ASYMPTOTIC PREDICTIVE INFERENCE WITH EXCHANGEABLE DATA

PATRIZIA BERTI, LUCA PRATELLI, AND PIETRO RIGO

ABSTRACT. Let (X_n) be a sequence of random variables, adapted to a filtration (\mathcal{G}_n) , and let $\mu_n = (1/n) \sum_{i=1}^n \delta_{X_i}$ and $a_n(\cdot) = P(X_{n+1} \in \cdot | \mathcal{G}_n)$ be the empirical and the predictive measures. We focus on

$$\|\mu_n - a_n\| = \sup_{B \in \mathcal{D}} |\mu_n(B) - a_n(B)|$$

where \mathcal{D} is a class of measurable sets. Conditions for $\|\mu_n - a_n\| \to 0$, almost surely or in probability, are given. Also, to determine the rate of convergence, the asymptotic behavior of $r_n \|\mu_n - a_n\|$ is investigated for suitable constants r_n . Special attention is paid to $r_n = \sqrt{n}$ and $r_n = \sqrt{\frac{n}{\log \log n}}$. The sequence (X_n) is exchangeable or, more generally, conditionally identically distributed.

1. INTRODUCTION

Throughout, S is a Borel subset of a Polish space and

$$X = (X_n : n \ge 1)$$

a sequence of S-valued random variables on a probability space (Ω, \mathcal{A}, P) . Further, $\mathcal{G} = (\mathcal{G}_n : n \ge 0)$ is a filtration on (Ω, \mathcal{A}, P) and \mathcal{B} is the Borel σ -field on S (thus, \mathcal{B} is generated by the relative topology that S inherits as a subset of a Polish space). We fix a subclass $\mathcal{D} \subset \mathcal{B}$ and we let $\|\cdot\|$ denote the sup-norm over \mathcal{D} , namely

$$\|\alpha - \beta\| = \sup_{B \in \mathcal{D}} |\alpha(B) - \beta(B)|$$

whenever α and β are probability measures on \mathcal{B} .

Let

$$\mu_n = (1/n) \sum_{i=1}^n \delta_{X_i} \quad \text{and} \qquad a_n(\cdot) = P(X_{n+1} \in \cdot \mid \mathcal{G}_n).$$

Both μ_n and a_n are random probability measures on \mathcal{B} ; μ_n is the empirical measure and (if X is \mathcal{G} -adapted) a_n is the predictive measure.

Under some conditions, $\mu_n(B) - a_n(B) \xrightarrow{a.s.} 0$ for fixed $B \in \mathcal{B}$. In that case, a question is whether \mathcal{D} is such that $\|\mu_n - a_n\| \xrightarrow{a.s.} 0$. As discussed in Section 2, such a question naturally arises in several frameworks, including Bayesian consistency and frequentistic approximation of Bayesian procedures.

In this paper, conditions for $\|\mu_n - a_n\| \longrightarrow 0$, almost surely or in probability, are given. Also, to determine the rate of convergence, the limit behavior of $r_n \|\mu_n - a_n\|$ is investigated for suitable constants r_n . Special attention is paid to $r_n = \sqrt{n}$ and

 $^{2010\} Mathematics\ Subject\ Classification.\ 60G09,\ 60B10,\ 60A10,\ 60G57,\ 62F15.$

Key words and phrases. Bayesian consistency – Conditional identity in distribution – Empirical measure – Exchangeability – Predictive measure – Random probability measure.

 $r_n = \sqrt{\frac{n}{\log \log n}}$. Various new results are proved. In addition, to get a reasonably complete picture, a few known facts from [2]-[5] are connected and unified.

The sequence X is assumed to be exchangeable or, more generally, conditionally identically distributed. We refer to Section 3 for conditionally identically distributed sequences, and we recall that X is *exchangeable* if $(X_{j_1}, \ldots, X_{j_n}) \sim (X_1, \ldots, X_n)$ for all $n \geq 1$ and all permutations (j_1, \ldots, j_n) of $(1, \ldots, n)$.

We next briefly state some results. We assume a mild measurability condition on \mathcal{D} , called *countable determinacy* and introduced in Section 3. For the sake of simplicity, we take X exchangeable and $\mathcal{G} = \mathcal{G}^X$, where

$$\mathcal{G}_0^X = \{\emptyset, \Omega\}$$
 and $\mathcal{G}_n^X = \sigma(X_1, \dots, X_n), \quad n \ge 1,$

is the filtration induced by X. We also recall that, since X is exchangeable, there is a (a.s. unique) random probability measure μ on \mathcal{B} such that $\mu_n(B) \xrightarrow{a.s.} \mu(B)$ for each $B \in \mathcal{B}$; see e.g. [1].

for each $B \in \hat{\mathcal{B}}$; see e.g. [1]. Then, $\|\mu_n - a_n\| \xrightarrow{a.s.} 0$ with $\mathcal{D} = \mathcal{B}$ provided μ is a.s. discrete; see Example 4. This simple fact may be useful in Bayesian nonparametrics, for μ is a.s. discrete under most popular priors. Indeed, examples of nonparametric priors which lead to a discrete μ are: Dirichlet [26], two-parameter Poisson-Dirichlet [24], normalized completely random measures [20], Gibbs-type priors [12] and beta-stacy [23].

Another useful fact (Theorem 2 and Corollary 3) is that

(1)
$$\limsup_{n} \sqrt{\frac{n}{\log \log n}} \|\mu_n - a_n\| \le \sqrt{2} \sup_{B \in \mathcal{D}} \mu(B) \left(1 - \mu(B)\right)} \quad \text{a.s.}$$

provided \mathcal{D} is a VC-class. Unlike the i.i.d. case, inequality (1) is not sharp. If X is exchangeable, it may be even that $n \|\mu_n - a_n\|$ converges a.s. to a finite limit. This happens, for instance, when the probability distribution of X is of the Ferguson-Dirichlet type, as defined in Subsection 4.2; see also forthcoming Theorem 6. Even if not sharp, however, inequality (1) provides a meaningful information on the rate of convergence of $\|\mu_n - a_n\|$ when X is exchangeable and \mathcal{D} a VC-class.

The notion of VC-class is recalled in Subsection 4.1 (before Corollary 3). VCclasses are quite popular in frameworks such as empirical processes and statistical learning, and in real problems \mathcal{D} is often a VC-class. If $S = \mathbb{R}^k$, for instance, $\mathcal{D} = \{(-\infty, t_1] \times \ldots \times (-\infty, t_k] : (t_1, \ldots, t_k) \in \mathbb{R}^k\}, \mathcal{D} = \{\text{half spaces}\}$ and $\mathcal{D} = \{\text{closed balls}\}$ are VC-classes.

A further result (Corollary 8) concerns $r_n = \sqrt{n}$. Let

$$a_n^*(B) = P\{X_{n+1} \in B \mid I_B(X_1), \dots, I_B(X_n)\}$$

where $I_B(X_i)$ denotes the indicator of the set $\{X_i \in B\}$. Roughly speaking, $a_n^*(B)$ is the conditional probability that the next observation falls in B given only the history of B in the previous observations. Suppose that the random variable $\mu(B)$ has an absolutely continuous distribution (with respect to Lebesgue measure) for those $B \in \mathcal{D}$ satisfying $0 < P(X_1 \in B) < 1$. Then, for fixed $B \in \mathcal{D}$,

$$\sqrt{n} \left\{ \mu_n(B) - a_n(B) \right\} \xrightarrow{P} 0 \quad \Longleftrightarrow \quad \sqrt{n} \left\{ a_n(B) - a_n^*(B) \right\} \xrightarrow{P} 0.$$

In addition, under some assumptions on the empirical processes $W_n = \sqrt{n} (\mu_n - \mu)$ (satisfied in several real situations), one obtains

$$\sqrt{n} \|\mu_n - a_n\| \xrightarrow{P} 0 \quad \iff \quad \sqrt{n} \{a_n(B) - a_n^*(B)\} \xrightarrow{P} 0 \text{ for each } B \in \mathcal{D}.$$

However, $\sqrt{n} \{a_n(B) - a_n^*(B)\}$ may fail to converge to 0 in probability even if $\mu(B)$ has an absolutely continuous distribution; see Example 9.

We finally mention a result (Theorem 10) which, though in the spirit of this paper, is quite different from those described above. Such a result has been inspired by [22]. Let $S = \{0, 1\}$ and C the Borel σ -field on [0, 1]. For $C \in C$, define

$$\pi_n(C) = P(\mu_n\{1\} \in C) \text{ and } \pi_n^*(C) = P(a_n\{1\} \in C)$$

and denote by ρ the bounded Lipschitz metric between probability measures on C. Then,

$$\rho(\pi_n, \pi_n^*) \le \frac{1}{n} \left(1 + \frac{c}{3}\right)$$

provided the limit frequency $\mu\{1\}$ has an absolutely continuous distribution with Lipschitz density f. Here, c is the Lipschitz constant of f. This rate of convergence can not be improved.

2. MOTIVATIONS

There are various (non-independent) reasons for investigating how close μ_n and a_n are. We now list a few of them under the assumption that

 $(\Omega, \mathcal{A}) = (S^{\infty}, \mathcal{B}^{\infty}), \quad X_n = n \text{-th coordinate projection}, \quad \mathcal{G} = \mathcal{G}^X.$

Most remarks, however, apply to any filtration \mathcal{G} which makes X adapted.

Similarly, in most of the subsequent comments, $\|\cdot\|$ could be replaced by some other distance ρ between probability measures. For instance, in [10], the asymptotics of $\rho(\mu_n, a_n)$ is taken into account with ρ the bounded Lipschitz metric and ρ the Wasserstein distance.

For a general background of Bayesian nonparametrics, often mentioned in what follows, we refer to [18]-[19]; see also [11].

2.1. Bayesian predictive inference. In a number of frameworks, mainly in Bayesian nonparametrics and discrete time filtering, one main goal is to evaluate a_n . Quite frequently, however, the latter can not be obtained in closed form. For some non-parametric priors, for instance, no closed form expression of a_n is known. In these situations, there are essentially two ways out: to compute a_n numerically (MCMC) or to estimate it by the available data. If we take the second route, and if data are exchangeable or conditionally identically distributed, μ_n is a reasonable estimate of a_n . Then, the asymptotic behavior of the error $\mu_n - a_n$ plays a role. In a sense, this is the basic reason for investigating $\|\mu_n - a_n\|$.

2.2. **Bayesian consistency.** In the spirit of Subsection 2.1, with μ_n regarded as an estimate of a_n , it makes sense to say that μ_n is consistent if $\|\mu_n - a_n\| \to 0$ a.s. or in probability. In this brief discussion, to fix ideas, we focus on a.s. convergence.

Suppose X is exchangeable. Let \mathcal{P} be the set of all probability measures on \mathcal{B} and μ the random probability measure on \mathcal{B} introduced in Section 1. For each $\nu \in \mathcal{P}$, let P_{ν} denote the probability measure on \mathcal{B}^{∞} which makes X i.i.d. with common distribution ν . By de Finetti's theorem, conditionally on μ , the sequence X is i.i.d. with common distribution μ ; see e.g. [1]. It follows that

$$P(\cdot) = \int_{\mathcal{P}} P_{\nu}(\cdot) \, \pi(d\nu)$$

where π is the probability distribution of μ . Such a π is usually called the *prior* distribution.

In the standard approach to consistency, after Diaconis and Freedman [13], the asymptotic behavior of any statistical procedure is investigated under P_{ν} for each $\nu \in \mathcal{P}$. The procedure is consistent provided it behaves properly for each $\nu \in \mathcal{P}$ (or at least for each ν in some *known* subset of \mathcal{P}); see e.g. [18], [19] and references therein. In particular, μ_n is a consistent estimate of a_n if

$$P_{\nu}(\|\mu_n - a_n\| \to 0) = 1$$
 for each $\nu \in \mathcal{P}$.

A different point of view is taken in this paper. Indeed, $\|\mu_n - a_n\|$ is investigated under P and μ_n is a consistent estimate of a_n if

$$P(\|\mu_n - a_n\| \to 0) = 1.$$

In a sense, in the first approach, consistency of Bayesian procedures is evaluated from a frequentistic point of view. Regarding \mathcal{P} as a parameter space, in fact, μ_n is demanded to approximate a_n for each possible value of the parameter ν . This request is certainly admissible. Furthermore, the first notion of consistency is technically stronger than the second. On the other hand, it is not so clear why a Bayesian inferrer should take a frequentistic point of view. Even if P is a mixture of $\{P_{\nu} : \nu \in \mathcal{P}\}$, when dealing with X the relevant probability measure is P and not P_{ν} . Furthermore, according to de Finetti, any probability statement should concern "observable" facts, while P_{ν} is conditional on the "unobservable" fact $\mu = \nu$. Thus, according to us, the second approach to consistency is in line with the foundations of Bayesian statistics. A similar opinion is in [10] and [16].

2.3. Frequentistic approximation of Bayesian procedures. In Subsection 2.1, μ_n is viewed as an estimate of a_n . A similar view, developed in [10], is to regard μ_n as a frequentistic approximation of the Bayesian procedure a_n . For instance, such an approximation makes sense within the empirical Bayes approach, where the orthodox Bayesian reasoning is combined in various ways with frequentistic elements; see e.g. [15] and [25]. We also note that, historically, one reason for introducing exchangeability (possibly, the main reason) was to justify observed frequencies as predictors of future events; see [9] and [28]. In this sense, to focus on $\|\mu_n - a_n\|$ is in line with de Finetti's ideas.

2.4. Predictive distributions of exchangeable sequences. If X is exchangeable, just very little is known on the general form of a_n for given n; see e.g. [16]. Indeed, a representation theorem for a_n would be a major breakthrough. Failing the latter, to fix the asymptotic behavior of $||\mu_n - a_n||$ contributes to fill the gap.

2.5. Empirical processes for non-ergodic data. Slightly abusing terminology, say that X is ergodic if P is 0-1 valued on the sub- σ -field

$$\sigma\bigl(\limsup_n \mu_n(B): B \in \mathcal{B}\bigr).$$

In real problems, X is often non-ergodic. Most stationary sequences, for instance, fail to be ergodic. Or else, an exchangeable sequence is ergodic if and only if is i.i.d. Now, if X is i.i.d., the empirical process is defined as $G_n = \sqrt{n} (\mu_n - \mu_0)$ where μ_0 is the probability distribution of X_1 . But this definition has various drawbacks when X is not ergodic; see [6]. In fact, unless X is i.i.d., the probability distribution of X

is not determined by that of X_1 . More importantly, if G_n converges in distribution in $l^{\infty}(\mathcal{D})$ (the metric space $l^{\infty}(\mathcal{D})$ is recalled before Corollary 8) then

$$\|\mu_n - \mu_0\| = n^{-1/2} \|G_n\| \xrightarrow{P} 0.$$

But $\|\mu_n - \mu_0\|$ typically fails to converge to 0 in probability when X is not ergodic. Thus, empirical processes for non-ergodic data should be defined in some different way. At least in the exchangeable case, a meaningful option is to center μ_n by a_n , namely, to let $G_n = \sqrt{n} (\mu_n - a_n)$.

3. Assumptions

Let $\mathcal{D} \subset \mathcal{B}$. To avoid measurability problems, \mathcal{D} is assumed to be *countably* determined. This means that there is a countable subclass $\mathcal{D}_0 \subset \mathcal{D}$ such that

$$\|\alpha - \beta\| = \sup_{B \in \mathcal{D}_0} |\alpha(B) - \beta(B)| \quad \text{for all probability measures } \alpha, \beta \text{ on } \mathcal{B}.$$

A sufficient condition is that there is a countable subclass $\mathcal{D}_0 \subset \mathcal{D}$ such that, for each $B \in \mathcal{D}$ and each probability measure α on \mathcal{B} , one obtains

$$\lim_{n} \alpha(B\Delta B_n) = 0 \quad \text{for some sequence } B_n \in \mathcal{D}_0.$$

Most classes \mathcal{D} involved in applications are countably determined. For instance, $\mathcal{D} = \mathcal{B}$ is countably determined (for \mathcal{B} is countably generated). Or else, if $S = \mathbb{R}^k$, then $\mathcal{D} = \{\text{closed convex sets}\}, \mathcal{D} = \{\text{half spaces}\}, \mathcal{D} = \{\text{closed balls}\}$ and

$$\mathcal{D} = \left\{ (-\infty, t_1] \times \ldots \times (-\infty, t_k] : (t_1, \ldots, t_k) \in \mathbb{R}^k \right\}$$

are countably determined.

We next recall the notion of *conditionally identically distributed* (c.i.d.) random variables. The sequence X is c.i.d. with respect to \mathcal{G} if it is \mathcal{G} -adapted and

$$P(X_k \in \cdot | \mathcal{G}_n) = P(X_{n+1} \in \cdot | \mathcal{G}_n) \quad \text{a.s. for all } k > n \ge 0.$$

Roughly speaking, at each time $n \ge 0$, the future observations $(X_k : k > n)$ are identically distributed given the past \mathcal{G}_n . When $\mathcal{G} = \mathcal{G}^X$, the filtration \mathcal{G} is not mentioned at all and X is just called c.i.d. Then, X is c.i.d. if and only if

(2)
$$(X_1, \ldots, X_n, X_{n+2}) \sim (X_1, \ldots, X_n, X_{n+1})$$
 for all $n \ge 0$.

Exchangeable sequences are c.i.d., for they meet (2), while the converse is not true. Indeed, X is exchangeable if and only if it is stationary and c.i.d. We refer to [4] for more on c.i.d. sequences. Here, it suffices to mention the strong law of large numbers and some of its consequences.

If X is c.i.d., there is a random probability measure μ on \mathcal{B} satisfying

$$\mu_n(B) \xrightarrow{a.s.} \mu(B) \quad \text{for every } B \in \mathcal{B}$$

As a consequence, if X is c.i.d. with respect to \mathcal{G} , for each $n \geq 0$ and $B \in \mathcal{B}$ one obtains

$$E\{\mu(B) \mid \mathcal{G}_n\} = \lim_{m} E\{\mu_m(B) \mid \mathcal{G}_n\} = \lim_{m} \frac{1}{m} \sum_{k=n+1}^{m} P(X_k \in B \mid \mathcal{G}_n)$$
$$= P(X_{n+1} \in B \mid \mathcal{G}_n) = a_n(B) \quad \text{a.s.}$$

In particular, $a_n(B) = E\{\mu(B) \mid \mathcal{G}_n\} \xrightarrow{a.s.} \mu(B)$ so that $\mu_n(B) - a_n(B) \xrightarrow{a.s.} 0$.

From now on, X is c.i.d. with respect to \mathcal{G} . In particular, X is identically distributed and μ_0 denotes the probability distribution of X_1 . We also let

$$W_n = \sqrt{n} \left(\mu_n - \mu \right)$$

Note that, if X is i.i.d., then $\mu = \mu_0$ a.s. and W_n reduces to the usual empirical process.

4. Results

Our results can be sorted into three subsections.

4.1. Two general criterions. Since $a_n(B) = E\{\mu(B) \mid \mathcal{G}_n\}$ a.s. and \mathcal{D} is countably determined, one obtains

$$\|\mu_n - a_n\| = \sup_{B \in \mathcal{D}_0} |\mu_n(B) - a_n(B)|$$

= $\sup_{B \in \mathcal{D}_0} |E\{\mu_n(B) - \mu(B) | \mathcal{G}_n\}| \le E\{\|\mu_n - \mu\| | \mathcal{G}_n\}$ a.s.

This simple inequality has some nice consequences. Recall that \mathcal{D} is a *universal Glivenko-Cantelli class* if $\|\mu_n - \mu_0\| \xrightarrow{a.s.} 0$ whenever X is i.i.d.; see e.g. [14], [17], [27].

Theorem 1. ([3] and [5]). Suppose \mathcal{D} is countably determined and X is c.i.d. with respect to \mathcal{G} . Then,

- (i) $\|\mu_n a_n\| \xrightarrow{a.s.} 0 \text{ if } \|\mu_n \mu\| \xrightarrow{a.s.} 0 \text{ and } \|\mu_n a_n\| \xrightarrow{P} 0 \text{ if } \|\mu_n \mu\| \xrightarrow{P} 0.$ In particular, $\|\mu_n - a_n\| \xrightarrow{a.s.} 0$ provided X is exchangeable, $\mathcal{G} = \mathcal{G}^X$ and \mathcal{D} is a universal Glivenko-Cantelli class.
- (ii) $r_n \|\mu_n a_n\| \xrightarrow{P} 0$ whenever the constants r_n satisfy $r_n/\sqrt{n} \to 0$ and $\sup_n E\{\|W_n\|^p\} < \infty$ for some $p \ge 1$.

Proof. Since $\|\mu_n - \mu\| \leq 1$, if $\|\mu_n - \mu\| \xrightarrow{a.s.} 0$ then

$$\|\mu_n - a_n\| \le E\{\|\mu_n - \mu\| \mid \mathcal{G}_n\} \xrightarrow{a.s.} 0$$

because of the martingale convergence theorem in the version of [8]. Similarly, $\|\mu_n - \mu\| \xrightarrow{P} 0$ implies $E\{\|\mu_n - \mu\| \mid \mathcal{G}_n\} \xrightarrow{P} 0$ by an obvious argument based on subsequences. Next, let X be exchangeable. By de Finetti's theorem, conditionally on μ , the sequence X is i.i.d. with common distribution μ . If \mathcal{D} is a universal Glivenko-Cantelli class, it follows that

$$P(\|\mu_n - \mu\| \to 0) = \int P\{\|\mu_n - \mu\| \to 0 \mid \mu\} \, dP = \int 1 dP = 1.$$

This concludes the proof of (i). As to (ii), just note that

$$E\left\{\left(r_{n} \|\mu_{n} - a_{n}\|\right)^{p}\right\} \leq r_{n}^{p} E\left\{E\left\{\|\mu_{n} - \mu\| \mid \mathcal{G}_{n}\right\}^{p}\right\}$$
$$\leq r_{n}^{p} E\left\{\|\mu_{n} - \mu\|^{p}\right\} = (r_{n}/\sqrt{n})^{p} E\left\{\|W_{n}\|^{p}\right\}.$$

While Theorem 1 is essentially known (the proof has been provided for completeness only) the next result is new. **Theorem 2.** Suppose \mathcal{D} is countably determined and X is c.i.d. with respect to \mathcal{G} . Fix the constants $r_n > 0$ and define

$$M_k = \sup_{n \ge k} r_n \|\mu_n - \mu\|.$$

If $E(M_k) < \infty$ for some k, then

$$\limsup_{n} r_n \|\mu_n - a_n\| \le \limsup_{n} r_n \|\mu_n - \mu\| < \infty \quad a.s.$$

Moreover, if X is exchangeable, then $E(M_k) < \infty$ for some k whenever

(iii) $r_n = \frac{\sqrt{n}}{(\log n)^{1/c}}$ and $\sup_n E\{||W_n||^p\} < \infty$ for some p > 1 and 0 < c < p; (iv) $r_n = \sqrt{\frac{n}{\log \log n}}$ and

$$\sup E\{\exp\left(u \|W_n\|\right)\} \le a \exp\left(b u^2\right) \quad for all \ u > 0 \ and \ some \ a, \ b > 0$$

Proof. Fix $j \ge k$. Since $E(M_j) \le E(M_k) < \infty$, then

$$\limsup_{n} r_n \|\mu_n - a_n\| \le \limsup_{n} E\{r_n \|\mu_n - \mu\| \mid \mathcal{G}_n\} \le \limsup_{n} E\{M_j \mid \mathcal{G}_n\} = M_j \quad \text{a.s.}$$

where the last equality is due to the martingale convergence theorem. Hence,

$$\limsup_{n} r_n \|\mu_n - a_n\| \le \inf_{j \ge k} M_j = \limsup_{n} r_n \|\mu_n - \mu\| \quad \text{a.s}$$

Further, $E(M_k) < \infty$ obviously implies $\limsup_n r_n \|\mu_n - \mu\| \le M_k < \infty$ a.s. Next, suppose X exchangeable. Then,

$$S_n = n \|\mu_n - \mu\| = \sqrt{n} \|W_n\|$$

is a submartingale with respect to the filtration $\mathcal{U}_n = \sigma \left[\mathcal{G}_n^X \cup \sigma(\mu) \right]$. In fact,

$$(n+1) E\{\mu_{n+1}(B) \mid \mathcal{U}_n\} = n \,\mu_n(B) + P\{X_{n+1} \in B \mid \mathcal{U}_n\}$$

= $n \,\mu_n(B) + P\{X_{n+1} \in B \mid \sigma(\mu)\} = n \,\mu_n(B) + \mu(B)$ a.s.

Therefore,

$$E(S_{n+1} \mid \mathcal{U}_n) \ge (n+1) \sup_{B \in \mathcal{D}} \left| E\{\mu_{n+1}(B) \mid \mathcal{U}_n\} - \mu(B) \right| = n \sup_{B \in \mathcal{D}} \left| \mu_n(B) - \mu(B) \right| = S_n \quad \text{a.s.}$$

(iii) Let $r_n = \frac{\sqrt{n}}{(\log n)^{1/c}}$ and $\sup_n E\{\|W_n\|^p\} < \infty$, where p > 1 and 0 < c < p. Then,

$$E(M_3^p) = E\left\{ \left(\sup_{n \ge 1} \max_{2^n < j \le 2^{(n+1)}} r_j \|\mu_j - \mu\| \right)^p \right\} \le \sum_{n=1}^\infty E\left\{ \max_{2^n < j \le 2^{(n+1)}} r_j^p \|\mu_j - \mu\|^p \right\}$$

If $2^n < j \le 2^{(n+1)}$, then

$$r_j \|\mu_j - \mu\| = j^{-1/2} (\log j)^{-1/c} S_j \le (2^n)^{-1/2} (\log 2^n)^{-1/c} S_j$$

By such inequality and since (S_j) is a submartingale, one obtains

$$E(M_3^p) \le \sum_n (2^n)^{-p/2} (\log 2^n)^{-p/c} E\{\max_{j\le 2^{(n+1)}} S_j^p\}$$

$$\le (p/(p-1))^p \sum_n (2^n)^{-p/2} (\log 2^n)^{-p/c} E\{S_{2^{(n+1)}}^p\}$$

$$= (p/(p-1))^p 2^{p/2} \sum_n (\log 2^n)^{-p/c} E\{\|W_{2^{(n+1)}}\|^p\}$$

$$\le \left(\sup_j E\{\|W_j\|^p\}\right) (p/(p-1))^p 2^{p/2} (\log 2)^{-p/c} \sum_n n^{-p/c} < \infty.$$

(iv) Let $r_n = \sqrt{\frac{n}{\log \log n}}$ and $\sup_n E\{\exp(u ||W_n||)\} \le a \exp(b u^2)$ for all u > 0 and some a, b > 0. We aim to prove that

 $P(M_4 > t) \leq c \exp(-v t^2)$ for large t and suitable constants c, v > 0. In this case, in fact, $E(M_4) = \int_0^\infty P(M_4 > t) dt < \infty$. First note that

$$P(M_4 > t) = P\left(\bigcup_{n \ge 1} \left\{\max_{3^n < j \le 3^{(n+1)}} r_j \|\mu_j - \mu\| > t\right\}\right) \le \sum_{n=1}^{\infty} P\left(\max_{j \le 3^{(n+1)}} S_j > m_n t\right)$$

where $m_n = \sqrt{3^n \log \log 3^n} = \sqrt{3^n (\log n + \log \log 3)}.$

Let $\theta > 0$. On noting that $\exp(\theta S_n)$ is still a submartingale, one also obtains

$$P\left(\max_{j\leq 3^{(n+1)}} S_j > m_n t\right) = P\left(\max_{j\leq 3^{(n+1)}} \exp\left(\theta S_j\right) > \exp\left(\theta m_n t\right)\right)$$
$$\leq \exp\left(-\theta m_n t\right) E\left\{\exp\left(\theta S_{3^{(n+1)}}\right)\right\}$$
$$= \exp\left(-\theta m_n t\right) E\left\{\exp\left(\theta \sqrt{3^{(n+1)}} \|W_{3^{(n+1)}}\|\right)\right\}$$
$$\leq a \exp\left(-\theta m_n t + \theta^2 b 3^{(n+1)}\right).$$

The minimum over θ is attained at $\theta = \frac{m_n t}{6 b 3^n}$. Thus,

$$P\Big(\max_{j \le 3^{(n+1)}} S_j > m_n t\Big) \le a \exp\left(\frac{-m_n^2 t^2}{12 \, b \, 3^n}\right) = a \exp\left(\frac{-t^2 \log \log 3}{12 \, b}\right) n^{-t^2/12 \, b}.$$

If $t \ge \sqrt{24 b}$, then $t^2 > 12 b$ and $\frac{t^2}{t^2 - 12 b} \le 2$. Thus, one finally obtains

$$P(M_4 > t) \le a \exp\left(\frac{-t^2 \log \log 3}{12 b}\right) \sum_n n^{-t^2/12 b}$$
$$\le a \exp\left(\frac{-t^2 \log \log 3}{12 b}\right) \frac{t^2}{t^2 - 12 b}$$
$$\le 2 a \exp\left(\frac{-t^2 \log \log 3}{12 b}\right) \quad \text{for every } t \ge \sqrt{24 b}.$$

Some remarks are in order. In the sequel, if α and β are measures on a σ -field \mathcal{E} , we write $\alpha \ll \beta$ to mean that α is absolutely continuous with respect to β , namely, $\alpha(A) = 0$ whenever $A \in \mathcal{E}$ and $\beta(A) = 0$.

- Sometimes, the condition of Theorem 1-(i) is necessary as well, namely, $\|\mu_n - a_n\| \xrightarrow{a.s.} 0$ if and only if $\|\mu_n - \mu\| \xrightarrow{a.s.} 0$. For instance, this happens when $\mathcal{G} = \mathcal{G}^X$ and $\mu \ll \lambda$ a.s., where λ is a (non-random) σ -finite measure on \mathcal{B} . In this case, in fact, $\|a_n - \mu\| \xrightarrow{a.s.} 0$ by [7, Theorem 1].
- Several examples of universal Glivenko-Cantelli classes are available; see [14], [17], [27] and references therein. Moreover, for many choices of \mathcal{D} and p there is a universal constant c(p) such that $\sup_n E\{||W_n||^p\} \leq c(p)$ provided X is i.i.d.; see e.g. [27, Sect. 2.14.1-2.14.2]. For such \mathcal{D} and p, de Finetti's theorem yields $\sup_n E\{||W_n||^p\} \leq c(p)$ even if X is exchangeable. In fact, conditionally on μ , the sequence X is i.i.d. with common distribution μ . Hence, $E\{||W_n||^p \mid \mu\} \leq c(p)$ a.s. for all n. By the same argument, if there are a, b > 0 such that

$$\sup_{n} E\left\{\exp\left(u \|W_{n}\|\right)\right\} \le a \exp\left(b u^{2}\right) \text{ for all } u > 0 \text{ if } X \text{ is i.i.d.},$$

such inequality is still true (with the same a and b) if X is exchangeable.

A straightforward consequence of the law of iterated logarithm is that convergence in probability can not be replaced by a.s. convergence in Theorem 1-(ii). Take in fact r_n = √(n/log log n), G = G^X and X i.i.d. Then, for each B ∈ D, the law of iterated logarithm yields

$$\limsup_{n} r_{n} \|\mu_{n} - a_{n}\| \ge \limsup_{n} r_{n} \{\mu_{n}(B) - a_{n}(B)\}$$
$$= \limsup_{n} \frac{\sum_{i=1}^{n} \{I_{B}(X_{i}) - \mu_{0}(B)\}}{\sqrt{n \log \log n}} = \sqrt{2 \,\mu_{0}(B) \left(1 - \mu_{0}(B)\right)} \quad \text{a.s.}$$

• Let \mathcal{D} be countably determined, X exchangeable and $\mathcal{G} = \mathcal{G}^X$. In view of Theorem 2, for $r_n \|\mu_n - a_n\| \xrightarrow{a.s.} 0$, it suffices that $\sup_n E\{\|W_n\|^p\} < \infty$ and $\frac{r_n (\log n)^{1/c}}{\sqrt{n}} \to 0$, for some p > 1 and 0 < c < p, or that $E\{\exp(u \|W_n\|)\}$ can be estimated as in (iv) and $r_n \sqrt{\frac{\log \log n}{n}} \to 0$. For instance,

$$\sqrt{\frac{n}{\log n}} \|\mu_n - a_n\| \xrightarrow{a.s.} 0$$

whenever $\sup_{n} E\{||W_{n}||^{p}\} < \infty$ for some p > 2. Another example is provided by Corollary 3. To state it, a definition is to be recalled.

Say that \mathcal{D} is a *Vapnik-Cervonenkis class*, or simply a VC-*class*, if

$$\operatorname{card}\left\{B\cap I:\,B\in\mathcal{D}\right\}<2^n$$

for some integer $n \geq 1$ and all subsets $I \subset S$ with card (I) = n; see e.g. [14], [17], [21], [27]. In other terms, the power set of I can not be written as $\{B \cap I : B \in \mathcal{D}\}$ for each collection I of n points from S. As noted in Section 1, VC-classes are instrumental to empirical processes and statistical learning. If $S = \mathbb{R}^k$, for instance, $\mathcal{D} = \{(-\infty, t_1] \times \ldots \times (-\infty, t_k] : (t_1, \ldots, t_k) \in \mathbb{R}^k\}, \mathcal{D} = \{\text{half spaces}\}$ and $\mathcal{D} = \{\text{closed balls}\}$ are (countably determined) VC-classes.

Corollary 3. Let \mathcal{D} be a countably determined VC-class. If X is exchangeable and $\mathcal{G} = \mathcal{G}^X$, then

$$\limsup_{n} \sqrt{\frac{n}{\log \log n}} \|\mu_n - a_n\| \le \sqrt{2} \sup_{B \in \mathcal{D}} \mu(B) \left(1 - \mu(B)\right) \quad a.s$$

Proof. Just note that, if X is i.i.d. and \mathcal{D} is a countably determined VC-class, then $E\{\exp(u \|W_n\|)\}$ can be estimated as in Theorem 2-(iv) and

$$\limsup_{n} \sqrt{\frac{n}{\log \log n}} \|\mu_n - \mu_0\| = \sqrt{2 \sup_{B \in \mathcal{D}} \mu_0(B) (1 - \mu_0(B))} \quad \text{a.s.}$$

See e.g. [14, Sect. 9.5], [21, Corollary 2.4] and [27, page 246].

We finally give a couple of examples concerning Theorem 1.

Example 4. Let $\mathcal{D} = \mathcal{B}$. If X is i.i.d., then $\|\mu_n - \mu_0\| \xrightarrow{a.s.} 0$ if and only if μ_0 is discrete. By de Finetti's theorem, it follows that $\|\mu_n - \mu\| \xrightarrow{a.s.} 0$ whenever X is exchangeable and μ is a.s. discrete. Thus, under such assumptions and $\mathcal{G} = \mathcal{G}^X$, Theorem 1-(i) implies $\|\mu_n - a_n\| \xrightarrow{a.s.} 0$. This result has a possible practical interest in Bayesian nonparametrics. As noted in Section 1, in fact, most nonparametric priors are such that μ is a.s. discrete.

Example 5. Let $S = \mathbb{R}^k$ and $\mathcal{D} = \{$ closed convex sets $\}$. If X is i.i.d. and $\mu_0 \ll \lambda$, where λ is a σ -finite product measure on \mathcal{B} , then $\|\mu_n - \mu_0\| \xrightarrow{a.s.} 0$; see [17, page 198]. Applying Theorem 1-(i) again, one obtains $\|\mu_n - a_n\| \xrightarrow{a.s.} 0$ provided X is exchangeable, $\mathcal{G} = \mathcal{G}^X$ and $\mu \ll \lambda$ a.s. While "morally true", this argument does not work for $\mathcal{D} = \{$ Borel convex sets $\}$ since the latter choice of \mathcal{D} is not countably determined.

4.2. The dominated case. In the sequel, as in Section 2, it is convenient to work on the coordinate space. Accordingly, from now on, we let

$$(\Omega, \mathcal{A}) = (S^{\infty}, \mathcal{B}^{\infty}), \quad X_n = n$$
-th coordinate projection, $\mathcal{G} = \mathcal{G}^X$

Further, Q is a probability measure on (Ω, \mathcal{A}) and

$$b_n(\cdot) = Q(X_{n+1} \in \cdot \mid \mathcal{G}_n)$$

is the predictive measure under Q. We say that Q is a Ferguson-Dirichlet law if

$$b_n(\cdot) = \frac{c Q(X_1 \in \cdot) + n \mu_n(\cdot)}{c+n}, \quad Q\text{-a.s. for some constant } c > 0.$$

If $P \ll Q$, the asymptotic behavior of $\|\mu_n - a_n\|$ under P should be affected by that of $\|\mu_n - b_n\|$ under Q. This (rough) idea is realized by the next result.

Theorem 6. (Theorems 1 and 2 of [5]). Suppose \mathcal{D} is countably determined, X is c.i.d., and $P \ll Q$. Then,

$$\sqrt{n} \|\mu_n - a_n\| \stackrel{P}{\longrightarrow} 0$$

whenever $\sqrt{n} \|\mu_n - b_n\| \xrightarrow{Q} 0$ and the sequence (W_n) is uniformly integrable under both P and Q. In addition,

$$n \|\mu_n - a_n\|$$
 converges a.s. to a finite limit

provided Q is a Ferguson-Dirichlet law, $\sup_n E_Q\{||W_n||^2\} < \infty$, and

$$\sup_{n} n\left\{ E_Q(f^2) - E_Q\left\{ E_Q(f \mid \mathcal{G}_n)^2 \right\} \right\} < \infty \quad where \ f = dP/dQ.$$

To make Theorem 6 effective, the condition $P \ll Q$ should be given a simple characterization. This happens at least when S is finite.

As an example, suppose $S = \{0, 1\}$, X exchangeable and Q Ferguson-Dirichlet. Then, for all $n \ge 1$ and $x_1, \ldots, x_n \in \{0, 1\}$,

$$P(X_1 = x_1, \dots, X_n = x_n) = \int_{[0,1]} \theta^k (1-\theta)^{n-k} \pi_P(d\theta),$$
$$Q(X_1 = x_1, \dots, X_n = x_n) = \int_{[0,1]} \theta^k (1-\theta)^{n-k} \pi_Q(d\theta),$$

where $k = \sum_{i=1}^{n} x_i$ and π_P and π_Q are the probability distributions of $\mu\{1\}$ under P and Q. Thus, $P \ll Q$ if and only if $\pi_P \ll \pi_Q$. In addition, π_Q is known to be a beta distribution. Let m denote the Lebesgue measure on the Borel σ -field on [0, 1]. Since any beta distribution has the same null sets as m, one obtains $P \ll Q$ if and only if $\pi_P \ll m$. This fact is behind the next result.

Theorem 7. (Corollaries 4 and 5 of [5]). Suppose $S = \{0, 1\}$ and X exchangeable. Then, $\sqrt{n} (\mu_n\{1\} - a_n\{1\}) \xrightarrow{P} 0$ whenever the distribution of $\mu\{1\}$ is absolutely continuous. Moreover, $n (\mu_n\{1\} - a_n\{1\})$ converges a.s. (to a finite limit) provided the distribution of $\mu\{1\}$ is absolutely continuous with an almost Lipschitz density.

In Theorem 7, a real function f on (0,1) is said to be *almost Lipschitz* in case $x \mapsto f(x)x^u(1-x)^v$ is Lipschitz on (0,1) for some reals u, v < 1.

A consequence of Theorem 7 is to be stressed. For each $B \in \mathcal{B}$, define

 $\mathcal{G}_n^B = \sigma \big(I_B(X_1), \dots, I_B(X_n) \big) \quad \text{and} \quad T_n(B) = \sqrt{n} \left\{ a_n(B) - P \big\{ X_{n+1} \in B \mid \mathcal{G}_n^B \big\} \right\}.$

Also, let $l^{\infty}(\mathcal{D})$ be the set of real bounded functions on \mathcal{D} , equipped with uniform distance. In the next result, W_n is regarded as a random element of $l^{\infty}(\mathcal{D})$ and convergence in distribution is meant in Hoffmann-Jørgensen's sense; see [27].

Corollary 8. Let \mathcal{D} be countably determined and X exchangeable. Suppose that

- (j) $\mu(B)$ has an absolutely continuous distribution for each $B \in \mathcal{D}$ such that $0 < P(X_1 \in B) < 1;$
- (jj) the sequence $(||W_n||)$ is uniformly integrable;
- (jjj) W_n converges in distribution, in the space $l^{\infty}(\mathcal{D})$, to a tight limit.

Then,

$$\sqrt{n} \|\mu_n - a_n\| \xrightarrow{P} 0 \quad \iff \quad T_n(B) \xrightarrow{P} 0 \text{ for each } B \in \mathcal{D}.$$

Proof. Let $U_n(B) = \sqrt{n} \left\{ \mu_n(B) - P \{ X_{n+1} \in B \mid \mathcal{G}_n^B \} \right\}$. Then, $U_n(B) \xrightarrow{P} 0$ for each $B \in \mathcal{D}$. In fact, $U_n(B) = 0$ a.s. if $P(X_1 \in B) \in \{0, 1\}$. Otherwise, $U_n(B) \xrightarrow{P} 0$ follows from Theorem 7, since $(I_B(X_n))$ is an exchangeable sequence of indicators and $\mu(B)$ has an absolutely continuous distribution. Next, suppose

 $T_n(B) \xrightarrow{P} 0$ for each $B \in \mathcal{D}$. Letting $C_n = \sqrt{n} (\mu_n - a_n)$, we have to prove that $\|C_n\| \xrightarrow{P} 0$. Equivalently, regarding C_n as a random element of $l^{\infty}(\mathcal{D})$, we have to prove that $C_n(B) \xrightarrow{P} 0$ for fixed $B \in \mathcal{D}$ and the sequence (C_n) is asymptotically tight; see e.g. [27, Section 1.5]. Given $B \in \mathcal{D}$, since both $U_n(B)$ and $T_n(B)$ converge to 0 in probability, then $C_n(B) = U_n(B) - T_n(B) \xrightarrow{P} 0$. Moreover, since $C_n(B) = E\{W_n(B) \mid \mathcal{G}_n\}$ a.s., the asymptotic tightness of (C_n) follows from (jj)-(jjj); see [4, Remark 4.4]. Hence, $\|C_n\| \xrightarrow{P} 0$. Conversely, if $\|C_n\| \xrightarrow{P} 0$, one trivially obtains

$$|T_n(B)| = |U_n(B) - C_n(B)| \le |U_n(B)| + ||C_n|| \xrightarrow{P} 0 \quad \text{for each } B \in \mathcal{D}.$$

If X is exchangeable, it frequently happens that $\sup_n E\{||W_n||^2\} < \infty$, which in turn implies condition (jj). Similarly, (jjj) is not unusual. As an example, conditions (jj)-(jjj) hold if $S = \mathbb{R}$, $\mathcal{D} = \{(-\infty, t] : t \in \mathbb{R}\}$ and μ_0 is discrete or $P(X_1 = X_2) = 0$; see [4, Theorem 4.5].

Unfortunately, as shown by the next example, $T_n(B)$ may fail to converge to 0 in probability even if $\mu(B)$ has an absolutely continuous distribution. This suggests the following general question. In the exchangeable case, in addition to $\mu_n(B)$, which further information is required to evaluate $a_n(B)$? Or at least, are there reasonable conditions for $T_n(B) \xrightarrow{P} 0$? Even if intriguing, to our knowledge, such a question does not have a satisfactory answer.

Example 9. Let $S = \mathbb{R}$ and $X_n = Y_n Z^{-1}$, where Y_n and Z are independent real random variables, $Y_n \sim N(0, 1)$ for all n, and Z has an absolutely continuous distribution supported by $[1, \infty)$. Conditionally on Z, the sequence $X = (X_1, X_2, \ldots)$ is i.i.d. with common distribution $N(0, Z^{-2})$. Thus, X is exchangeable and

$$\mu(B) = P(X_1 \in B \mid Z) = f_B(Z) \quad \text{a.s. for each } B \in \mathcal{B}$$

where $f_B(z) = (2\pi)^{-1/2} z \int_B \exp\left(-(xz)^2/2\right) dx \quad \text{for } z \ge 1.$

Fix $B \in \mathcal{B}$, with $B \subset [1,\infty)$ and $P(X_1 \in B) > 0$, and set $C = \{-x : x \in B\}$. Since $f_B = f_C$, then $\mu(B) = \mu(C)$ and $a_n(B) = a_n(C)$ a.s. Further, $\mu(B)$ has an absolutely continuous distribution, for f_B is differentiable and $f'_B \neq 0$. Nevertheless, one between $T_n(B)$ and $T_n(C)$ does not converge to 0 in probability. Define in fact $g = I_B - I_C$ and $R_n = n^{-1/2} \sum_{i=1}^n g(X_i)$. Since $\mu(g) = \mu(B) - \mu(C) = 0$ a.s., then R_n converges stably to the kernel $N(0, 2\mu(B))$; see [4, Theorem 3.1]. On the other hand, since $a_n(B) = a_n(C)$ a.s., one obtains

$$R_n = \sqrt{n} \left\{ \mu_n(B) - \mu_n(C) \right\} = T_n(C) - T_n(B) + \sqrt{n} \left\{ \mu_n(B) - P \left\{ X_{n+1} \in B \mid \mathcal{G}_n^B \right\} \right\} - \sqrt{n} \left\{ \mu_n(C) - P \left\{ X_{n+1} \in C \mid \mathcal{G}_n^C \right\} \right\} \quad \text{a.s.}$$

Therefore, if $T_n(B) \xrightarrow{P} 0$ and $T_n(C) \xrightarrow{P} 0$, Theorem 7 implies the contradiction $R_n \xrightarrow{P} 0$.

4.3. Exchangeable sequences of indicators. Let \mathcal{P} be the set of all probability measures on \mathcal{B} , equipped with the topology of weak convergence. Since μ_n and a_n are \mathcal{P} -valued random variables, we can define their probability distributions on the

Borel σ -field on \mathcal{P} , say $\pi_n(\cdot) = P(\mu_n \in \cdot)$ and $\pi_n^*(\cdot) = P(a_n \in \cdot)$. Another way to compare μ_n and a_n , different from the one adopted so far, is to focus on $\rho(\pi_n, \pi_n^*)$ where ρ is a suitable distance between the Borel probability measures on \mathcal{P} . In this subsection, we actually take this point of view.

Let \mathcal{C} be the Borel σ -field on [0,1] and ρ the bounded Lipschitz metric between probability measures on \mathcal{C} . We recall that ρ is defined as

$$\rho(\pi, \pi^*) = \sup_{\phi} |\pi(\phi) - \pi^*(\phi)|$$

where π and π^* are probability measures on C and sup is over those functions ϕ on [0, 1] such that ϕ is 1-Lipschitz and $-1 \leq \phi \leq 1$.

Suppose $S = \{0, 1\}$ and X exchangeable. Define $\pi_n(C) = P(\mu_n\{1\} \in C)$ and $\pi_n^*(C) = P(a_n\{1\} \in C)$ for $C \in C$. Because of Theorem 7, $n(\mu_n\{1\} - a_n\{1\})$ converges a.s. whenever the distribution of $\mu\{1\}$ is absolutely continuous with an almost Lipschitz density f. Our last result, inspired by [22], provides a sharp estimate of $\rho(\pi_n, \pi_n^*)$ under the assumption that f is Lipschitz (and not only almost Lipschitz).

Theorem 10. Suppose $S = \{0, 1\}$, X exchangeable, and the distribution of $\mu\{1\}$ absolutely continuous with a Lipschitz density f. Then,

$$\rho(\pi_n, \pi_n^*) \le \frac{1}{n} \left(1 + \frac{c}{3}\right)$$

for all $n \ge 1$, where c is the Lipschitz constant of f.

Proof. Let $\overline{X}_n = (1/n) \sum_{i=1}^n X_i$ and $V = \limsup_n \overline{X}_n$. Since the X_n are indicators,

 $\mu_n\{1\} = \overline{X}_n, \quad \mu\{1\} = V \quad \text{and} \quad a_n\{1\} = E(V \mid \mathcal{G}_n) \quad \text{a.s.}$

Take Q to be the Ferguson-Dirichlet law such that

$$b_n\{1\} = E_Q(V \mid \mathcal{G}_n) = \frac{1 + n \overline{X}_n}{n+2}, \quad Q\text{-a.s.}$$

Then, $|\overline{X}_n - E_Q(V \mid \mathcal{G}_n)| \le 1/(n+2)$. Further, since V is uniformly distributed on [0, 1] under Q,

$$P(X_1 = x_1, \dots, X_n = x_n) = \int_0^1 \theta^k (1 - \theta)^{n-k} f(\theta) \, d\theta$$
$$= \int V^k (1 - V)^{n-k} f(V) \, dQ = \int_{\{X_1 = x_1, \dots, X_n = x_n\}} f(V) \, dQ$$

for all $n \ge 1$ and $x_1, \ldots, x_n \in \{0, 1\}$, where $k = \sum_{i=1}^n x_i$. Hence, f(V) is a density of P with respect to Q. In particular,

$$E(V \mid \mathcal{G}_n) = \frac{E_Q \{ V f(V) \mid \mathcal{G}_n \}}{E_Q \{ f(V) \mid \mathcal{G}_n \}} \quad \text{a.s.}$$

Note also that

$$E_Q\{(\overline{X}_n - V)^2\} = E_Q\{E_Q\{(\overline{X}_n - V)^2 \mid V\}\} = E_Q\{\frac{V(1 - V)}{n}\} = \frac{1}{6n}$$

Next, define $U_n = f(V) - E_Q\{f(V) \mid \mathcal{G}_n\}$. Then,
 $E_Q\{\overline{X}_n U_n \mid \mathcal{G}_n\} = \overline{X}_n E_Q(U_n \mid \mathcal{G}_n) = 0, \quad Q\text{-a.s.}$

Since $P \ll Q$, then $E_Q \{ \overline{X}_n U_n \mid \mathcal{G}_n \} = 0$ a.s. with respect to P as well. Hence,

$$\begin{split} |X_n - E(V \mid \mathcal{G}_n)| &\leq |X_n - E_Q(V \mid \mathcal{G}_n)| + |E_Q(V \mid \mathcal{G}_n) - E(V \mid \mathcal{G}_n)| \\ &\leq \frac{1}{n+2} + \left| E_Q(V \mid \mathcal{G}_n) - \frac{E_Q\{V f(V) \mid \mathcal{G}_n\}}{E_Q\{f(V) \mid \mathcal{G}_n\}} \right| \\ &= \frac{1}{n+2} + \frac{|E_Q\{V U_n \mid \mathcal{G}_n\}|}{E_Q\{f(V) \mid \mathcal{G}_n\}} \\ &= \frac{1}{n+2} + \frac{|E_Q\{(V - \overline{X}_n) U_n \mid \mathcal{G}_n\}|}{E_Q\{f(V) \mid \mathcal{G}_n\}} \\ &\leq \frac{1}{n+2} + \frac{E_Q\{|(V - \overline{X}_n) U_n| \mid \mathcal{G}_n\}}{E_Q\{f(V) \mid \mathcal{G}_n\}} \quad \text{a.s.} \end{split}$$

Since f is Lipschitz, one also obtains

$$E_Q(U_n^2) = E_Q \left\{ \left(f(V) - f(\overline{X}_n) - E_Q \left\{ f(V) - f(\overline{X}_n) \mid \mathcal{G}_n \right\} \right)^2 \right\}$$

$$\leq 4 E_Q \left\{ (f(V) - f(\overline{X}_n))^2 \right\} \leq 4 c^2 E_Q \left\{ (\overline{X}_n - V)^2 \right\}.$$

We are finally in a position to estimate $\rho(\pi_n, \pi_n^*)$. In fact, if ϕ is a function on [0, 1], with ϕ 1-Lipschitz and $-1 \leq \phi \leq 1$, then

$$\begin{aligned} |\pi_{n}(\phi) - \pi_{n}^{*}(\phi)| &= \left| E\left\{\phi(\overline{X}_{n})\right\} - E\left\{\phi\left(E(V \mid \mathcal{G}_{n})\right)\right\} \right| \leq E|\overline{X}_{n} - E(V \mid \mathcal{G}_{n})| \\ &\leq \frac{1}{n+2} + E\left\{\frac{E_{Q}\left\{|(\overline{X}_{n} - V) U_{n}| \mid \mathcal{G}_{n}\right\}}{E_{Q}\left\{f(V) \mid \mathcal{G}_{n}\right\}}\right\} \\ &= \frac{1}{n+2} + E_{Q}\left\{f(V) \frac{E_{Q}\left\{|(\overline{X}_{n} - V) U_{n}| \mid \mathcal{G}_{n}\right\}}{E_{Q}\left\{f(V) \mid \mathcal{G}_{n}\right\}}\right\} \\ &= \frac{1}{n+2} + E_{Q}|(\overline{X}_{n} - V) U_{n}| \\ &\leq \frac{1}{n+2} + \sqrt{E_{Q}\left\{(\overline{X}_{n} - V)^{2}\right\}}E_{Q}(U_{n}^{2})} \\ &\leq \frac{1}{n+2} + 2c E_{Q}\left\{(\overline{X}_{n} - V)^{2}\right\} \\ &= \frac{1}{n+2} + \frac{c}{3n} < \frac{1}{n}\left(1 + \frac{c}{3}\right). \end{aligned}$$

The rate provided by Theorem 10 can not be improved. Take in fact $\phi(x) = x^2/2$ and suppose P a Ferguson-Dirichlet law with $a_n\{1\} = \frac{1+n \mu_n\{1\}}{n+2}$ a.s. Then, since $\mu\{1\}$ is uniformly distributed on [0, 1], one obtains

$$2(n+2)\rho(\pi_n,\pi_n^*) \ge 2(n+2)|\pi_n(\phi) - \pi_n^*(\phi)|$$

= $(n+2)\left\{E(\mu_n\{1\}^2) - E(a_n\{1\}^2)\right\}$
= $(n+2)E(\mu_n\{1\}^2) - \frac{1+n^2E(\mu_n\{1\}^2) + 2nE(\mu_n\{1\})}{n+2}$
= $\frac{4(n+1)E(\mu_n\{1\}^2) - 2nE(\mu_n\{1\}) - 1}{n+2} \longrightarrow 4E(\mu\{1\}^2) - 2E(\mu\{1\}) = \frac{1}{3}$.

References

- Aldous D.J. (1985) Exchangeability and related topics, *Ecole de Probabilites de Saint-Flour* XIII, Lect. Notes in Math. 1117, Springer.
- [2] Berti P., Rigo P. (1997) A Glivenko-Cantelli theorem for exchangeable random variables, Statist. Probab. Letters, 32, 385-391.
- [3] Berti P., Mattei A., Rigo P. (2002) Uniform convergence of empirical and predictive measures, Atti Sem. Mat. Fis. Univ. Modena, 50, 465-477.
- [4] Berti P., Pratelli L., Rigo P. (2004) Limit theorems for a class of identically distributed random variables, Ann. Probab., 32, 2029-2052.
- [5] Berti P., Crimaldi I., Pratelli L., Rigo P. (2009) Rate of convergence of predictive distributions for dependent data, *Bernoulli*, 15, 1351-1367.
- [6] Berti P., Pratelli L., Rigo P. (2012) Limit theorems for empirical processes based on dependent data, *Electron. J. Probab.*, 17, 1-18.
- [7] Berti P., Pratelli L., Rigo P. (2013) Exchangeable sequences driven by an absolutely continuous random measure, Ann. Probab., 41, 2090-2102.
- [8] Blackwell D., Dubins L.E. (1962) Merging of opinions with increasing information, Ann. Math. Statist., 33, 882-886.
- [9] Cifarelli D.M., Regazzini E. (1996) De Finetti's contribution to probability and statistics, Statist. Science, 11, 253-282.
- [10] Cifarelli D.M., Dolera E., Regazzini E. (2016) Frequentistic approximations to Bayesian prevision of exchangeable random elements, *Intern. J. Approximate Reasoning*, 78, 138-152.
- [11] Crane H. (2016) The ubiquitous Ewens sampling formula, Statist. Science, 31, 1-19.
- [12] De Blasi P., Favaro S., Lijoi A., Mena R.H., Prunster I., Ruggiero M. (2015) Are Gibbs-type priors the most natural generalization of the Dirichlet process ?, *IEEE Trans. Pattern Anal. Machine Intell.*, 37, 212-229.
- [13] Diaconis P., Freedman D. (1986) On the consistency of Bayes estimates, Ann. Statist., 14, 1-26.
- [14] Dudley R.M. (1999) Uniform central limit theorems, Cambridge University Press.
- [15] Efron B. (2003) Robbins, empirical Bayes and microarrays, Ann. Statist., 31, 366-378.
- [16] Fortini S., Ladelli L., Regazzini E. (2000) Exchangeability, predictive distributions and parametric models, Sankhya A, 62, 86-109.
- [17] Gaenssler P., Stute W. (1979) Empirical processes: a survey of results for independent and identically distributed random variables, Ann. Probab., 7, 193-243.
- [18] Ghosal S., van der Vaart A. (2017) Fundamentals of nonparametric Bayesian inference, Cambridge University Press.
- [19] Hjort N.L., Holmes C., Muller P., Walker S.G. (2010) Bayesian nonparametrics, Cambridge University Press.
- [20] Kingman J.F.C. (1975) Random discrete distributions (with discussion), J. Royal Stat. Soc. B, 37, 1-22.
- [21] Kuelbs J., Dudley R.M. (1980) Log log laws for empirical measures, Ann. Probab., 8, 405-418.
- [22] Mijoule G., Peccati G., Swan Y. (2016) On the rate of convergence in de Finetti's representation theorem, ALEA (Lat. Am. J. Probab. Math. Stat.), 13, 1165-1187.
- [23] Phadia E.G. (2016) Prior processes and their applications (Second Edition), Springer.
- [24] Pitman J., Yor M. (1997) The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator, Ann. Probab., 25, 855-900.
- [25] Robbins H. (1964) The empirical Bayes approach to statistical decision problems, Ann. Math. Statist., 35, 1-20.
- [26] Sethuraman J. (1994) A constructive definition of Dirichlet priors, Stat. Sinica, 4, 639-650.
- [27] van der Vaart A., Wellner J.A. (1996) Weak convergence and empirical processes, Springer.
 [28] Zabell S.L. (2005) Symmetry and its discontents (Essays on the history of inductive probability), Cambridge University Press.

PATRIZIA BERTI, DIPARTIMENTO DI MATEMATICA PURA ED APPLICATA "G. VITALI", UNIVERsita' di Modena e Reggio-Emilia, via Campi 213/B, 41100 Modena, Italy *E-mail address*: patrizia.berti@unimore.it

Luca Pratelli, Accademia Navale, viale Italia 72, 57100 Livorno, Italy *E-mail address*: pratel@mail.dm.unipi.it

PIETRO RIGO (CORRESPONDING AUTHOR), DIPARTIMENTO DI MATEMATICA "F. CASORATI", UNI-VERSITA' DI PAVIA, VIA FERRATA 1, 27100 PAVIA, ITALY E-mail address: pietro.rigo@unipv.it