A SKOROHOD REPRESENTATION THEOREM FOR UNIFORM DISTANCE

PATRIZIA BERTI, LUCA PRATELLI, AND PIETRO RIGO

ABSTRACT. Let μ_n be a probability measure on the Borel σ -field on D[0,1] with respect to Skorohod distance, $n \geq 0$. Necessary and sufficient conditions for the following statement are provided. On some probability space, there are D[0,1]-valued random variables X_n such that $X_n \sim \mu_n$ for all $n \geq 0$ and $\|X_n - X_0\| \to 0$ in probability, where $\|\cdot\|$ is the sup-norm. Such conditions do not require μ_0 separable under $\|\cdot\|$. Applications to exchangeable empirical processes and to pure jump processes are given as well.

1. Introduction

Let D be the set of real cadlag functions on [0,1] and

$$||x|| = \sup_{t} |x(t)|, \quad u(x,y) = ||x - y||, \quad x, y \in D.$$

Also, let d be Skorohod distance and \mathcal{B}_d , \mathcal{B}_u the Borel σ -fields on D with respect to (w.r.t.) d and u, respectively.

In real problems, one usually starts with a sequence $(\mu_n : n \ge 0)$ of probabilities on \mathcal{B}_d . If $\mu_n \to \mu_0$ weakly (under d), Skorohod representation theorem yields $d(X_n, X_0) \stackrel{a.s.}{\longrightarrow} 0$ for some D-valued random variables X_n such that $X_n \sim \mu_n$ for all $n \ge 0$. However, X_n can fail to approximate X_0 uniformly. A trivial example is $\mu_n = \delta_{x_n}$, where $(x_n) \subset D$ is any sequence such that $x_n \to x_0$ according to d but not according to d.

Lack of uniform convergence is sometimes a trouble. Thus, given a sequence $(\mu_n : n \ge 0)$ of laws on \mathcal{B}_d , it is useful to have conditions for:

(1) On some probability space
$$(\Omega, \mathcal{A}, P)$$
, there are random variables $X_n : \Omega \to D$ such that $X_n \sim \mu_n$ for all $n \geq 0$ and $||X_n - X_0|| \xrightarrow{P} 0$.

Convergence in probability cannot be strengthened into a.s. convergence in condition (1). In fact, it may be that (1) holds, and yet there are not D-valued random variables Y_n such that $Y_n \sim \mu_n$ for all n and $||Y_n - Y_0|| \xrightarrow{a.s.} 0$; see Example 7.

This paper is concerned with (1). The main result is Theorem 4, which states that (1) holds if and only if

(2)
$$\lim_{n} \sup_{f \in L} |\mu_n(f) - \mu_0(f)| = 0,$$

1

 $^{2000\} Mathematics\ Subject\ Classification.\ 60B10,\ 60A05,\ 60A10.$

Key words and phrases. Cadlag function – Exchangeable empirical process – Separable probability measure – Skorohod representation theorem– Uniform distance – Weak convergence of probability measures.

where L is the set of functions $f: D \to \mathbb{R}$ satisfying

$$\sigma(f) \subset \mathcal{B}_d, \quad -1 \le f \le 1, \quad |f(x) - f(y)| \le ||x - y|| \text{ for all } x, y \in D.$$

Theorem 4 can be commented as follows. Say that a probability μ , defined on \mathcal{B}_d or \mathcal{B}_u , is u-separable in case $\mu(A)=1$ for some u-separable $A\in\mathcal{B}_d$. Suppose μ_0 is u-separable and define $\mu_0^*(H)=\mu_0(A\cap H)$ for $H\in\mathcal{B}_u$, where $A\in\mathcal{B}_d$ is u-separable and $\mu_0(A)=1$. Since μ_n is defined only on \mathcal{B}_d for $n\geq 1$, we adopt Hoffmann-Jørgensen's definition of convergence in distribution for non measurable random elements; see e.g. [7] and [9]. Let I_0 be the identity map on $(D,\mathcal{B}_u,\mu_0^*)$ and I_n the identity map on (D,\mathcal{B}_d,μ_n) , $n\geq 1$. Further, let D be regarded as a metric space under u. Then, since μ_0^* is u-separable, one obtains:

- (i) Condition (1) holds (with $||X_n X_0|| \xrightarrow{a.s.} 0$) provided $I_n \to I_0$ in distribution;
- (ii) $I_n \to I_0$ in distribution if and only if $\lim_n \sup_{f \in L} |\mu_n(f) \mu_0(f)| = 0$.

Both (i) and (ii) are known facts; see Theorems 1.7.2, 1.10.3 and 1.12.1 of [9].

The spirit of Theorem 4, thus, is that one can dispense with u-separability of μ_0 to get (1). This can look surprising, as separability of the limit law is crucial in Skorohod representation theorem; see [5]. However, $X_n \sim \mu_n$ is asked only on \mathcal{B}_d and not on \mathcal{B}_u . Indeed, X_n can even fail to be measurable w.r.t. \mathcal{B}_u .

Non u-separable laws on \mathcal{B}_d are quite usual. A cadlag process Z, with jumps at random time points, has typically a non u-separable distribution on \mathcal{B}_d . One example is $Z(t) = B_{M(t)}$, where B is a standard Brownian bridge, M an independent random distribution function and the jump-points of M have a non discrete distribution. Such a Z is the limit in distribution, under d, of certain exchangeable empirical processes; see [1] and [3].

In applications, unless μ_0 is u-separable, checking condition (2) is usually difficult. In this sense, Theorem 4 can be viewed as a "negative" result, as it states that condition (1) is quite hard to reach. This is partly true. However, there are also meaningful situations where (2) can be proved with a reasonable effort. Two examples are exchangeable empirical processes, which motivated Theorem 4, and a certain class of jump processes. Both are discussed in Section 4.

Our proof of Theorem 4 is admittedly long and it is confined in a final appendix. Some preliminary results, of possible independent interest, are needed. We mention Proposition 2 and Lemma 13 in particular.

A last remark is that Theorem 4 is still valid if D is replaced by $D([0,1], \mathcal{X})$, the space of cadlag functions from [0,1] into a separable Banach space \mathcal{X} .

2. A Preliminary result

Let (Ω, \mathcal{A}, P) be a probability space. The outer and inner measures are

$$P^*(H) = \inf\{P(A) : H \subset A \in A\}, \quad P_*(H) = 1 - P^*(H^c), \quad H \subset \Omega.$$

Given a metric space (S, ρ) and maps $X_n : \Omega \to S$, $n \ge 0$, say that X_n converges to X_0 in (outer) probability, written $X_n \xrightarrow{P} X_0$, in case

$$\lim_{n} P^* (\rho(X_n, X_0) > \epsilon) = 0 \quad \text{for all } \epsilon > 0.$$

In the sequel, d_{TV} denotes total variation distance between two probabilities defined on the same σ -field.

Proposition 1. Let (F, \mathcal{F}) be a measurable space and μ_n a probability on (F, \mathcal{F}) , $n \geq 0$. Then, on some probability space (Ω, \mathcal{A}, P) , there are measurable maps $X_n : (\Omega, \mathcal{A}) \to (F, \mathcal{F})$ such that

$$P_*(X_n \neq X_0) = P^*(X_n \neq X_0) = d_{TV}(\mu_n, \mu_0)$$
 and $X_n \sim \mu_n$ for all $n \geq 0$.

Proposition 1 is well known, even if in a slightly different form; see Theorem 2.1 of [8]. A proof of the present version is in Section 3 of [5].

Next proposition is fundamental for proving our main result. Among other things, it can be viewed as an improvement of Proposition 1.

Proposition 2. Let λ_n be a probability on $(F \times G, \mathcal{F} \otimes \mathcal{G})$, $n \geq 0$, where (F, \mathcal{F}) is a measurable space and (G, \mathcal{G}) a Polish space equipped with its Borel σ -field. The following conditions are equivalent:

(a) There are a probability space (Ω, \mathcal{A}, P) and measurable maps $(Y_n, Z_n) : (\Omega, \mathcal{A}) \longrightarrow (F \times G, \mathcal{F} \otimes \mathcal{G})$ such that

$$(Y_n, Z_n) \sim \lambda_n \text{ for all } n \geq 0, \quad P^*(Y_n \neq Y_0) \longrightarrow 0, \quad Z_n \stackrel{P}{\longrightarrow} Z_0;$$

(b) For each bounded Lipschitz function $f: G \to \mathbb{R}$,

$$\lim_{n} \sup_{A \in \mathcal{F}} \left| \int I_A(y) f(z) \lambda_n(dy, dz) - \int I_A(y) f(z) \lambda_0(dy, dz) \right| = 0.$$

To prove Proposition 2, we first recall a result of Blackwell and Dubins [6].

Theorem 3. Let G be a Polish space, \mathcal{M} the collection of Borel probabilities on G, and m the Lebesgue measure on (0,1). There is a Borel measurable map

$$\Phi: \mathcal{M} \times (0,1) \longrightarrow G$$

such that, for every $\nu \in \mathcal{M}$,

- (i) $\Phi(\nu, \cdot) \sim \nu \ under \ m;$
- (ii) There is a Borel set $A_{\nu} \subset (0,1)$ such that $m(A_{\nu}) = 1$ and

$$\Phi(\nu_n, t) \longrightarrow \Phi(\nu, t)$$
 whenever $t \in A_{\nu}, \nu_n \in \mathcal{M}$ and $\nu_n \to \nu$ weakly.

We also need to recall disintegrations. Let λ be a probability on $(F \times G, \mathcal{F} \otimes \mathcal{G})$, where (F, \mathcal{F}) and (G, \mathcal{G}) are arbitrary measurable spaces. In this paper, λ is said to be *disintegrable* if there is a collection $\alpha = {\alpha(y) : y \in F}$ such that:

- $-\alpha(y)$ is a probability on \mathcal{G} for $y \in F$;
- $-y\mapsto \alpha(y)(C)$ is \mathcal{F} -measurable for $C\in\mathcal{G};$
- $-\lambda(A\times C)=\int_A \alpha(y)(C)\,\mu(dy)$ for $A\in\mathcal{F}$ and $C\in\mathcal{G}$, where $\mu(\cdot)=\lambda(\cdot\times G)$. Such an α is called a *disintegration* for λ . For λ to admit a disintegration, it suffices that G is a Borel subset of a Polish space and \mathcal{G} the Borel σ -field on G.

Proof of Proposition 2. "(a) \Rightarrow (b)". Under (a), for each $A \in \mathcal{F}$ and bounded Lipschitz $f: G \to \mathbb{R}$, one obtains

$$\left| \int I_{A}(y) f(z) \lambda_{n}(dy, dz) - \int I_{A}(y) f(z) \lambda_{0}(dy, dz) \right| = \left| E_{P} \left\{ I_{A}(Y_{n}) f(Z_{n}) - I_{A}(Y_{0}) f(Z_{0}) \right\} \right|$$

$$\leq E_{P} \left| f(Z_{n}) \left(I_{A}(Y_{n}) - I_{A}(Y_{0}) \right) \right| + \left| E_{P} \left| I_{A}(Y_{0}) \left(f(Z_{n}) - f(Z_{0}) \right) \right|$$

$$\leq \sup |f| P^{*}(Y_{n} \neq Y_{0}) + \left| E_{P} \left| f(Z_{n}) - f(Z_{0}) \right| \longrightarrow 0.$$

"(b) \Rightarrow (a)". Let $\mu_n(A) = \lambda_n(A \times G)$, $A \in \mathcal{F}$. By (b), $d_{TV}(\mu_n, \mu_0) \to 0$. Hence, by Proposition 1, on a probability space (Θ, \mathcal{E}, Q) there are measurable maps $h_n : (\Theta, \mathcal{E}) \to (F, \mathcal{F})$ satisfying $h_n \sim \mu_n$ for all n and $Q^*(h_n \neq h_0) \to 0$. Let

$$\Omega = \Theta \times (0,1), \quad \mathcal{A} = \mathcal{E} \otimes \mathcal{B}_{(0,1)}, \quad P = Q \times m,$$

where $\mathcal{B}_{(0,1)}$ is the Borel σ -field on (0,1) and m the Lebesgue measure.

Since G is Polish, each λ_n admits a disintegration $\alpha_n = {\alpha_n(y) : y \in F}$. By Theorem 3, there is a map $\Phi : \mathcal{M} \times (0,1) \longrightarrow G$ satisfying conditions (i)-(ii). Let

$$Y_n(\theta, t) = h_n(\theta)$$
 and $Z_n(\theta, t) = \Phi\{\alpha_n(h_n(\theta)), t\}, (\theta, t) \in \Theta \times (0, 1).$

For fixed θ , condition (i) yields $Z_n(\theta,\cdot) = \Phi\{\alpha_n(h_n(\theta)),\cdot\} \sim \alpha_n(h_n(\theta))$ under m. Since α_n is a disintegration for λ_n , for all $A \in \mathcal{F}$ and $C \in \mathcal{G}$ one has

$$P(Y_n \in A, Z_n \in C) = \int_{\Theta} I_A(h_n(\theta)) \, m\{t : Z_n(\theta, t) \in C\} \, Q(d\theta)$$
$$= \int_{\{h_n \in A\}} \alpha_n(h_n(\theta))(C) \, Q(d\theta) = \int_A \alpha_n(y)(C) \, \mu_n(dy) = \lambda_n(A \times C).$$

Also, $P^*(Y_n \neq Y_0) = Q^*(h_n \neq h_0) \longrightarrow 0$ by Lemma 1.2.5 of [9].

Finally, we prove $Z_n \xrightarrow{P} Z_0$. Write $\alpha_n(y)(f) = \int f(z) \alpha_n(y)(dz)$ for all $y \in F$ and $f \in L_G$, where L_G is the set of Lipschitz functions $f: G \to [-1,1]$. Since $Q^*(h_n \neq h_0) \to 0$, there are $A_n \in \mathcal{F}$ such that $Q(A_n^c) \to 0$ and $h_n = h_0$ on A_n . Given $f \in L_G$,

$$E_{Q} \left| \alpha_{n}(h_{n})(f) - \alpha_{0}(h_{0})(f) \right| - 2Q(A_{n}^{c}) \leq E_{Q} \left\{ I_{A_{n}} \left| \alpha_{n}(h_{0})(f) - \alpha_{0}(h_{0})(f) \right| \right\}$$

$$\leq E_{Q} \left| \alpha_{n}(h_{0})(f) - \alpha_{0}(h_{0})(f) \right| = \int \left| \alpha_{n}(y)(f) - \alpha_{0}(y)(f) \right| \mu_{0}(dy).$$

Using condition (b), it is not hard to see that $\int |\alpha_n(y)(f) - \alpha_0(y)(f)| \mu_0(dy) \longrightarrow 0$. Therefore, $\alpha_n(h_n)(f) \stackrel{Q}{\longrightarrow} \alpha_0(h_0)(f)$ for each $f \in L_G$, and this is equivalent to

each subsequence (n') contains a further subsequence (n'')

such that
$$\alpha_{n''}(h_{n''}(\theta)) \longrightarrow \alpha_0(h_0(\theta))$$
 weakly for Q-almost all θ ;

see Remark 2.3 and Corollary 2.4 of [2]. Thus, by property (ii) of Φ , each subsequence (n') contains a further subsequence (n'') such that $Z_{n''} \xrightarrow{a.s.} Z_0$. That is, $Z_n \xrightarrow{P} Z_0$ and this concludes the proof.

3. Existence of cadlag processes, with given distributions on the Skorohod Borel σ -field, converging uniformly in probability

As in Section 1, \mathcal{B}_d and \mathcal{B}_u are the Borel σ -fields on D w.r.t. d and u. Also, L is the class of functions $f: D \to [-1,1]$ which are measurable w.r.t. \mathcal{B}_d and Lipschitz w.r.t. u with Lipschitz constant 1. We recall that, for $x, y \in D$, the Skorohod distance d(x,y) is the infimum of those $\epsilon > 0$ such that

$$||x - y \circ \gamma|| \le \epsilon$$
 and $\sup_{s \ne t} \Big| \log \frac{\gamma(s) - \gamma(t)}{s - t} \Big| \le \epsilon$

for some strictly increasing homeomorphism $\gamma:[0,1]\to [0,1]$. The metric space (D,d) is separable and complete.

We write $\mu(f) = \int f d\mu$ whenever μ is a probability on a σ -field and f a real bounded function, measurable w.r.t. such a σ -field.

Motivations for the next result have been given in Section 1.

Theorem 4. Let μ_n be a probability measure on \mathcal{B}_d , $n \geq 0$. Then, conditions (1) and (2) are equivalent, that is,

$$\lim_{n} \sup_{f \in L} |\mu_n(f) - \mu_0(f)| = 0$$

if and only if there are a probability space (Ω, \mathcal{A}, P) and measurable maps $X_n : (\Omega, \mathcal{A}) \to (D, \mathcal{B}_d)$ such that $X_n \sim \mu_n$ for each $n \geq 0$ and $||X_n - X_0|| \stackrel{P}{\longrightarrow} 0$.

The proof of Theorem 4 is given in the Appendix. Here, we state a corollary and an open problem and we make two examples.

In applications, the μ_n are often probability distributions of random variables, all defined on some probability space $(\Omega_0, \mathcal{A}_0, P_0)$. In the spirit of [4], a (minor) question is whether condition (1) holds with the X_n defined on $(\Omega_0, \mathcal{A}_0, P_0)$ as well.

Corollary 5. Let $(\Omega_0, \mathcal{A}_0, P_0)$ be a probability space and $Z_n : (\Omega_0, \mathcal{A}_0) \to (D, \mathcal{B}_d)$ a measurable map, $n \geq 1$. Suppose $\lim_n \sup_{f \in L} |E_{P_0}\{f(Z_n)\} - \mu_0(f)| = 0$ for some probability measure μ_0 on \mathcal{B}_d . If P_0 is nonatomic, there are measurable maps $X_n : (\Omega_0, \mathcal{A}_0) \to (D, \mathcal{B}_d)$, $n \geq 0$, such that

$$X_0 \sim \mu_0$$
, $X_n \sim Z_n$ for each $n \ge 1$, $\|X_n - X_0\| \xrightarrow{P_0} 0$.

Also, P_0 is nonatomic if $\mu_0\{x\} = 0$ for all $x \in D$, or if $P_0(Z_n = x) = 0$ for some $n \ge 1$ and all $x \in D$.

Proof. Since (D,d) is separable, P_0 is nonatomic if $P_0(Z_n=x)=0$ for some $n\geq 1$ and all $x\in D$. By Corollary 5.4 of [4], $(\Omega_0,\mathcal{A}_0,P_0)$ supports a D-valued random variable Z_0 with $Z_0\sim \mu_0$. Hence, P_0 is nonatomic even if $\mu_0\{x\}=0$ for all $x\in D$. Next, by Theorem 4, on a probability space (Ω,\mathcal{A},P) there are D-valued random variables Y_n such that $Y_0\sim \mu_0, Y_n\sim Z_n$ for $n\geq 1$ and $\|Y_n-Y_0\|\stackrel{P}{\longrightarrow} 0$. Let $(D^\infty,\mathcal{B}_d^\infty)$ be the countable product of (D,\mathcal{B}_d) and

$$\nu(A) = P((Y_0, Y_1, \ldots) \in A), \quad A \in \mathcal{B}_d^{\infty}.$$

Then, ν is a Borel probability on a Polish space. Thus, if P_0 is nonatomic, $(\Omega_0, \mathcal{A}_0, P_0)$ supports a D^{∞} -valued random variable $X = (X_0, X_1, \ldots)$ with $X \sim \nu$; see e.g. Theorem 3.1 of [4]. Since $(X_0, X_1, \ldots) \sim (Y_0, Y_1, \ldots)$, this concludes the proof.

Let (S, ρ) be a metric space such that $(x, y) \mapsto \rho(x, y)$ is measurable w.r.t. $\mathcal{E} \otimes \mathcal{E}$, where \mathcal{E} is the ball σ -field on S. This is actually true in case $(S, \rho) = (D, u)$ and it is very useful to prove Theorem 4. Thus, a question is whether (D, u) can be replaced by (S, ρ) in Theorem 4. Precisely, let $(\mu_n : n \geq 0)$ be a sequence of laws on \mathcal{E} and L_S the class of functions $f: S \to [-1, 1]$ such that $\sigma(f) \subset \mathcal{E}$ and $|f(x) - f(y)| \leq \rho(x, y)$ for all $x, y \in S$. Then,

Conjecture: $\lim_n \sup_{f \in L_S} |\mu_n(f) - \mu_0(f)| = 0$ if and only if $\rho(X_n, X_0) \longrightarrow 0$ in probability for some S-valued random variables X_n such that $X_n \sim \mu_n$ for all n.

We finally give two examples. The first shows that condition (2) cannot be weakened into $\mu_n(f) \to \mu_0(f)$ for each fixed $f \in L$.

Example 6. For each $n \ge 0$, let $h_n : (0,1) \to [0,\infty)$ be a Borel function such that $\int_0^1 h_n(t) dt = 1$. Suppose that $h_n \to h_0$ in $\sigma(L_1, L_\infty)$ but not in L_1 under Lebesgue measure m on (0,1), that is,

(3)
$$\limsup_{n} \int_{0}^{1} |h_{n}(t) - h_{0}(t)| dt > 0,$$

$$\lim_{n} \int_{0}^{1} h_{n}(t) g(t) dt = \int_{0}^{1} h_{0}(t) g(t) dt \quad \text{for all bounded Borel functions } g.$$

Take a sequence $(T_n : n \ge 0)$ of (0,1)-valued random variables, on a probability space (Θ, \mathcal{E}, Q) , such that each T_n has density h_n w.r.t. m. Define

$$Z_n = I_{[T_n,1]}$$
 and $\mu_n(A) = Q(Z_n \in A)$ for $A \in \mathcal{B}_d$.

Then $Z_n = \phi(T_n)$, with $\phi: (0,1) \to D$ given by $\phi(t) = I_{[t,1]}, t \in (0,1)$. Hence, for fixed $f \in L$, one obtains

$$\mu_n(f) = E_Q\{f \circ \phi(T_n)\} = \int_0^1 h_n(t) f \circ \phi(t) dt \longrightarrow \int_0^1 h_0(t) f \circ \phi(t) dt = \mu_0(f).$$

Suppose now that $X_n \sim \mu_n$ for all $n \geq 0$, where the X_n are *D*-valued random variables on some probability space (Ω, \mathcal{A}, P) . Since

$$P\{\omega : X_n(\omega)(t) \in \{0,1\} \text{ for all } t\} = Q\{\theta : Z_n(\theta)(t) \in \{0,1\} \text{ for all } t\} = 1,$$

it follows that

$$P(||X_n - X_0|| > \frac{1}{2}) = P(X_n \neq X_0) \ge d_{TV}(\mu_n, \mu_0) = \frac{1}{2} \int_0^1 |h_n(t) - h_0(t)| dt.$$

Therefore, X_n fails to converge to X_0 in probability.

A slight change in Example 6 shows that convergence in probability cannot be strengthened into a.s. convergence in condition (1). Precisely, it may be that (1) holds, and yet there are not D-valued random variables Y_n satisfying $Y_n \sim \mu_n$ for all n and $||Y_n - Y_0|| \xrightarrow{a.s.} 0$.

Example 7. In the notation of Example 6, instead of (3) assume

$$\lim_{n} \int_{0}^{1} |h_{n}(t) - h_{0}(t)| dt = 0 \text{ and } m(\liminf_{n} h_{n} < h_{0}) > 0$$

where m is Lebesgue measure on (0,1). Since

$$d_{TV}(\mu_n, \mu_0) = \frac{1}{2} \int_0^1 |h_n(t) - h_0(t)| dt \longrightarrow 0,$$

condition (1) trivially holds by Proposition 1. Suppose now that $Y_n \sim \mu_n$ for all $n \geq 0$, where the Y_n are D-valued random variables on a probability space (Ω, \mathcal{A}, P) . As $m(\liminf_n h_n < h_0) > 0$, Theorem 3.1 of [8] yields $P(Y_n = Y_0 \text{ ultimately}) < 1$. On the other hand, since $P(Y_n(t) \in \{0,1\} \text{ for all } t) = 1$, one obtains

$$P(||Y_n - Y_0|| \longrightarrow 0) = P(Y_n = Y_0 \text{ ultimately}) < 1.$$

4. Applications

Condition (2) is not always hard to be checked, even if μ_0 is not u-separable. We illustrate this fact by two examples. To this end, we first note that conditions (1)-(2) are preserved under certain mixtures.

Corollary 8. Let G be the set of distribution functions on [0,1] and G the σ -field on G generated by the maps $g \mapsto g(t)$, $0 \le t \le 1$. Let π be a probability on \mathcal{G} and μ_n and λ_n probabilities on \mathcal{B}_d . Then, condition (1) holds provided

$$\sup_{f \in L} |\lambda_n(f) - \lambda_0(f)| \longrightarrow 0 \quad and$$

$$\mu_n(A) = \int \lambda_n \{x : x \circ g \in A\} \pi(dg) \quad for \ all \ n \ge 0 \ and \ A \in \mathcal{B}_d.$$

Proof. By Theorem 4, there are a probability space (Θ, \mathcal{E}, Q) and measurable maps $Z_n: (\Theta, \mathcal{E}) \longrightarrow (D, \mathcal{B}_d)$ such that $Z_n \sim \lambda_n$ for all n and $\|Z_n - Z_0\| \stackrel{Q}{\longrightarrow} 0$. Define $\Omega = \Theta \times G$, $\mathcal{A} = \mathcal{E} \otimes \mathcal{G}$, $P = Q \times \pi$, and $X_n(\theta, g) = Z_n(\theta) \circ g$ for all $(\theta, g) \in \Theta \times G$. It is routine to check that $X_n \sim \mu_n$ for all n and $||X_n - X_0|| \stackrel{P}{\longrightarrow} 0$.

Example 9. (Exchangeable empirical processes). Let $(\xi_n : n \geq 1)$ be a sequence of [0,1]-valued random variables on the probability space $(\Omega_0, \mathcal{A}_0, P_0)$. Suppose (ξ_n) exchangeable and define

$$F(t) = E_{P_0} \left(I_{\{\xi_1 \le t\}} \mid \tau \right)$$

where τ is the tail σ -field of (ξ_n) . Take F to be regular, i.e., each F-path is a distribution function. Then, the n-th empirical process can be defined as

$$Z_n(t) = \frac{\sum_{i=1}^n \{I_{\{\xi_i \le t\}} - F(t)\}}{\sqrt{n}}, \quad 0 \le t \le 1, n \ge 1.$$

Since $Z_n:(\Omega_0,\mathcal{A}_0)\to(D,\mathcal{B}_d)$ is measurable, one can define $\mu_n(\cdot)=P_0(Z_n\in\cdot)$. Also, let μ_0 be the probability distribution of

$$Z_0(t) = B_{M(t)}$$

where B is a standard Brownian bridge on [0,1] and M an independent copy of F (with B and M defined on some probability space). Then, $\mu_n \to \mu_0$ weakly (under d) but μ_0 can fail to admit any extension to \mathcal{B}_u ; see [3] and Example 11 of [1]. Thus, Z_n can fail to converge in distribution, under u, according to Hoffmann-Jørgensen's definition. However, Corollaries 5 and 8 grant that:

On $(\Omega_0, \mathcal{A}_0, P_0)$, there are measurable maps $X_n : (\Omega_0, \mathcal{A}_0) \to (D, \mathcal{B}_d)$ such that

 $X_n \sim Z_n$ for each $n \geq 0$ and $||X_n - X_0|| \xrightarrow{P_0} 0$. Define in fact $B_n(t) = n^{-1/2} \sum_{i=1}^n \{I_{\{u_i \leq t\}} - t\}$, where u_1, u_2, \ldots are i.i.d. random variables (on some probability space) with uniform distribution on [0, 1]. Then, $B_n \to B$ in distribution, under u, according to Hoffmann-Jørgensen's definition. Let λ_n and λ_0 be the probability distributions of B_n and B, respectively. Since λ_0 is u-separable, $\sup_{f\in L} |\lambda_n(f) - \lambda_0(f)| \longrightarrow 0$ (see Section 1). Thus, the first condition of Corollary 8 holds. The second condition follows from de Finetti's representation theorem, by letting $\pi(A) = P_0(F \in A)$ for $A \in \mathcal{G}$. Hence, condition (1) holds.

It remains to see that the X_n can be defined on $(\Omega_0, \mathcal{A}_0, P_0)$. To this end, it can be assumed $A_0 = \sigma(\xi_1, \xi_2, \ldots)$. If P_0 is nonatomic, it suffices to apply Corollary 5. Suppose P_0 has an atom A. Since $A_0 = \sigma(\xi_1, \xi_2, \ldots)$, up to P_0 -null sets, A is of the form $A = \{\xi_n = t_n \text{ for all } n \geq 1\}$ for some constants t_n . Let $\sigma = (\sigma_1, \sigma_2, ...)$ be a permutation of 1, 2, ... and $A_{\sigma} = \{\xi_n = t_{\sigma_n} \text{ for all } n \geq 1\}$. By exchangeability,

$$P_0(A_\sigma) = P_0(A) > 0$$
 for all permutations σ ,

and this implies $t_n = t_1$ for all $n \ge 1$. Let H be the union of all P_0 -atoms. Up to P_0 -null sets, one obtains

$$H \subset \{\xi_n = \xi_1 \text{ for all } n \ge 1\} \subset \{Z_n = 0 \text{ for all } n \ge 1\}.$$

If $P_0(H)=1$, thus, it suffices to let $X_n=0$ for all $n\geq 0$. If $0< P_0(H)<1$, since $P_0(\cdot\mid H^c)$ is nonatomic and (ξ_n) is still exchangeable under $P_0(\cdot\mid H^c)$, it is not hard to define the X_n on $(\Omega_0, \mathcal{A}_0, P_0)$ in such a way that $X_n \sim Z_n$ for all $n\geq 0$ and $\|X_n-X_0\| \xrightarrow{P_0} 0$.

Example 10. (Pure jump processes). For each $n \ge 0$, let

$$C_n = (C_{n,j} : j \ge 1)$$
 and $Y_n = (Y_{n,j} : j \ge 1)$

be sequences of real random variables, defined on the probability space $(\Omega_0, \mathcal{A}_0, P_0)$, such that

$$0 \le Y_{n,j} \le 1$$
 and $\sum_{j=1}^{\infty} |C_{n,j}| < \infty$.

Define

$$Z_n(t) = \sum_{j=1}^{\infty} C_{n,j} I_{\{Y_{n,j} \le t\}}, \quad 0 \le t \le 1, n \ge 0.$$

Since $Z_n: (\Omega_0, \mathcal{A}_0) \longrightarrow (D, \mathcal{B}_d)$ is measurable, one can define $\mu_n(\cdot) = P_0(Z_n \in \cdot)$. Then, condition (1) holds provided

 C_n is independent of Y_n for every $n \geq 0$,

$$\sum_{j=1}^{\infty} |C_{n,j} - C_{0,j}| \xrightarrow{P_0} 0 \quad \text{and} \quad d_{TV} \left(\nu_{n,k}, \, \nu_{0,k} \right) \longrightarrow 0 \text{ for all } k \ge 1,$$

where $\nu_{n,k}$ denotes the probability distribution of $(Y_{n,1},\ldots,Y_{n,k})$.

For instance, $\nu_{n,k} = \nu_{0,k}$ for all n and k in case $Y_{n,j} = V_{n+j}$ with V_1, V_2, \ldots a stationary sequence. Also, independence between C_n and Y_n can be replaced by

$$\sigma(C_{n,j}) \subset \sigma(Y_{n,1},\ldots,Y_{n,j})$$
 for all $n \geq 0$ and $j \geq 1$.

To prove (1), define $Z_{n,k}(t) = \sum_{j=1}^k C_{n,j} I_{\{Y_{n,j} \leq t\}}$. For each $f \in L$,

$$|\mu_{n}(f) - \mu_{0}(f)| \leq |Ef(Z_{n}) - Ef(Z_{n,k})| + |Ef(Z_{n,k}) - Ef(Z_{0,k})| + |Ef(Z_{0,k}) - Ef(Z_{0})|$$

$$\leq E\{2 \wedge ||Z_{n} - Z_{n,k}||\} + |Ef(Z_{n,k}) - Ef(Z_{0,k})| + E\{2 \wedge ||Z_{0} - Z_{0,k}||\}$$

$$\leq E\{2 \wedge \sum_{j>k} |C_{n,j}|\} + |Ef(Z_{n,k}) - Ef(Z_{0,k})| + E\{2 \wedge \sum_{j>k} |C_{0,j}|\}$$

where $E(\cdot) = E_{P_0}(\cdot)$. Given $\epsilon > 0$, take $k \ge 1$ such that $E\{2 \land \sum_{j>k} |C_{0,j}|\} < \epsilon$. Then,

$$\limsup_n \sup_{f \in L} |\mu_n(f) - \mu_0(f)| < 2\epsilon + \limsup_n \sup_{f \in L} |Ef(Z_{n,k}) - Ef(Z_{0,k})|.$$

It remains to show that $\sup_{f\in L} |Ef(Z_{n,k}) - Ef(Z_{0,k})| \longrightarrow 0$. Since C_n is independent of Y_n , up to changing $(\Omega_0, \mathcal{A}_0, P_0)$ with some other probability space, it can be assumed

$$P_0(Y_{n,j} \neq Y_{0,j} \text{ for some } j \leq k) = d_{TV}(\nu_{n,k}, \nu_{0,k});$$

see Proposition 1. The same is true if $\sigma(C_{n,j}) \subset \sigma(Y_{n,1},\ldots,Y_{n,j})$ for all n and j. Then, letting $A_{n,k} = \{Y_{n,j} = Y_{0,j} \text{ for all } j \leq k\}$, one obtains

$$\sup_{f \in L} |Ef(Z_{n,k}) - Ef(Z_{0,k})| \le E\{I_{A_{n,k}} 2 \wedge ||Z_{n,k} - Z_{0,k}||\} + 2P_0(A_{n,k}^c)$$

$$\leq E\{2 \wedge \sum_{i=1}^{\infty} |C_{n,j} - C_{0,j}|\} + 2 d_{TV}(\nu_{n,k}, \nu_{0,k}) \longrightarrow 0.$$

Thus, condition (2) holds, and an application of Theorem 4 concludes the proof.

APPENDIX

Three preliminary lemmas are needed to prove Theorem 4. The first is part of the folklore about Skorohod distance, and we state it without a proof. Let $\Delta x(t) = x(t) - x(t-)$ denote the jump of $x \in D$ at $t \in (0,1]$.

Lemma 11. Fix $\epsilon > 0$ and $x_n \in D$, $n \ge 0$. Then, $\limsup_n ||x_n - x_0|| \le \epsilon$ whenever $d(x_n, x_0) \longrightarrow 0$ and

$$|\Delta x_n(t)| > \epsilon$$
 for all large n and $t \in (0,1)$ such that $|\Delta x_0(t)| > \epsilon$.

The second lemma is a consequence of Remark 6 of [5], but we give a sketch of its proof as it is basic for Theorem 4. Let μ , ν be laws on \mathcal{B}_d and $\mathcal{F}(\mu,\nu)$ the class of probabilities λ on $\mathcal{B}_d \otimes \mathcal{B}_d$ such that $\lambda(\cdot \times D) = \mu(\cdot)$ and $\lambda(D \times \cdot) = \nu(\cdot)$. Since the map $(x,y) \mapsto ||x-y||$ is measurable w.r.t. $\mathcal{B}_d \otimes \mathcal{B}_d$, one can define

$$W_u(\mu, \nu) = \inf_{\lambda \in \mathcal{F}(\mu, \nu)} \int 1 \wedge \|x - y\| \, \lambda(dx, dy).$$

Lemma 12. For a sequence $(\mu_n : n \ge 0)$ of probabilities on \mathcal{B}_d , condition (1) holds if and only if $W_u(\mu_0, \mu_n) \longrightarrow 0$.

Proof. The "only if" part is trivial. Suppose $W_u(\mu_0, \mu_n) \to 0$. Let $\Omega = D^{\infty}$, $\mathcal{A} = \mathcal{B}_d^{\infty}$ and $X_n : D^{\infty} \to D$ the *n*-th canonical projection, $n \geq 0$. Take $\lambda_n \in \mathcal{F}(\mu_0, \mu_n)$ such that $\int 1 \wedge \|x - y\| \lambda_n(dx, dy) < \frac{1}{n} + W_u(\mu_0, \mu_n)$. Since (D, d) is Polish, λ_n admits a disintegration $\alpha_n = \{\alpha_n(x) : x \in D\}$ (see Section 2). By Ionescu-Tulcea theorem, there is a unique probability P on \mathcal{B}_d^{∞} such that $X_0 \sim \mu_0$ and

$$\beta_n(x_0, x_1, \dots, x_{n-1})(A) = \alpha_n(x_0)(A), \quad (x_0, x_1, \dots, x_{n-1}) \in D^n, A \in \mathcal{B}_d,$$

is a regular version of the conditional distribution of X_n given $(X_0, X_1, \dots, X_{n-1})$ for all $n \ge 1$. Under such P, one obtains $(X_0, X_n) \sim \lambda_n$ (so that $X_n \sim \mu_n$) and

$$\epsilon P(\|X_0 - X_n\| > \epsilon) \le E_P\{1 \land \|X_0 - X_n\|\} < \frac{1}{n} + W_u(\mu_0, \mu_n) \longrightarrow 0 \text{ for all } \epsilon \in (0, 1).$$

The third lemma needs some more effort. Let $\phi_0(x,\epsilon)=0$ and

$$\phi_{n+1}(x,\epsilon) = \inf\{t : \phi_n(x,\epsilon) < t \le 1, |\Delta x(t)| > \epsilon\}$$

where $n \geq 0$, $\epsilon > 0$, $x \in D$ and $\inf \emptyset := 1$. The map $x \mapsto \phi_n(x, \epsilon)$ is universally measurable w.r.t. \mathcal{B}_d for all n and ϵ .

Lemma 13. Let \mathcal{F}_k be the Borel σ -field on \mathbb{R}^k and $I \subset (0,1)$ a dense subset. For a sequence $(\mu_n : n \geq 0)$ of probabilities on \mathcal{B}_d , condition (1) holds provided

$$\sup_{A \in \mathcal{F}_k} \left| \int f(x) I_A(\phi_1(x, \epsilon), \dots, \phi_k(x, \epsilon)) \mu_n(dx) - \int f(x) I_A(\phi_1(x, \epsilon), \dots, \phi_k(x, \epsilon)) \mu_0(dx) \right| \longrightarrow 0$$

for each $k \ge 1$, $\epsilon \in I$ and function $f: D \to [-1,1]$ such that $|f(x) - f(y)| \le d(x,y)$ for all $x, y \in D$.

Proof. Fix $\epsilon \in I$ and write $\phi_n(x)$ instead of $\phi_n(x,\epsilon)$. As each ϕ_n is universally measurable w.r.t. \mathcal{B}_d , there is a set $T \in \mathcal{B}_d$ such that

$$\mu_n(T) = 1$$
 and $I_T \phi_n$ is \mathcal{B}_d -measurable for all $n \geq 0$.

Thus, ϕ_n can be assumed \mathcal{B}_d -measurable for all n. Let k be such that

$$\mu_0\{x:\phi_r(x)\neq 1 \text{ for some } r>k\}<\epsilon.$$

For such a k, define $\phi(x) = (\phi_1(x), \dots, \phi_k(x)), x \in D$, and

$$\lambda_n(A) = \mu_n \{ x : (\phi(x), x) \in A \}, \quad A \in \mathcal{F}_k \otimes \mathcal{B}_d.$$

Since (D, d) is Polish, Proposition 2 applies to such λ_n with $(F, \mathcal{F}) = (\mathbb{R}^k, \mathcal{F}_k)$ and $(G, \mathcal{G}) = (D, \mathcal{B}_d)$. Condition (b) holds by the assumption of the Lemma. Thus, by Proposition 2, on a probability space (Ω, \mathcal{A}, P) there are measurable maps $(Y_n, Z_n) : (\Omega, \mathcal{A}) \to (\mathbb{R}^k \times D, \mathcal{F}_k \otimes \mathcal{B}_d)$ satisfying

$$(Y_n, Z_n) \sim \lambda_n \text{ for all } n \ge 0, \quad P(Y_n \ne Y_0) \longrightarrow 0, \quad d(Z_n, Z_0) \stackrel{P}{\longrightarrow} 0.$$

Since $P(Y_n = \phi(Z_n)) = \lambda_n\{(\phi(x), x) : x \in D\} = 1$, one also obtains

(4)
$$\lim_{n} P(\phi(Z_n) = \phi(Z_0)) = 1.$$

Next, by (4) and $d(Z_n, Z_0) \xrightarrow{P} 0$, there is a subsequence (n_j) such that

$$\lim \sup_{n} P(\|Z_n - Z_0\| > \epsilon) = \lim_{j} P(\|Z_{n_j} - Z_0\| > \epsilon),$$

$$d(Z_{n_j}, Z_0) \xrightarrow{a.s.} 0$$
, $P(\phi(Z_{n_j}) = \phi(Z_0) \text{ for all } j) > 1 - \epsilon$.

Define $U = \limsup_{j} ||Z_{n_j} - Z_0||$ and

$$H = \{\phi_r(Z_0) = 1 \text{ for all } r > k\} \cap \{\phi(Z_{n_i}) = \phi(Z_0) \text{ for all } j\} \cap \{d(Z_{n_i}, Z_0) \longrightarrow 0\}.$$

For each $\omega \in H$, Lemma 11 applies to $Z_0(\omega)$ and $Z_{n_i}(\omega)$, so that $U(\omega) \leq \epsilon$. Further,

$$P(H^c) \le P(\phi_r(Z_0) \ne 1 \text{ for some } r > k) + P(\phi(Z_{n_j}) \ne \phi(Z_0) \text{ for some } j)$$
$$< \mu_0\{x : \phi_r(x) \ne 1 \text{ for some } r > k\} + \epsilon < 2\epsilon.$$

Since $U \leq \epsilon$ on H,

$$\limsup_{n} P(\|Z_n - Z_0\| > \epsilon) = \lim_{j} P(\|Z_{n_j} - Z_0\| > \epsilon) \le P(U \ge \epsilon)$$

$$< P(U = \epsilon) + P(H^c) < P(U = \epsilon) + 2\epsilon.$$

On noting that $E_P\{1 \wedge ||Z_0 - Z_n||\} \leq \epsilon + P(||Z_n - Z_0|| > \epsilon)$, one obtains

$$\limsup_{n} W_u(\mu_0, \mu_n) \le \limsup_{n} E_P \left\{ 1 \wedge \|Z_0 - Z_n\| \right\} < P(U = \epsilon) + 3\epsilon.$$

Since I is dense in (0,1), then $P(U=\epsilon)+3\epsilon$ can be made arbitrarily small for a suitable $\epsilon \in I$. Thus, $\limsup_n W_u(\mu_0,\mu_n)=0$. An application of Lemma 12 concludes the proof.

We are now ready for the last attack to Theorem 4.

Proof of Theorem 4. " $(1) \Rightarrow (2)$ ". Just note that

$$|\mu_n(f) - \mu_0(f)| = |E_P\{f(X_n)\} - E_P\{f(X_0)\}| \le E_P|f(X_n) - f(X_0)|$$

$$\le E_P\{2 \land ||X_n - X_0||\} \longrightarrow 0, \text{ for each } f \in L, \text{ under } (1).$$

"(2) \Rightarrow (1)". Let $B_{\epsilon} = \{x : |\Delta x(t)| = \epsilon \text{ for some } t \in (0,1]\}$. Then, B_{ϵ} is universally measurable w.r.t. \mathcal{B}_d and $\mu_0(B_{\epsilon}) > 0$ for at most countably many $\epsilon > 0$. Hence, $I = \{\epsilon \in (0,1) : \mu_0(B_{\epsilon}) = 0\}$ is dense in (0,1).

Fix $\epsilon \in I$, $k \ge 1$, and a function $f: D \to [-1,1]$ such that $|f(x) - f(y)| \le d(x,y)$ for all $x, y \in D$. By Lemma 13, for condition (1) to be true, it is enough that

(5)
$$\lim_{n} \sup_{A \in \mathcal{F}_{k}} |\mu_{n}\{f I_{A}(\phi)\} - \mu_{0}\{f I_{A}(\phi)\}| = 0$$

where $\phi(x) = (\phi_1(x), \dots, \phi_k(x)), x \in D$, and $\phi_j(x) = \phi_j(x, \epsilon)$ for all j. In order to prove (5), given $b \in (0, \frac{\epsilon}{2})$, define

$$F_b = \{x : |\Delta x(t)| \notin (\epsilon - 2b, \epsilon + 2b) \text{ for all } t \in (0, 1]\}, \quad G_b = \{x : d(x, F_b) \ge \frac{b}{2}\}.$$
 Then,

(i)
$$G_b^c \subset F_{b/2}$$
; (ii) $\phi(x) = \phi(y)$ whenever $x, y \in F_b$ and $||x - y|| < b$.

Statement (ii) is straightforward. To check (i), fix $x \notin G_b$ and take $y \in F_b$ with d(x,y) < b/2. Let $\gamma : [0,1] \to [0,1]$ be a strictly increasing homeomorphism such that $||x-y \circ \gamma|| < b/2$. For all $t \in (0,1]$,

$$|\Delta x(t)| \le |\Delta y \circ \gamma(t)| + 2||x - y \circ \gamma|| < |\Delta y(\gamma(t))| + b.$$

Similarly, $|\Delta x(t)| > |\Delta y(\gamma(t))| - b$. Since $y \in F_b$, it follows that $x \in F_{b/2}$. Next, define

$$\psi_b(x) = \frac{d(x, G_b)}{d(x, F_b) + d(x, G_b)}, \quad x \in D.$$

Then, $\psi_b = 0$ on G_b and ψ_b is Lipschitz w.r.t. d with Lipschitz constant 2/b. Hence, ψ_b is Lipschitz w.r.t. u with Lipschitz constant 2/b (since $d \le u$). Basing on (i)-(ii) and such properties of ψ_b , it is not hard to check that $\psi_b I_A(\phi)$ is Lipschitz w.r.t. u, with Lipschitz constant 2/b, for every $A \in \mathcal{F}_k$. In turn, since $d \le u$ and f is Lipschitz w.r.t. d with Lipschitz constant 1,

$$f_A = f \psi_b I_A(\phi), \quad A \in \mathcal{F}_k,$$

is Lipschitz w.r.t. u with Lipschitz constant (1+2/b). Moreover,

$$|\mu_n\{fI_A(\phi)\} - \mu_n(f_A)| \le \mu_n|fI_A(\phi)(1-\psi_b)| \le \mu_n(1-\psi_b).$$

On noting that $(1+2/b)^{-1} f_A \in L$ for every $A \in \mathcal{F}_k$, condition (2) yields

$$\limsup_{n} \sup_{A \in \mathcal{F}_{k}} |\mu_{n}\{f I_{A}(\phi)\} - \mu_{0}\{f I_{A}(\phi)\}|$$

$$\leq \limsup_{n} \{\mu_{n}(1 - \psi_{b}) + \sup_{A \in \mathcal{F}_{k}} |\mu_{n}(f_{A}) - \mu_{0}(f_{A})| + \mu_{0}(1 - \psi_{b})\}$$

$$= 2 \mu_{0}(1 - \psi_{b}) \leq 2 \mu_{0}(F_{b}^{c}).$$

Since
$$\epsilon \in I$$
 and $\bigcap_{b>0} F_b^c = \{x : |\Delta x(t)| = \epsilon \text{ for some } t\} = B_\epsilon$, one obtains $\limsup_n \sup_{A \in \mathcal{F}_k} |\mu_n \{f I_A(\phi)\} - \mu_0 \{f I_A(\phi)\}| \le 2 \lim_{b \to 0} \mu_0(F_b^c) = 2 \mu_0(B_\epsilon) = 0.$

Therefore, condition (5) holds and this concludes the proof.

References

- [1] Berti P., Rigo P. (2004) Convergence in distribution of non measurable random elements, *Ann. Probab.*, 32, 365-379.
- [2] Berti P., Pratelli L., Rigo P. (2006) Almost sure weak convergence of random probability measures, *Stochastics*, 78, 91-97.
- [3] Berti P., Pratelli L., Rigo P. (2006) Asymptotic behaviour of the empirical process for exchangeable data, *Stoch. Proc. Appl.*, 116, 337-344.
- [4] Berti P., Pratelli L., Rigo P. (2007) Skorohod representation on a given probability space, *Prob. Theo. Rel. Fields*, 137, 277-288.
- [5] Berti P., Pratelli L., Rigo P. (2009) Skorohod representation theorem via disintegrations, *Submitted*, currently available at: http://economia.unipv.it/pagp/pagine_personali/prigo/skorsankhya.pdf
- [6] Blackwell D., Dubins L.E. (1983) An extension of Skorohod's almost sure representation theorem, *Proc. Amer. Math. Soc.*, 89, 691-692.
- [7] Dudley R.M. (1999) Uniform central limit theorems, Cambridge University Press.
- [8] Sethuraman J. (2002) Some extensions of the Skorohod representation theorem, *Sankhya*, 64, 884-893.
- [9] van der Vaart A., Wellner J.A. (1996) Weak convergence and empirical processes, Springer.

PATRIZIA BERTI, DIPARTIMENTO DI MATEMATICA PURA ED APPLICATA "G. VITALI", UNIVERSITA' DI MODENA E REGGIO-EMILIA, VIA CAMPI 213/B, 41100 MODENA, ITALY E-mail address: berti.patrizia@unimore.it

Luca Pratelli, Accademia Navale, viale Italia 72, 57100 Livorno, Italy *E-mail address*: pratel@mail.dm.unipi.it

PIETRO RIGO (CORRESPONDING AUTHOR), DIPARTIMENTO DI ECONOMIA POLITICA E METODI QUANTITATIVI, UNIVERSITA' DI PAVIA, VIA S. FELICE 5, 27100 PAVIA, ITALY *E-mail address*: prigo@eco.unipv.it