ 1

n+ 2
+
√
EQ
{

(Xn − V )2
}
EQ(U2

n)

≤ 1

n+ 2
+ 2 cEQ

{
(Xn − V )2

}
=

1

n+ 2
+

c

3n
<

1

n

(
1 +

c

3

)
.

�

The rate provided by Theorem 10 can not be improved. Take in fact φ(x) = x2/2

and suppose P a Ferguson-Dirichlet law with an{1} = 1+nµn{1}
n+2 a.s. Then, since

µ{1} is uniformly distributed on [0, 1], one obtains

2 (n+ 2) ρ(πn, π
∗
n) ≥ 2 (n+ 2) |πn(φ)− π∗n(φ)|

= (n+ 2)
{
E
(
µn{1}2

)
− E

(
an{1}2

)}
= (n+ 2)E

(
µn{1}2

)
−

1 + n2E
(
µn{1}2

)
+ 2nE

(
µn{1}

)
n+ 2

=
4 (n+ 1)E

(
µn{1}2

)
− 2nE

(
µn{1}

)
− 1

n+ 2
−→ 4E

(
µ{1}2

)
− 2E

(
µ{1}

)
=

1

3
.
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