A SKOROHOD REPRESENTATION THEOREM
FOR UNIFORM DISTANCE

PATRIZIA BERTI, LUCA PRATELLI, AND PIETRO RIGO

ABSTRACT. Let pn be a probability measure on the Borel o-field on D|0, 1]
with respect to Skorohod distance, n > 0. Necessary and sufficient conditions
for the following statement are provided. On some probability space, there
are DJ0, 1]-valued random variables X, such that X,, ~ uy for all n > 0 and
| Xrn — Xo|| — O in probability, where ||-|| is the sup-norm. Such conditions
do not require po separable under ||-||. Applications to exchangeable empirical
processes and to pure jump processes are given as well.

1. INTRODUCTION

Let D be the set of real cadlag functions on [0, 1] and
loll = supz(®)],  u@,y) =z -yl @ yeD.

Also, let d be Skorohod distance and By, B, the Borel o-fields on D with respect
to (w.r.t.) d and u, respectively.

In real problems, one usually starts with a sequence (u, : n > 0) of probabilities
on By If p, — pp weakly (under d), Skorohod representation theorem yields
d(X,, Xo) 225 0 for some D-valued random variables X,, such that X,, ~ i for
all n > 0. However, X, can fail to approximate Xy uniformly. A trivial example is
Un = Oz, , where (z,) C D is any sequence such that x,, — z according to d but
not according to u.

Lack of uniform convergence is sometimes a trouble. Thus, given a sequence
(ttn : n > 0) of laws on By, it is useful to have conditions for:

On some probability space (£2, 4, P), there are random variables

1
(1) X, : Q@ — D such that X,, ~ p, for all n > 0 and || X,, — Xo|| L.

Convergence in probability cannot be strengthened into a.s. convergence in condi-
tion (1). In fact, it may be that (1) holds, and yet there are not D-valued random
variables Y;, such that Y;, ~ p, for all n and ||¥;, — Yo <% 0; see Example 7.

This paper is concerned with (1). The main result is Theorem 4, which states
that (1) holds if and only if

(2) lim sup |pn (f) — po(f)] =0,
n felL
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where L is the set of functions f : D — R satisfying
o(f) CBa, —1<f<1, [f(z)=f(y)l <lz—yl foralz,yeD.

Theorem 4 can be commented as follows. Say that a probability u, defined on
By or By, is u-separable in case u(A) = 1 for some u-separable A € By. Suppose
o is u-separable and define pf(H) = po(AN H) for H € B, where A € By is
u-separable and po(A) = 1. Since p, is defined only on By for n > 1, we adopt
Hoffmann-Jgrgensen’s definition of convergence in distribution for non measurable
random elements; see e.g. [7] and [9]. Let Iy be the identity map on (D, B, 1)
and I, the identity map on (D, Bg, tin), n > 1. Further, let D be regarded as a
metric space under u. Then, since pf is u-separable, one obtains:

(i) Condition (1) holds (with || X,, — Xo|| <% 0) provided I,, — I in distribution;
(ii) In — Io in distribution if and only if lim, sup ey |pn(f) — po(f)] = 0.

Both (i) and (ii) are known facts; see Theorems 1.7.2, 1.10.3 and 1.12.1 of [9].

The spirit of Theorem 4, thus, is that one can dispense with u-separability of
o to get (1). This can look surprising, as separability of the limit law is crucial in
Skorohod representation theorem; see [5]. However, X, ~ pu, is asked only on By
and not on B,. Indeed, X,, can even fail to be measurable w.r.t. B,,.

Non u-separable laws on By are quite usual. A cadlag process Z, with jumps
at random time points, has typically a non wu-separable distribution on By. One
example is Z(t) = Bj(;), where B is a standard Brownian bridge, M an indepen-
dent random distribution function and the jump-points of M have a non discrete
distribution. Such a Z is the limit in distribution, under d, of certain exchangeable
empirical processes; see [1] and [3].

In applications, unless pg is u-separable, checking condition (2) is usually diffi-
cult. In this sense, Theorem 4 can be viewed as a "negative” result, as it states
that condition (1) is quite hard to reach. This is partly true. However, there are
also meaningful situations where (2) can be proved with a reasonable effort. Two
examples are exchangeable empirical processes, which motivated Theorem 4, and a
certain class of jump processes. Both are discussed in Section 4.

Our proof of Theorem 4 is admittedly long and it is confined in a final appendix.
Some preliminary results, of possible independent interest, are needed. We mention
Proposition 2 and Lemma 13 in particular.

A last remark is that Theorem 4 is still valid if D is replaced by D([O, 1], X ),
the space of cadlag functions from [0, 1] into a separable Banach space X.

2. A PRELIMINARY RESULT
Let (2, A, P) be a probability space. The outer and inner measures are
P*(H)=inf{P(A): HC Ae A}, P.H)=1-P*(H®), HCA.

Given a metric space (59, p) and maps X, : Q@ — S, n > 0, say that X,, converges

to Xg in (outer) probability, written X, P, X, in case

lim P* (p(Xn, Xo) >€) =0 for all e > 0.

In the sequel, d7y denotes total variation distance between two probabilities
defined on the same o-field.
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Proposition 1. Let (F,F) be a measurable space and u, a probability on (F,F),
n > 0. Then, on some probability space (2, A, P), there are measurable maps
Xn: (Q,A) — (F,F) such that

P.(X, # Xo) = P*(X,, # Xo) = drv (tn, o) and X, ~ p, for all n > 0.

Proposition 1 is well known, even if in a slightly different form; see Theorem 2.1
of [8]. A proof of the present version is in Section 3 of [5].

Next proposition is fundamental for proving our main result. Among other
things, it can be viewed as an improvement of Proposition 1.

Proposition 2. Let A\, be a probability on (F x G, F®G), n >0, where (F,F) is
a measurable space and (G,G) a Polish space equipped with its Borel o-field. The
following conditions are equivalent:

(a) There are a probability space (2, A,P) and measurable maps
(Yo, Zp) : (Q,A) — (F x G, F®G) such that

(Yo, Zn) ~ An for alln >0, P*(Y, #Yy) — 0, Z, - Zo;

(b) For each bounded Lipschitz function f : G — R,

lim sup ’/IA n(dy,dz) — /IA(y) f(z) Mo(dy,dz)| =0

" AeF
To prove Proposition 2, we first recall a result of Blackwell and Dubins [6].

Theorem 3. Let G be a Polish space, M the collection of Borel probabilities on
G, and m the Lebesgue measure on (0,1). There is a Borel measurable map

P: Mx(0,1) — G
such that, for every v € M,

(i) ®(v,-) ~ v under m;
(i) There is a Borel set A, C (0,1) such that m(A4,) =1 and

O(vy,t) — O(v,t)  whenevert € A,, v, € M and v, — v weakly.

We also need to recall disintegrations. Let A be a probability on (F x G, F ® G),
where (F,F) and (G,G) are arbitrary measurable spaces. In this paper, \ is said
to be disintegrable if there is a collection o = {a(y) : y € F'} such that:

— a(y) is a probability on G for y € F;

—y—a(y)(C)is ]—" measurable for C' € G;

—XMAXC)= [, af dy) for A € F and C € G, where u(-) = (- x G).
Such an « is called a dzsmtegmtzon for A\. For A to admit a disintegration, it suffices
that G is a Borel subset of a Polish space and G the Borel o-field on G.

Proof of Proposition 2. ”(a) = (b)”. Under (a), for each A € F and bounded
Lipschitz f : G — R, one obtains

[ 1) 7 M) [ 1a0) £2) Do)

< Ep)f Z0) (Ia(Ya) = Ta(Y0))| + Ep|14(¥%) (f(Z0) = £(Z0))]

< suplf| P* (Y # Yo) + Ep|f(Za) = f(Zo)| — 0.

- ’EP{IA(Y,L) f(Zn) — La(Yo) f(Zo)}’
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?(b)=(a)”. Let pun(A) = M(A X G), A € F. By (b), drv(tn,po) — 0.
Hence, by Proposition 1, on a probability space (©,&,Q) there are measurable
maps hy, : (0,&) — (F,F) satistying h,, ~ py, for all n and Q*(h,, # ho) — 0. Let

Q:@X((),l), A:g®6((]71), P:me,

where B 1) is the Borel o-field on (0,1) and m the Lebesgue measure.
Since G is Polish, each A, admits a disintegration a,, = {a,(y) : y € F}. By
Theorem 3, there is a map ® : M x (0,1) — G satisfying conditions (i)-(ii). Let

Yo(0,t) = ho(0) and  Z,(0,t) = ®{an(ha(0)), t}, (6,t) € © x (0,1).
For fixed 6, condition (i) yields Z,(6,) = ®{,(hn(0)), -} ~ an(hy(6)) under m.
Since ay, is a disintegration for \,, for all A € F and C € G one has

I%KleAjZne(n::/gLuhMGDnﬂt:ZAGJ)eC@(ﬂdm

=/ an (hn(0))(C) Q(dO) = / an(y)(C) pn(dy) = An(A x C).
{h €A} A

Also, P*(Y,, # Yy) = Q*(hyn # ho) — 0 by Lemma 1.2.5 of [9)].

Finally, we prove Z, L, Zy. Write an(y)(f) = [ f(z) an(y)(dz) for all y € F
and f € Lg, where Lg is the set of Lipschitz functions f : G — [—1,1]. Since
Q*(hy, # hg) — 0, there are A, € F such that Q(AS) — 0 and h, = hg on A,,.
Given f € Lg,

nha) (£) = o (o) ()] = 2Q(AL) < Eq{La, |an (ho)(f) = aolho)(1)]}
nlba) () = aaba)(H)] = [Jan®)(1) ~ aou)(1)| ol

Using condition (b), it is not hard to see that [|au, (y)(f) — ao(y)(f)| to(dy) — 0.
Therefore, ay, (hy)(f) <, ap(ho)(f) for each f € L¢, and this is equivalent to

Eq

< Eq

each subsequence (n’) contains a further subsequence (n’)
such that ay» (hy(0)) — ao(ho(f)) weakly for Q-almost all 0;

see Remark 2.3 and Corollary 2.4 of [2]. Thus, by property (ii) of ®, each subse-
quence (n') contains a further subsequence (n”) such that Z,» %% Z,. That is,

Zn £, Zy and this concludes the proof.
O

3. EXISTENCE OF CADLAG PROCESSES, WITH GIVEN DISTRIBUTIONS ON THE
SKOROHOD BOREL o-FIELD, CONVERGING UNIFORMLY IN PROBABILITY

As in Section 1, B, and B,, are the Borel o-fields on D w.r.t. d and u. Also, L is
the class of functions f : D — [—1, 1] which are measurable w.r.t. By and Lipschitz
w.r.t. u with Lipschitz constant 1. We recall that, for =, y € D, the Skorohod
distance d(z,y) is the infimum of those € > 0 such that

— (¢
lt —yorq|| <e and sup logM

<e
s#£t s—t

for some strictly increasing homeomorphism ~ : [0,1] — [0,1]. The metric space
(D, d) is separable and complete.
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We write u(f) = [ fdu whenever 1 is a probability on a o-field and f a real
bounded function, measurable w.r.t. such a o-field.
Motivations for the next result have been given in Section 1.

Theorem 4. Let p, be a probability measure on By, n > 0. Then, conditions (1)
and (2) are equivalent, that is,

lim sup [, (f) — po(f)] =0
" feL

if and only if there are a probability space (Q, A, P) and measurable maps
X, (Q,A) — (D, By) such that X,, ~ p, for each n >0 and || X,, — Xo|| 0.

The proof of Theorem 4 is given in the Appendix. Here, we state a corollary and
an open problem and we make two examples.

In applications, the u, are often probability distributions of random variables,
all defined on some probability space (£g,.4o, Pp). In the spirit of [4], a (minor)
question is whether condition (1) holds with the X,, defined on (2,49, Py) as well.

Corollary 5. Let (Qo,. Ao, Py) be a probability space and Z, : (20, Ao) — (D, By)
a measurable map, n > 1. Suppose lim, sup ¢, |Ep0{f(Zn)} — wo(f)] = 0 for
some probability measure g on By. If Py is nonatomic, there are measurable maps
Xn: (Q0,A0) — (D, By), n >0, such that

Xo ~ po, Xnp~Zy foreachn>1, |X, — Xol o, 0.

Also, Py is nonatomic if po{z} =0 for all x € D, or if Py(Z, = x) = 0 for some
n>1and all x € D.

Proof. Since (D, d) is separable, Py is nonatomic if Py(Z,, = x) = 0 for some n > 1
and all z € D. By Corollary 5.4 of [4], (Qo, 4o, Po) supports a D-valued random
variable Zy with Zy ~ pg. Hence, Py is nonatomic even if po{z} = 0 for all z € D.
Next, by Theorem 4, on a probability space (€2, A, P) there are D-valued random

variables Y;, such that Yy ~ pug, Y, ~ Z, for n > 1 and ||Y,, — Yo L0, Let
(D>, BS°) be the countable product of (D, By) and

I/(A):P((YE),Yl,...)GA), AGB;O

Then, v is a Borel probability on a Polish space. Thus, if Py is nonatomic,
(Q0, Ao, Py) supports a D>®-valued random variable X = (Xg, X7,...) with X ~ v;
see e.g. Theorem 3.1 of [4]. Since (X, X1,...) ~ (Yo, Y1,...), this concludes the
proof. (I

Let (S, p) be a metric space such that (z,y) — p(z,y) is measurable w.r.t. EQE,
where & is the ball o-field on S. This is actually true in case (S, p) = (D, u) and
it is very useful to prove Theorem 4. Thus, a question is whether (D, u) can be
replaced by (S5, p) in Theorem 4. Precisely, let (u, : n > 0) be a sequence of
laws on & and Lg the class of functions f : S — [—1,1] such that o(f) C £ and
|f(z) = f(y)] < p(z,y) for all x, y € S. Then,

Congecture: limy, supser  |tn(f) — po(f)] = 0 if and only if p(X,, Xo) — 0 in
probability for some S-valued random variables X,, such that X,, ~ p, for all n.

We finally give two examples. The first shows that condition (2) cannot be
weakened into p,(f) — po(f) for each fized f € L.
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Example 6. For each n > 0, let h,, : (0,1) — [0,00) be a Borel function such that

fol hy,(t)dt = 1. Suppose that h,, — hg in (L1, Loo) but not in L; under Lebesgue

measure m on (0, 1), that is,

lim sup), fo |hn () — ho(t)| dt > 0,

3
®) lim,, [ ha(t) g(t) dt = [y ho(t) g(t )dt for all bounded Borel functions g.

Take a sequence (T}, : n > 0) of (0,1)-valued random variables, on a probability
space (©,€&,Q), such that each T}, has density h,, w.r.t. m. Define

Zn=1Ir, 1) and pn(A) =Q(Z, € A) for A € By.

Then Z,, = ¢(T), with ¢ : (0,1) — D given by ¢(t) = I;; 1), t € (0,1). Hence, for
fixed f € L, one obtains

f>=EQ{fo¢<Tn>}=/o hn(t)f0¢(t)dt—>/0 ho(t) f o 6(t) dt = po(f).

Suppose now that X,, ~ u, for all n > 0, where the X,, are D-valued random
variables on some probability space (2,.A, P). Since

Plw: X,(w)(t) € {0,1} for all t} = Q{6 : Z,(0)(t) € {0,1} for all t} =1,

it follows that

1
P(|X, — Xol > 5) P(X,, # Xo) > dpv (pin, o) / |hn(t) — ho(t)] dt.

Therefore, X, fails to converge to Xy in probability.

A slight change in Example 6 shows that convergence in probability cannot be
strengthened into a.s. convergence in condition (1). Precisely, it may be that (1)
holds, and yet there are not D-valued random variables Y,, satisfying Y,, ~ u,, for
all n and [|Y,, — Yo £ 0.

Example 7. In the notation of Example 6, instead of (3) assume

hm/ [ ( o(t)|dt =0 and m(hmmfh < hg) >0

where m is Lebesgue measure on (0,1). Since

drv (fin; po) / | (2 o(t)] dt — 0,

condition (1) trivially holds by Proposition 1. Suppose now that Y,, ~ pu, for all
n > 0, where the Y,, are D-valued random variables on a probability space (2, A, P).
As m(lim inf, h, < ho) > 0, Theorem 3.1 of [8] yields P(Y,, = Yp ultimately) < 1.
On the other hand, since P(Y,,(t) € {0,1} for all t) = 1, one obtains

P(||Y,, = Yol — 0) = P(Y,, = Y ultimately) < 1
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4. APPLICATIONS

Condition (2) is not always hard to be checked, even if pg is not u-separable.
We illustrate this fact by two examples. To this end, we first note that conditions
(1)-(2) are preserved under certain mixtures.

Corollary 8. Let G be the set of distribution functions on [0,1] and G the o-field
on G generated by the maps g — g(t), 0 <t < 1. Let w be a probability on G and
tn and A, probabilities on By. Then, condition (1) holds provided

sup [A\n(f) — Ao (f)] — 0 and
feL

tn(A) = /)\n{m txog€ Ayn(dg) forallm >0 and A € By.

Proof. By Theorem 4, there are a probability space (0, £, Q) and measurable maps

Zn 1 (0,€) — (D, By) such that Z, ~ A, for all n and ||Z, — Zo| — 0. Define
N=0xG A=E2G, P=Qxm, and X,(0,9) = Z,(6)og for all (,g) € © xG.

It is routine to check that X,, ~ u, for all n and || X,, — Xo|| 0. O

Example 9. (Exchangeable empirical processes). Let (£, : n > 1) be a
sequence of [0, 1]-valued random variables on the probability space (Q,.4q, Fo).
Suppose (&) exchangeable and define

F(t) = EPo (I{ﬁlﬁt} | T)

where 7 is the tail o-field of (§,). Take F to be regular, i.e., each F-path is a
distribution function. Then, the n-th empirical process can be defined as

YTz — F()}

vn 7
Since Z, : (Qo,.Ao) — (D, Bg) is measurable, one can define u,(-) = Py(Z, € -).
Also, let pg be the probability distribution of

Zo(t) = By

where B is a standard Brownian bridge on [0, 1] and M an independent copy of F'
(with B and M defined on some probability space). Then, u, — po weakly (under
d) but po can fail to admit any extension to B,; see [3] and Example 11 of [1]. Thus,
Z,, can fail to converge in distribution, under u, according to Hoffmann-Jgrgensen’s
definition. However, Corollaries 5 and 8 grant that:

On (0, Ao, Py), there are measurable maps X, : (Qo, Ao) — (D, Bg) such that

X, ~ Zy, for eachn >0 and | X,, — Xo|| Ho.

Define in fact By, (t) =n~Y2 31" {I1,,<; —t}, where uy, us, ... are iid. ran-
dom variables (on some probability space) with uniform distribution on [0, 1]. Then,
B,, — B in distribution, under u, according to Hoffmann-Jgrgensen’s definition. Let
An and Ag be the probability distributions of B, and B, respectively. Since \g is
u-separable, sup ¢y [An(f) — Ao(f)| — 0 (see Section 1). Thus, the first condition
of Corollary 8 holds. The second condition follows from de Finetti’s representation
theorem, by letting m(A) = Py(F € A) for A € G. Hence, condition (1) holds.

It remains to see that the X, can be defined on (99, .4¢, Py). To this end, it can
be assumed Ag = 0(&1,&2,...). If Py is nonatomic, it suffices to apply Corollary 5.
Suppose Py has an atom A. Since Ag = 0(&1,&2,...), up to Po-null sets, A is of the

Zn(t) = 0<t<1,n>1.
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form A = {¢, = t,, for all n > 1} for some constants t,. Let o = (01, 02,...) be a
permutation of 1,2,... and A, = {§, =t,, for all n > 1}. By exchangeability,

Py(A,) = Py(A) > 0 for all permutations o,

and this implies t,, = t; for all n > 1. Let H be the union of all Py-atoms. Up to
Py-null sets, one obtains

Hc{¢{ =& foralln>1} C {Z, =0 for all n > 1}.

If Py(H) = 1, thus, it suffices to let X,, =0 for all n > 0. If 0 < Py(H) < 1, since
Py(- | H?) is nonatomic and (&,) is still exchangeable under Py(- | H¢), it is not
hard to define the X,, on (Q, Ao, Py) in such a way that X,, ~ Z, for all n > 0

and || X, — Xo| =% o.

Example 10. (Pure jump processes). For each n > 0, let
Chn=(Cpn;:5>1) and Y,=(Y,;:j>1)

be sequences of real random variables, defined on the probability space (g, 4o, Po),
such that

0<Y,; <1 and Y |Cpyl < oo
j=1
Define

Zn(t) = Cnjliy, <ty 0<t<1,n>0.
j=1
Since Z,, : (9, A9) — (D, B,) is measurable, one can define u,(-) = Py(Z, € -).
Then, condition (1) holds provided

C), is independent of Y,, for every n > 0,
Z‘C""j — Coyj| &) 0 and dTV (Vn,ka VO,k) e 0 fOI‘ all k Z ].,
j=1

where v, , denotes the probability distribution of (Y, 1,...,Yn k).

For instance, v, = vg ) for all n and k in case Y, ; = V,4; with V1, V5,... a
stationary sequence. Also, independence between C,, and Y,, can be replaced by

0(Crj) Co(Ypa,...,Yn,) foralln>0andj> 1.
To prove (1), define Z,, (t) = Y-5_; Cuj Iy, <ty For each f € L,
lun () = 1o(N) < Ef(Zn) = Ef(Zn )| + |Ef (Zni) — Ef(Zog)| + |Ef(Zok) — Ef(Zo)]
SE{Q2A1Z0 = Znil} + |Ef(Zn i) — Ef(Zox)| + E{2 N Zo — Zox |}
< E{2A Y |Cojl} + S (Zuk) = Ef(Zop)| + E{2 7D _|Co,l}

Ji>k i>k
where E(-) = Ep,(-). Given € > 0, take k > 1 such that E{2 A Zj>k|007j|} <e
Then,

lim sup sup |n (f) — po(f)| < 2€+limsupsup |Ef(Znk) — Ef(Zo,k)|-
n feL n feL
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It remains to show that sup ;e |Ef(Zn k) — Ef(Zox)| — 0. Since C), is indepen-
dent of Y,,, up to changing (Qq,.Ag, Py) with some other probability space, it can
be assumed

Py(Yy,; # Yo,; for some j < k) = drv (Vi g, vok);

see Proposition 1. The same is true if 0(Cp ;) C 0(Yn,1,...,Y, ;) for all n and j.
Then, letting A,, , = {Y,,; = Yp,; for all j < k}, one obtains

?ug |Ef(Zny) — Ef(Zox)| < E{Ia, , 2 N||Znx — Zox
€

|} +2Po(A7 )

o0
< E{2A Z\Cn,j — Coyl} +2drv (vng, vor) — 0.

Jj=1

Thus, condition (2) holds, and an application of Theorem 4 concludes the proof.

APPENDIX

Three preliminary lemmas are needed to prove Theorem 4. The first is part
of the folklore about Skorohod distance, and we state it without a proof. Let
Ax(t) = z(t) — z(t—) denote the jump of z € D at t € (0,1].

Lemma 11. Fize >0 and x, € D, n > 0. Then, limsup,, ||z, —xo|| < € whenever
d(xp,x0) — 0 and
|Az, (t)] > € for all large n and t € (0,1) such that |[Axzo(t)| > €.

The second lemma is a consequence of Remark 6 of [5], but we give a sketch of

its proof as it is basic for Theorem 4. Let u, v be laws on By and F(u,v) the class

of probabilities A on By ® By such that A(- x D) = u(:) and A(D x -) = v(+). Since
the map (z,y) — ||z — y|| is measurable w.r.t. By ® By, one can define

Wo(uv) = inf [ 1A |z —y|| Mdz, dy).
()= _int [ 1o =yl Ado,dy)
Lemma 12. For a sequence (f, : n > 0) of probabilities on Bg, condition (1) holds
if and only if Wo(jio, ftn) — 0.

Proof. The "only if” part is trivial. Suppose W (1o, ttn) — 0. Let @ = D>, A =
By and X, : D*° — D the n-th canonical projection, n > 0. Take X\, € F(po, itn)
such that [1A ||z — y|| An(dz, dy) < L + Wy (ko f1n). Since (D, d) is Polish, A,

n
admits a disintegration o, = {a,(z) : ¢ € D} (see Section 2). By Ionescu-Tulcea

theorem, there is a unique probability P on BJ° such that Xy ~ 1o and
Br(T0, T1, -+ s Tn-1)(A) = an(w0)(A), (0, Z1,...,Tn-1) € D", A € By,

is a regular version of the conditional distribution of X,, given (Xo, X1,...,Xn—1)
for all n > 1. Under such P, one obtains (Xg, X,,) ~ A, (so that X, ~ p,,) and

1
eP(|Xo — Xyl > €) <Ep{1A|Xo— X,||} < - + Wu(to, i) — 0 for all e € (0,1).
O

The third lemma needs some more effort. Let ¢o(x,€) = 0 and

Pni1(x,€) =1inf{t : Pp(z,e) <t <1, |Az(t)] > €}
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where n > 0, ¢ > 0, x € D and inf() := 1. The map = — ¢,(z,¢) is universally
measurable w.r.t. B, for all n and e.

Lemma 13. Let Fj, be the Borel o-field on R¥ and I C (0,1) a dense subset. For
a sequence (pi, :n > 0) of probabilities on By, condition (1) holds provided

sup

Ak, /f(.’b) IA(¢1(xv 6)) R ¢k(x7 6)) lffn(dx) - /f(x) 14 (¢1($, 6)7 cey d)k(xa 6)) ,U,()(dl')’ —0

for each k > 1, € € I and function f : D — [—1,1] such that | f(x) — f(y)| < d(z,y)
forallx, y € D.

Proof. Fix € € I and write ¢, (x) instead of ¢,(x,€). As each ¢, is universally
measurable w.r.t. By, there is a set T' € By such that

un(T)=1 and It ¢, is Bg-measurable for all n > 0.
Thus, ¢, can be assumed Bi-measurable for all n. Let k£ be such that
po{z : ¢r(z) # 1 for some r > k} < e.
For such a k, define ¢(x) = (¢1(x),. .., ¢r(x)), x € D, and
M(A) = po{z : (¢(z),2) € A}, A€ F, @ Ba.

Since (D, d) is Polish, Proposition 2 applies to such A, with (F,F) = (R¥, %)
and (G,G) = (D,Bg). Condition (b) holds by the assumption of the Lemma.
Thus, by Proposition 2, on a probability space (9,4, P) there are measurable
maps (Y, Z,) : (2, A) — (R* x D, Fj, ® By) satisfying

(Yo, Zp) ~ An for allm >0, P(Y, #Yy) — 0, d(Zn, Zo) = 0.
Since P(Y, = ¢(Z,)) = M {(¢(z),z) : @ € D} = 1, one also obtains
(4) lim P(¢(Zn) = ¢(Z0)) = 1.

Next, by (4) and d(Z,,, Zo) £, 0, there is a subsequence (n;) such that
limsup P([| Z, — Zo|| > €) =lim P(||Z,,, — Zo| > €),
n J

A(Zn,, Z0) &0, P($(Zn,) = 6(Zo) for all j) > 1 —e.
Define U = limsup;||Z,;, — Zo|| and
H = {¢n(Zo) = 1 for all 7 > k} N {6(Z,) = ¢(Zo) for all j} N {d(Zn,, Zo) —> 0}.
For each w € H, Lemma 11 applies to Zy(w) and Z,,, (w), so that U(w) < e. Further,
P(H®) < P(¢r(Zo) # 1 for some 7 > k) + P(¢(Zn,) # ¢(Zo) for some j)
< po{z : ¢r(x) # 1 for some r > k} + e < 2e.
Since U < € on H,
limnsupP(HZn — Zo|| > €) = li;;nP(Han — Zo|| > €) < P(U > ¢)
<PWU=¢€)+PH)<PU=¢)+2e

On noting that Ep{1 A [|Zo — Z,||} < €+ P(||Zn — Zo|| > €), one obtains

lim sup W, (1o, ptn) < limsup Ep{1 A [|Zg — Z,||} < P(U =€) + 3.
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Since I is dense in (0,1), then P(U = €) 4+ 3¢ can be made arbitrarily small for
a suitable ¢ € I. Thus, limsup,, Wy (1o, tn) = 0. An application of Lemma 12
concludes the proof. O

We are now ready for the last attack to Theorem 4.
Proof of Theorem 4. ”(1) = (2)”. Just note that
| (f) = o(F)l = | Ep{f(Xy)} — Ep{f(Xo)}| < Ep| f(Xn) — f(Xo)|
< Ep{2AN| X, — Xo|} — 0, for each f € L, under (1).

?(2)=(1)". Let B, = {x : |Ax(t)] = € for some ¢t € (0,1]}. Then, B, is
universally measurable w.r.t. By and po(Be) > 0 for at most countably many
€ > 0. Hence, I = {e € (0,1) : po(B.) = 0} is dense in (0,1).

Fixee I, k > 1, and a function f : D — [—1,1] such that |f(z) — f(y)| < d(z,y)
for all z, y € D. By Lemma 13, for condition (1) to be true, it is enough that

(5) lim sup | pn{fI1a(¢)} — po{fIa(®)} =0
" AeFy

where ¢(z) = (¢1(2),...,¢x(2)), z € D, and ¢;(z) = ¢;(x, €) for all j.
In order to prove (5), given b € (0, §), define

Fy={z:|Ax(t)| ¢ (e — 2b, e+ 2b) for all t € (0,1}, Gp={z:d(z,Fy) > =}

| o

Then,
(i) G C Fyjo; (i) ¢(x) = ¢(y) whenever z, y € Fy, and ||z — y|| < b.

Statement (ii) is straightforward. To check (i), fix ¢ G, and take y € F, with
d(xz,y) < b/2. Let v : [0,1] — [0,1] be a strictly increasing homeomorphism such
that ||x —y o] < b/2. For all ¢t € (0,1],

[Az(t)] < |Ayor(®)] + 2]z —yorl <[Ay(y({1))| +b.

Similarly, [Az(t)| > [Ay(y(t))| — b. Since y € Fp, it follows that x € Fy /5.
Next, define
wla) = oo G)
(x, Fp) +d(z, Gp)

Then, ¥, = 0 on G} and vy, is Lipschitz w.r.t. d with Lipschitz constant 2/b. Hence,
1y is Lipschitz w.r.t. u with Lipschitz constant 2/b (since d < u). Basing on (i)-(ii)
and such properties of 1, it is not hard to check that v, I4(¢) is Lipschitz w.r.t.
u, with Lipschitz constant 2/b, for every A € Fi. In turn, since d < w and f is
Lipschitz w.r.t. d with Lipschitz constant 1,

fa=[fipla(), A€ Fy,
is Lipschitz w.r.t. v with Lipschitz constant (1 4 2/b). Moreover,

| n{ FIA(D)} = pn(fa)| < il f Ta(9) (1 = )| < pan(1 — thp).
On noting that (14 2/b)~! fa € L for every A € F, condition (2) yields

1im:up:él£ | tin{ fL1a(0)} — po{f La(0)} |
< limsup {pn (1= v0) + SUp [pun(fa) = pro(fa) 4 po(1 =)}

=2po(1 —y) < 2po(Fy).

e D.
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Since € € I and [, Fy = {7 : |Az(t)| = € for some t} = B, one obtains
limsup:ujg | { f L4 (@)} = po{ f La(@)}] < 2 Jim po(FF) = 2 po(Bc) = 0.
n €Fk -

Therefore, condition (5) holds and this concludes the proof.

REFERENCES

[1] Berti P., Rigo P. (2004) Convergence in distribution of non measurable random
elements, Ann. Probab., 32, 365-379.

[2] Berti P., Pratelli L., Rigo P. (2006) Almost sure weak convergence of random
probability measures, Stochastics, 78, 91-97.

[3] Berti P., Pratelli L., Rigo P. (2006) Asymptotic behaviour of the empirical
process for exchangeable data, Stoch. Proc. Appl., 116, 337-344.

[4] Berti P., Pratelli L., Rigo P. (2007) Skorohod representation on a given prob-
ability space, Prob. Theo. Rel. Fields, 137, 277-288.

[5] Berti P., Pratelli L., Rigo P. (2009) Skorohod representation
theorem via  disintegrations,  Submitted,  currently available at:

http://economia.unipv.it/pagp/pagine_personali/prigo/skorsankhya.pdf

[6] Blackwell D., Dubins L.E. (1983) An extension of Skorohod’s almost sure rep-
resentation theorem, Proc. Amer. Math. Soc., 89, 691-692.

[7] Dudley R.M. (1999) Uniform central limit theorems, Cambridge University
Press.

[8] Sethuraman J. (2002) Some extensions of the Skorohod representation theo-
rem, Sankhya, 64, 884-893.

[9] van der Vaart A., Wellner J.A. (1996) Weak convergence and empirical pro-
cesses, Springer.

PATRIZIA BERTI, DIPARTIMENTO DI MATEMATICA PURA ED APPLICATA ”G. VITALI”, UNIVER-
SITA’ DI MODENA E REGGIO-EMILIA, viA CaMPI 213/B, 41100 MODENA, ITALY
E-mail address: berti.patrizia@unimore.it

LucA PRATELLI, ACCADEMIA NAVALE, VIALE ITALIA 72, 57100 LIvORNO, ITALY
E-mail address: pratel@mail.dm.unipi.it

PIETRO RIGO (CORRESPONDING AUTHOR), DIPARTIMENTO DI ECONOMIA POLITICA E METODI
QUANTITATIVI, UNIVERSITA’ DI PAVIA, VIA S. FELICE 5, 27100 PAviIA, ITALY
E-mail address: prigo@eco.unipv.it



