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Abstract. Let (µn : n ≥ 0) be Borel probabilities on a metric space S such

that µn → µ0 weakly. Say that Skorohod representation holds if, on some
probability space, there are S-valued random variables Xn satisfying Xn ∼ µn

for all n and Xn → X0 in probability. By Skorohod’s theorem, Skorohod rep-

resentation holds (with Xn → X0 almost uniformly) if µ0 is separable. Two
results are proved in this paper. First, Skorohod representation may fail if µ0

is not separable (provided, of course, non separable probabilities exist). Sec-

ond, independently of µ0 separable or not, Skorohod representation holds if
W (µn, µ0)→ 0 where W is Wasserstein distance (suitably adapted). The con-

verse is essentially true as well. Such a W is a version of Wasserstein distance

which can be defined for any metric space S satisfying a mild condition. To
prove the quoted results (and to define W ), disintegrable probability measures

are fundamental.
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3Università di Pavia, Italy

1. Introduction

Throughout, (S, d) is a metric space, B the Borel σ-field on S, and (µn : n ≥ 0)
a sequence of probability measures on B.

If µn → µ0 weakly and µ0 is separable, there are S-valued random variables Xn,
defined on some probability space, such that Xn ∼ µn for all n and Xn → X0 almost
uniformly. This is Skorohod representation theorem (in its sequential version), as
it appears after Skorohod (1956), Dudley (1968) and Wichura (1970). See page
77 of van der Vaart and Wellner (1996) and page 130 of Dudley (1999) for some
historical notes.

This paper stems from the following question: Is it possible to drop separability
of µ0 ? Such a question is both natural and subtle. It is natural, since µn → µ0

weakly is necessary for the conclusions of Skorohod theorem, and thus separability
of µ0 is the only real assumption. Note also that, if separability of µ0 would be
superfluous, weak convergence of probability measures could be generally defined as
almost uniform convergence of random variables with given distributions. But the
question is subtle as well, since it is consistent with the usual ZFC set theory that
non separable probabilities do not exist. So, consistently with ZFC, the question
does not arise at all. On the other hand it is currently unknown, and possibly
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”unprovable”, whether existence of non separable probabilities is consistent with
ZFC. Thus, the question makes sense.

And, as shown in Example 3, the answer is no. That is, if non separable proba-
bilities exist, separability of µ0 cannot be dropped from Skorohod theorem, even if
Xn → X0 almost uniformly is weakened into Xn → X0 in probability.

So, one cannot dispense with separability of µ0. On the other hand, when µ0

is separable, µn → µ0 weakly is equivalent to ρ(µn, µ0) → 0 where ρ is a suitable
distance between probability measures. Well known examples are ρ the Prohorov
distance or ρ the bounded Lipschitz metric. Therefore, it is worth investigating
versions of Skorohod theorem such as

(SK): If ρ(µn, µ0) → 0, there is a Skorohod representation

where a Skorohod representation is meant as

A sequence (Xn : n ≥ 0) of S-valued random variables, defined on a common
probability space, such that Xn ∼ µn for all n and Xn → X0 in (outer) probability.

Note that almost uniform convergence has been weakened into convergence in
probability in a Skorohod representation. Indeed, if non separable probabilities
exist, it may be that the sequence (µn) can be realized by random variables Xn

such that Xn → X0 in probability, but not by random variables Yn such that
Yn → Y0 on a set of probability 1. See Example 7.

Whether or not (SK) makes some interest depends on the choice of ρ. For in-
stance, (SK) is well known if ρ is total variation distance (see Sethuraman (2002)
and Proposition 1) but looks intriguing if ρ is Wasserstein distance (suitably adapted)
or bounded Lipschitz metric.

Let us suppose σ(d) ⊂ B ⊗ B, where d is the distance on S, σ(d) the σ-field
on S × S generated by (x, y) 7→ d(x, y) and B ⊗ B = σ{A × B : A, B ∈ B}.
This assumption is actually true when (S, d) is separable, as well as for various non
separable choices of (S, d). For instance, σ(d) ⊂ B⊗B when d is uniform distance on
some space S of cadlag functions, or when d is 0-1 distance and card(S) = card(R).

In Theorem 5, (SK) is shown to be true for ρ = W with W defined as follows. Let
X, Y be the canonical projections on S × S and µ, ν any probabilities on B. Also,
let D(µ, ν) be the class of those probabilities P on B ⊗ B such that P ◦X−1 = µ,
P ◦ Y −1 = ν and P is disintegrable in a suitable sense; see Section 2. Then,

W (µ, ν) =
W0(µ, ν) + W0(ν, µ)

2
where W0(µ, ν) = inf

P∈D(µ,ν)
EP

{
1 ∧ d(X, Y )

}
.

Such a W is a Wasserstein type distance. If at least one between µ and ν is
separable, one also obtains

W (µ, ν) = W0(µ, ν) = inf
P∈F(µ,ν)

EP

{
1 ∧ d(X, Y )

}
where F(µ, ν) is the class of laws P on B⊗B such that P ◦X−1 = µ and P ◦Y −1 = ν.
(That is, members of F(µ, ν) are not requested to be disintegrable).

In checking W is a metric, and even more in proving Theorem 5, restricting to
disintegrable probability measures is fundamental. This explains the title of this
paper.
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Roughly speaking, W is the ”right” distance to cope with (SK), as
W (µn, µ0) → 0 amounts to just a little bit more than a Skorohod representa-
tion. In addition, independently of (SK), W looks (to us) a reasonable extension of
Wasserstein distance to a large class of metric spaces (those satisfying σ(d) ⊂ B⊗B).

Finally, we make a remark on the bounded Lipschitz metric

b(µ, ν) = sup
f

∣∣∣∫ f dµ−
∫

f dν
∣∣∣

where sup is over those functions f : S → [−1, 1] satisfying |f(x)− f(y)| ≤ d(x, y)
for all x, y ∈ S. It would be nice to have an analogous of Theorem 5 for b, that is, to
prove that a Skorohod representation is available whenever b(µn, µ0) → 0. We do
not know whether this is true, but we mention two particular cases. It is trivially
true for d the 0-1 distance; see Theorem 2.1 of Sethuraman (2002) and Proposition
1. It is ”close to be true” if S is some space of cadlag functions and d the uniform
distance. Suppose in fact (S, d) is of this type and b(µn, µ0) → 0. Then, by a result
in Berti et al. (2009), there are a sub-σ-field B0 ⊂ B and S-valued random variables
Xn such that Xn −→ X0 in probability and Xn ∼ µn on B0 for all n.

2. Disintegrations

In this paper, a disintegration is meant as follows. Let P be a probability measure
on (Ω1×Ω2,A1⊗A2), where (Ω1,A1) and (Ω2,A2) are arbitrary measurable spaces.
Let X(x, y) = x and Y (x, y) = y, (x, y) ∈ Ω1×Ω2, denote the canonical projections.
Then, P is said to be disintegrable if Y admits a regular version of the conditional
distribution given X in the space (Ω1×Ω2,A1⊗A2, P ). That is, P is disintegrable
if there is a collection α = {α(x) : x ∈ Ω1} such that:
− α(x) is a probability on A2 for each x ∈ Ω1;
− x 7→ α(x)(B) is A1-measurable for each B ∈ A2;
− P (X ∈ A, Y ∈ B) =

∫
A

α(x)(B) P ◦X−1(dx) for all A ∈ A1 and B ∈ A2.
Such an α is called a disintegration for P .

A disintegration can fail to exist. However, for P to admit a disintegration, it
suffices that P ◦ X−1 is atomic, or that P (Y ∈ B) = 1 for some B ∈ A2 which
is isomorphic to a Borel set in a Polish space. Furthermore, a countable convex
combination of disintegrable laws is disintegrable as well.

The term ”disintegration” has usually a broader meaning than in this paper. We
refer to Maitra and Ramakrishnan (1988), Berti and Rigo (1999) and references
therein for disintegrations in this larger sense.

3. Other preliminaries

Let (Ω,A, P ) be a probability space. The outer and inner measures are

P ∗(H) = inf{P (A) : H ⊂ A ∈ A}, P∗(H) = 1− P ∗(Hc), H ⊂ Ω.

Given maps Xn : Ω → S, n ≥ 0, say that Xn converges to X0 in (outer) probability,
written Xn

P−→ X0, in case

lim
n

P ∗(d(Xn, X0) > ε
)

= 0 for all ε > 0.

Let (F,F) be a measurable space. If µ and ν are probabilities on F , their total
variation distance is ‖µ− ν‖ = supA∈F |µ(A)− ν(A)|. Recall that

‖P ◦X−1 − P ◦ Y −1‖ ≤ P∗(X 6= Y )
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whenever X, Y : (Ω,A) −→ (F,F) are measurable maps.
Next result is essentially well known; see Theorem 2.1 of Sethuraman (2002).

We give a proof to make the paper self-contained, and because we need (F,F) to
be an arbitrary measurable space (which is not the case in all references known to
us).

Proposition 1. Given probabilities µn on (F,F), n ≥ 0, there are a probability
space (Ω,A, P ) and measurable maps Xn : (Ω,A) → (F,F) such that

P∗(Xn 6= X0) = P ∗(Xn 6= X0) = ‖µn − µ0‖ and Xn ∼ µn for all n ≥ 0.

Proof. It can be assumed µn 6= µ0 for all n 6= 0. Let fn be a density of µn

with respect to some measure λ on F , say λ =
∑∞

n=0(1/2)n+1µn. Moreover, let
νn(A) =

∫
A

(fn−f0)
+

‖µn−µ0‖ dλ for A ∈ F and n ≥ 1. On some probability space (Ω,A, P ),
there are independent random variables X0, U , Z such that

X0 ∼ µ0, U = (Un : n ≥ 1) is an i.i.d. sequence with U1 uniform on (0, 1),

Z = (Zn : n ≥ 1) is an independent sequence with Zn ∼ νn.

For every n ≥ 1, let us define An = {f0(X0) Un > fn(X0)} and Xn = Zn on An

and Xn = X0 on Ac
n. On noting that P (0 < Un < 1) = 1,

P (An) =
∫
{f0>fn}

f0 − fn

f0
dµ0 =

∫
{f0>fn}

(f0 − fn) dλ

=
∫

(f0 − fn)+ dλ = ‖µn − µ0‖.

Since Zn is independent of (X0, Un), it follows that

P (Xn ∈ A) = P
(
An ∩ {Zn ∈ A}

)
+ P

(
Ac

n ∩ {X0 ∈ A}
)

= P (An)P (Zn ∈ A) + µ0

(
A ∩ {f0 ≤ fn}

)
+

∫
A∩{f0>fn}

fn

f0
dµ0

=
∫

A

(fn − f0)+ dλ +
∫

A

(fn ∧ f0) dλ =
∫

A

fn dλ = µn(A)

for all A ∈ F . Thus Xn ∼ µn, and this in turn implies

‖µn − µ0‖ ≤ P∗(Xn 6= X0) ≤ P ∗(Xn 6= X0) ≤ P (An) = ‖µn − µ0‖.

�

Remark 2. In Proposition 1, P can be taken to be perfect provided each µn is
perfect. We recall that a probability Q on a measurable space (Ω0,A0) is perfect
in case each A0-measurable function f : Ω0 → R satisfies Q(f ∈ B) = 1 for some
real Borel set B ⊂ f(Ω0); see e.g. Maitra and Ramakrishnan (1988).

4. Skorohod representation theorem without separability: an
example and a result based on Wasserstein distance

We aim to do three things. First, to show that a Skorohod representation (as
defined in Section 1) can fail to exist if µn → µ0 weakly but µ0 is not separable.
Second, to introduce a version W of Wasserstein distance for any metric space
satisfying a certain (mild) condition. Third to prove that, whether or not µ0 is
separable, a Skorohod representation is available in case W (µn, µ0) −→ 0.
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4.1. Separability of µ0 cannot be dropped in Skorohod theorem. Given a
measurable space (Ω,A), a map X : Ω → S is measurable, or a random variable,
if X−1(B) ⊂ A. A probability µ on B is separable if µ(B) = 1 for some separable
B ∈ B.

Example 3. Let B(0,1) be the Borel σ-field on (0, 1) and m the Lebesgue measure
on B(0,1). Existence of a non separable probability on the Borel σ-field of a metric
space is equiconsistent with existence of a countably additive extension of m to the
power set of (0, 1). See page 403 of Dudley (1999), page 380 of Fuchino et al. (2006)
and page 182 of Goldring (1995). This means that, if there is a non separable Borel
probability on a metric space, then, possibly in a different model of ZFC, there is
a countably additive extension of m to the power set of (0, 1).

Suppose that there is a non separable Borel probability on some metric space,
or, equiconsistently, that m admits a countably additive extension to the power set.

Let (fn : n ≥ 1) be an i.i.d. sequence of real random variables, on the probability
space ((0, 1),B(0,1),m), such that

fn ≥ 0, Em(fn) = 1, fn has a non degenerate distribution.

Let S = (0, 1), equipped with 0-1 distance, and let µ0 be a countably additive
extension of m to the power set of (0, 1). Define further

µn(B) = Eµ0(fn IB) for all n ≥ 1 and B ∈ B.

(Note that B is the power set of (0, 1)). Fix n > k ≥ 1 and B ∈ σ(f1, . . . , fk). Since
fn and IB are B(0,1)-measurable and independent under m,

µn(B) = Em(fn IB) = Em(fn)Em(IB) = m(B) = µ0(B).

Hence, µ0(B) = limn µn(B) for every B ∈
⋃

k σ(f1, . . . , fk). Letting F = σ(f1, f2, . . .),
standard arguments imply

Eµ0(g) = lim
n

Eµn(g) for all bounded F-measurable functions g.

Given B ∈ B, since Eµ0(IB | F) is bounded and F-measurable, it follows that

µn(B) = Eµ0

{
fn Eµ0(IB | F)

}
= Eµn

{
Eµ0(IB | F)

}
−→ Eµ0

{
Eµ0(IB | F)

}
= µ0(B).

Thus, µn → µ0 weakly. Suppose now that Xn ∼ µn for all n ≥ 0, where the Xn

are S-valued random variables on some probability space (Ω,A, P ). As d is 0-1
distance,

P ∗(d(Xn, X0) >
1
2
)

= P ∗(Xn 6= X0) ≥ P∗(Xn 6= X0) ≥ ‖µn − µ0‖ =
1
2

Em|fn − 1|.

Since (fn) is an i.i.d. sequence with a nondegenerate distribution, (fn) fails to
converge in L1. Therefore, Xn does not converge to X0 in probability.

Example 3 shows that, unless µ0 is separable, µn → µ0 weakly is not enough
for a Skorohod representation. Accordingly, as discussed in Section 1, we focus on
results of the type

(SK): If ρ(µn, µ0) → 0, then a Skorohod representation is available

where ρ is a suitable distance between probability measures. By Proposition 1,
(SK) is true for ρ the total variation distance. Here, we deal with ρ the Wasserstein
distance (suitably adapted). In a sense, Wasserstein distance is the ”right” distance
to cope with Skorohod theorem.
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4.2. A Wasserstein distance. For any σ-field E , M(E) denotes the collection of
probability measures on E . Let

X(x, y) = x and Y (x, y) = y, (x, y) ∈ S × S,

be the canonical projections on S × S and

D(µ, ν) = {P ∈M(B ⊗ B) : P ◦X−1 = µ, P ◦ Y −1 = ν, P disintegrable}
where µ, ν ∈ M(B). Disintegrable probability measures have been defined in Sec-
tion 2. Note that D(µ, ν) 6= ∅, as it includes at least the product law P = µ× ν.

In the sequel, the distance d : S × S → R is assumed to be measurable, in the
sense that

σ(d) ⊂ B ⊗ B.

Indeed, d is measurable if (S, d) is separable, as well as in various non separable
situations. For instance, σ(d) ⊂ B ⊗ B if d is uniform distance on some space S of
cadlag functions, or if d is 0-1 distance and card(S) = card(R). Measurability of d
yields {(x, y) : x = y} = {d = 0} ∈ B⊗B, which in turn implies card(S) ≤ card(R).
We do not know of any example where {(x, y) : x = y} ∈ B ⊗ B and yet d fails to
be measurable. Perhaps, {(x, y) : x = y} ∈ B ⊗ B implies measurability of d, or at
least measurability of some distance d∗ equivalent to d.

In any case, if d is measurable, one can define

W0(µ, ν) = inf
P∈D(µ,ν)

EP

{
1 ∧ d(X, Y )

}
and

W (µ, ν) =
W0(µ, ν) + W0(ν, µ)

2
for all µ, ν ∈M(B).

Theorem 4. Suppose σ(d) ⊂ B ⊗ B and let µ, ν, γ ∈M(B). Then,

W0(µ, ν) = 0 ⇔ µ = ν and W0(µ, ν) ≤ W0(µ, γ) + W0(γ, ν).

In particular, W is a distance on M(B). In addition, if at least one between µ and
ν is separable, then

W (µ, ν) = W0(µ, ν) = inf
P∈F(µ,ν)

EP

{
1 ∧ d(X, Y )

}
where F(µ, ν) = {P ∈M(B ⊗ B) : P ◦X−1 = µ, P ◦ Y −1 = ν}.

(Note: members of F(µ, ν) need not be disintegrable).

Proof. Let Pµ(H) = µ{x ∈ S : (x, x) ∈ H}, H ∈ B ⊗ B. Since Pµ ∈ D(µ, µ), then
W0(µ, µ) ≤ EPµ

{
1 ∧ d(X, Y )

}
= 0.

Next, if f : S → [−1, 1] satisfies |f(x)− f(y)| ≤ d(x, y) for all x, y ∈ S, then∣∣∣∫ f dµ−
∫

f dν
∣∣∣ = |EP f(X)− EP f(Y )| ≤ EP |f(X)− f(Y )|

≤ 2 EP

{
1 ∧ d(X, Y )

}
for all P ∈ D(µ, ν).

Thus |
∫

f dµ−
∫

f dν| ≤ 2 W0(µ, ν), so that µ = ν whenever W0(µ, ν) = 0.
Next, given ε > 0, there are P1 ∈ D(µ, γ) and P2 ∈ D(γ, ν) such that

W0(µ, γ) + W0(γ, ν) + ε > EP1

{
1 ∧ d(X, Y )

}
+ EP2

{
1 ∧ d(X, Y )

}
.

Let U, V, Z be the canonical projections on S × S × S and αi the disintegration of
Pi, i = 1, 2. Also, let Q be the probability on B ⊗ B ⊗ B such that

Q
(
U ∈ A, V ∈ B,Z ∈ C

)
=

∫
α2(y)(C) IA(x) IB(y)P1(dx, dy), A, B, C ∈ B.
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Then, (U, V ) ∼ P1 and (V,Z) ∼ P2 under Q. Let P3(·) = Q
(
(U,Z) ∈ ·

)
denote the

distribution of (U,Z) under Q. Then,

α(x)(·) =
∫

α2(y)(·) α1(x)(dy)

is a disintegration for P3. Hence, P3 ∈ D(µ, ν) so that

EP1

{
1 ∧ d(X, Y )

}
+ EP2

{
1 ∧ d(X, Y )

}
= EQ

{
1 ∧ d(U, V )

}
+ EQ

{
1 ∧ d(V,Z)

}
≥ EQ

{
1 ∧ d(U,Z)

}
= EP3

{
1 ∧ d(X, Y )

}
≥ W0(µ, ν).

This proves that W0(µ, ν) ≤ W0(µ, γ) + W0(γ, ν).
Finally, let W1(µ, ν) = infP∈F(µ,ν) EP

{
1 ∧ d(X, Y )

}
. If µ(A) = 1 for some

countable A, or if ν(A) = 1 for some A isomorphic to a Borel set in a Polish space,
then each P ∈ F(µ, ν) is disintegrable so that W0(µ, ν) = W1(µ, ν). In particular,
W0(µ, ν) = W1(µ, ν) if at least one between µ and ν has countable support. Having
noted this fact, suppose µ is separable. Then, given ε > 0, there is a Borel partition
A0, A1, . . . , Ak of S such that µ(A0) < ε and diam(Aj) < ε for all j 6= 0. Fix a point
xj ∈ Aj and define T = xj on {X ∈ Aj}, j = 0, 1, . . . , k. Define also λ = P ◦ T−1,
where P ∈ F(µ, ν) is such that W1(µ, ν) + ε > EP

{
1 ∧ d(X, Y )

}
. On noting that

λ has finite support,

W0(µ, ν) ≤ W0(µ, λ) + W0(λ, ν) = W1(µ, λ) + W1(λ, ν)

≤ EP

{
1 ∧ d(X, T )

}
+ EP

{
1 ∧ d(T, Y )

}
≤ 2 EP

{
1 ∧ d(X, T )

}
+ EP

{
1 ∧ d(X, Y )

}
< 2

k∑
j=0

EP

{
I{X∈Aj} 1 ∧ d(X, xj)

}
+ W1(µ, ν) + ε

≤ 2
{
P (X ∈ A0) + ε P (X /∈ A0)

}
+ W1(µ, ν) + ε < W1(µ, ν) + 5 ε.

Therefore, W0(µ, ν) ≤ W1(µ, ν). Since W0 ≥ W1 (by definition), it follows that
W0(µ, ν) = W1(µ, ν). Exactly the same proof applies if ν is separable, so that
W0(µ, ν) = W1(µ, ν) even if ν is separable. Since W1(µ, ν) = W1(ν, µ), one also
obtains W (µ, ν) = W0(µ, ν) = W1(µ, ν) if µ or ν is separable. �

We do not know whether W0(µ, ν) = W0(ν, µ) for all µ, ν ∈M(B).

4.3. A metric version of Skorohod theorem. While disintegrability is useful
in Theorem 4, it is even crucial in the next version of Skorohod theorem. In-
deed, existence of disintegrations makes the proof transparent and simple. We also
note that disintegrability underlies the usual proofs of Skorohod theorem. To our
knowledge, when µn → µ0 weakly and µ0 is separable, the random variables Xn

are constructed such that L(X0, Xn) ∈ D(µ0, µn) where L(X0, Xn) is the probabil-
ity law of (X0, Xn); see Theorem 1.10.4 of van der Vaart and Wellner (1996) and
Theorem 3.5.1 of Dudley (1999).

Theorem 5. Suppose σ(d) ⊂ B ⊗ B. Then, W0(µ0, µn) −→ 0 if and only if there
are a probability space (Ω,A, P ) and random variables Xn : Ω → S satisfying

Xn ∼ µn and L(X0, Xn) is disintegrable for each n ≥ 0, Xn
P−→ X0.

In particular, there is a Skorohod representation in case W (µn, µ0) −→ 0.
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Proof. As to the ”if” part, since L(X0, Xn) ∈ D(µ0, µn),

W0(µ0, µn) ≤ EP

{
1 ∧ d(X0, Xn)

}
−→ 0.

We next turn to the ”only if” part. Let (Ω,A) = (S∞,B∞) and Xn : S∞ → S the
n-th canonical projection, n ≥ 0. Fix Pn ∈ D(µ0, µn) such that EPn

{
1∧d(X, Y )

}
<

1
n + W0(µ0, µn) and a disintegration αn for Pn. By Ionescu-Tulcea theorem, there
is a unique probability P on B∞ such that X0 ∼ µ0 and

βn(x0, x1, . . . , xn−1)(A) = αn(x0)(A), (x0, x1, . . . , xn−1) ∈ Sn, A ∈ B,

is a regular version of the conditional distribution of Xn given (X0, X1, . . . , Xn−1)
for all n ≥ 1. (Note that Xn is conditionally independent of (X1, . . . , Xn−1) given
X0). To conclude the proof, it suffices noting that L(X0, Xn) = Pn and

ε P
(
d(X0, Xn) > ε

)
≤ EP

{
1 ∧ d(X0, Xn)

}
<

1
n

+ W0(µ0, µn) −→ 0 for all ε ∈ (0, 1).

�

Remark 6. Let h : S × S → [0,∞) be a function such that σ(h) ⊂ B ⊗ B and

Wh(µ, ν) = inf
P∈D(µ,ν)

EP

{
1 ∧ h(X, Y )

}
for all µ, ν ∈M(B).

For instance, h could be another distance on S, stronger than d, but measurable
with respect to B ⊗ B. Then, Wh(µ0, µn) −→ 0 if and only if h(X0, Xn) −→ 0
in probability for some S-valued random variables Xn such that Xn ∼ µn and
L(X0, Xn) is disintegrable for all n ≥ 0. Up to replacing d with h, this can be
proved exactly as Theorem 5.

It is not hard to prove that W (µn, µ0) → 0 if µn → µ0 weakly and µ0 is separable.
Thus, Theorem 5 implies the usual Skorohod theorem provided σ(d) ⊂ B ⊗ B and
almost uniform convergence is weakened into convergence in probability.

A last question is whether convergence in probability can be replaced by al-
most uniform convergence in a Skorohod representation. More precisely, suppose a
Skorohod representation is available, that is, Xn ∼ µn for all n and Xn → X0 in
probability for some S-valued random variables Xn. In this case, are there S-valued
random variables Yn such that Yn ∼ µn for all n and Yn → Y0 on a set of proba-
bility 1 ? By Skorohod theorem, the answer is yes if µ0 is separable. In particular,
the answer is yes if, consistently with ZFC, non separable probability measures
fail to exist. As we now prove, however, the answer is no if non separable proba-
bilities exist. Thus, in the spirit of this paper, a Skorohod representation cannot
be strengthened by asking almost uniform convergence (or even a.s. convergence)
instead of convergence in probability.

Example 7. The notation is the same as Example 3. Indeed, we argue essentially
as in such example and we use a result from Sethuraman (2002). Recall that
existence of a non separable Borel probability on a metric space is equiconsistent
with existence of a countably additive extension of m to the power set of (0, 1).

Let (fn : n ≥ 1) be a sequence of real random variables, on the probability space
((0, 1),B(0,1),m), satisfying

fn ≥ 0, Em(fn) = 1, lim
n

Em|fn − 1| = 0, m
(
lim inf

n
fn < 1

)
> 0.

Let S = (0, 1), equipped with 0-1 distance, and let µ0 be a countably additive
extension of m to the power set of (0, 1). Define further µn(B) = Eµ0

(
fn IB

)
for all
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n ≥ 1 and B ∈ B. Since ‖µn − µ0‖ = 1
2Em|fn − 1| −→ 0, Proposition 1 implies the

existence of a Skorohod representation. Suppose now that Yn ∼ µn for all n ≥ 0,
where the Yn are S-valued random variables on some probability space (Ω,A, P ).
Then, since d is 0-1 distance, σ(d) ⊂ B ⊗ B, and m

(
lim infn fn < 1

)
> 0, Theorem

3.1 of Sethuraman (2002) implies

P (Yn −→ Y0) = P
(
Yn = Y0 ultimately

)
< 1.
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