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Abstract. Let (X , E), (Y,F) and (Z,G) be measurable spaces. Suppose we

are given two probability measures γ and τ , with γ defined on (X ×Y, E ⊗F)

and τ on (X × Z, E ⊗ G). Conditions for the existence of random variables
X, Y, Z, defined on the same probability space (Ω,A, P ) and satisfying

(X,Y ) ∼ γ and (X,Z) ∼ τ,
are given. The probability P may be finitely additive or σ-additive. As an

application, a version of Skorohod representation theorem is proved. Such a

version does not require separability of the limit probability law, and answers
(in a finitely additive setting) a question raised in [2] and [4].

1. Introduction and motivations

This paper is split into two parts. The first focuses on gluing lemmas, while
the second deals with Skorohod representation theorem. The second part is the
natural continuation of some previous papers (see [1]-[4]) and the main reason for
investigating gluing lemmas.

In the sequel, a gluing lemma is meant as follows. Let (X , E), (Y,F) and (Z,G)
be measurable spaces. Suppose we are given two probability measures γ and τ ,
with γ defined on (X ×Y, E ⊗F) and τ on (X ×Z, E ⊗ G). A gluing lemma gives
conditions for the existence of three random variables X, Y, Z defined on the same
probability space and satisfying

(X,Y ) ∼ γ and (X,Z) ∼ τ.
Without loss of generality, we shall assume that X, Y, Z are the coordinate

projections
X(x, y, z) = x, Y (x, y, z) = y, Z(x, y, z) = z,

where (x, y, z) ∈ X×Y×Z. Under this convention, the question reduces to whether
there is a probability measure P on the product σ-field E ⊗ F ⊗ G such that

P
[
(X,Y ) ∈ A

]
= γ(A) and P

[
(X,Z) ∈ B

]
= τ(B)(1)

whenever A ∈ E ⊗ F and B ∈ E ⊗ G.
Gluing lemmas occur in various frameworks, mainly in connection with optimal

transport, coupling and related topics; see e.g. [19]. Another application of gluing
lemmas, as discussed below, concerns Skorohod representation theorem.

We also note that gluing lemmas, as defined in this paper, are connected to
transfer results in the sense of [10, Theorem 6.10] and [16, pages 135-136 and 152-
153]. Indeed, gluing and transfer lemmas are complementary, even if technically
different, and results concerning one of the two fields might be useful in the other.
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The transfer idea has been around in some form for a long time, but it seems to
have been first formalized in Thorisson’s thesis; see [10, page 573] and [16, page
482].

An obvious necessary condition for (1) is

(2) γ
(
A× Y

)
= τ

(
A×Z

)
for all A ∈ E .

In this paper, it is shown that condition (2) is not enough for (1), even if
(X , E) = (Y,F) = (Z,G) with X separable metric and E the Borel σ-field. How-
ever, condition (2) suffices for (1) under some extra assumption. For instance, (2)
implies (1) if one of γ and τ is disintegrable, or else if all but perhaps one of the
marginals of γ and τ are perfect. See Example 1, Lemma 4 and Corollary 5.

In dealing gluing lemmas, one naturally comes across with finitely additive prob-
abilities. We substantiate this claim with two results; see Lemma 2. Suppose the
probability P involved in condition (1) is only requested to be finitely additive.
Then, (1) admits a simple characterization. Indeed, (1) holds if and only if

γ∗
(
A× Y

)
≤ τ∗

(
A×Z

)
for all A ⊂ X

where γ∗ and τ∗ are the inner and outer measures induced by γ and τ . Next,
suppose X and Z are topological spaces (equipped with the Borel σ-fields E and
G). Then, (2) suffices for (1) provided B is restricted to be a continuity set for τ ,
in the sense that B ∈ E ⊗ G and τ∗(∂B) = 0.

We next turn to Skorohod representation theorem (SRT). In addition to [1]-[4],
related references are [9], [13], [15], [17].

Let S be a metric space, B the Borel σ-field on S, and (µn : n ≥ 0) a sequence of
probability measures on B. Recall that a law µ on B is separable if µ(A) = 1 for some
separable set A ∈ B. According to SRT, if µn → µ0 weakly and µ0 is separable, on
some probability space there are S-valued random variables (Xn : n ≥ 0) such that

Xn ∼ µn for all n ≥ 0 and Xn
a.s.−→ X0. See [7], [14] and [20]; see also [8, page 130]

and [18, page 77] for historical notes.
In [2] and [4], the separability assumption on µ0 is investigated. Suppose

d : S × S → [0,∞) is measurable with respect to B ⊗ B,

where d is the distance on S. Also, say that the sequence (µn) admits a Skorohod
representation if

On some probability space, there are S-valued random variables Xn such
that Xn ∼ µn for all n ≥ 0 and Xn → X0 in probability.

If non separable laws on B actually exist, then:

(i) It may be that µn → µ0 weakly but (µn) fails to admit a Skorohod repre-
sentation. See [2, Example 4.1].

(ii) It may be that (µn) has a Skorohod representation, but no S-valued random

variables Yn satisfy Yn ∼ µn for all n ≥ 0 and Yn
a.s.−→ Y0. See [2, Example

4.2].
(iii) (µn) admits a Skorohod representation, for arbitrary µ0, if the condition

µn → µ0 weakly is suitably strengthened. See [2, Theorem 4.2] and [4,
Theorems 1.1 and 1.2].

Hence, separability of µ0 can not be dropped from SRT (by (i)) and almost sure
convergence is too much (by (ii)). On the other hand, because of (iii), a possible
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conjecture is

(µn) has a Skorohod representation ⇔ lim
n
ρ(µn, µ0) = 0

where ρ is some discrepancy measure between probability laws. If true for a rea-
sonable ρ, such a conjecture would be a (nice) version of SRT not requesting sepa-
rability of µ0.

Two common choices of ρ are ρ = L and ρ = W , where L is the bounded-
Lipschitz-metric and W the Wasserstein distance. The definition of L is recalled in
Subsection 3.1. As to W , if µ and ν are any probability measures on B, then

W (µ, ν) = inf
γ

∫
1 ∧ d(x, y) γ(dx, dy)

where inf is over those probability measures γ on B ⊗ B with marginals µ and ν.
It is not hard to prove that limnW (µn, µ0) = 0 if (µn) has a Skorohod represen-

tation. Thus, ρ = W is an admissible choice. Also, since L ≤ 2W , if the conjecture
works with ρ = L then it works with ρ = W as well. Accordingly, we let ρ = W .

Suppose limnW (µn, µ0) = 0. By definition, there is a sequence (γn : n ≥ 1) of
probability measures on B ⊗ B such that each γn has marginals µ0 and µn and

lim
n
γn
{

(x, y) : d(x, y) > ε
}

= 0 for all ε > 0.

Thus, one automatically obtains a Skorohod representation for (µn) if, on some
probability space, there are S-valued random variables (Xn : n ≥ 0) such that

(X0, Xn) ∼ γn for all n ≥ 1.(3)

This is exactly the point where gluing lemmas come into play. Roughly speaking,
they serve to paste in the γn in order to get condition (3). Unfortunately, Example
1 precludes to obtain (3) for an arbitrary sequence (γn) such that

γn(A× S) = µ0(A) = γ1(A× S) for all n ≥ 1 and A ∈ B.

However, something can be said. Our main result is that limnW (µn, µ0) = 0 if
and only if, on a finitely additive probability space (Ω,A, P ), there are S-valued
random variable Xn such that

Xn
P−→ X0, P (X0 ∈ A) = µ0(A) for all A ∈ B, and

P
[
(X0, Xn) ∈ A

]
= γn(A) whenever n ≥ 1, A ∈ B ⊗ B and γ∗n(∂A) = 0.

Moreover, P
[
(X0, Xn) ∈ ·

]
= γn(·) on all of B ⊗ B if µn is perfect.

To sum up, in a finitely additive setting, the above conjecture is true with ρ = W
provided Xn ∼ µn is meant as P (Xn ∈ A) = µn(A) if A ∈ B and µn(∂A) = 0, or
equivalently as

EP
{
f(Xn)

}
=

∫
f dµn for all bounded continuous f : S → R.

We refer to Theorem 8 for details.
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2. Gluing lemmas

In the sequel, the abbreviation “f.a.p.” stands for finitely additive probability. A
σ-additive f.a.p. is referred to as a probability measure.

Let (X , E), (Y,F), (Z,G) be (arbitrary) measurable spaces, γ a f.a.p. on E ⊗ F
and τ a f.a.p. on E ⊗G. Recall that, if Q is a f.a.p. on a field U on some set Ω, the
outer and inner measures are defined by

Q∗(A) = inf{Q(B) : A ⊂ B ∈ U} and Q∗(A) = 1−Q∗(Ac) where A ⊂ Ω.

We begin with an example where condition (2) holds while condition (1) fails for
any f.a.p. P , despite γ and τ are probability measures and (X , E) = (Y,F) = (Z,G)
with X separable metric and E the Borel σ-field.

Example 1. Let λ be the Lebesgue measure on the Borel σ-field on [0, 1]. Take
I ⊂ [0, 1] such that λ∗(I) = 1 and λ∗(I) = 0 and define J = [0, 1] \ I and

X = {(x, 1) : x ∈ [0, 1]} ∪ {(x, 2) : x ∈ I} ∪ {(x, 3) : x ∈ J}.

Then, X is a separable metric space under the distance

d[(x, r) , (y, k)] = 1 if r 6= k and d[(x, r) , (y, k)] = |x− y| if r = k.

Let (X , E) = (Y,F) = (Z,G) where E is the Borel σ-field on X . For each A ∈ E⊗E ,
define also

γ(A) = λ∗
{
x ∈ I : ((x, 1), (x, 2)) ∈ A

}
,

τ(A) = λ∗
{
x ∈ J : ((x, 1), (x, 3)) ∈ A

}
.

Since λ∗(I) = λ∗(J) = 1, both γ and τ are probability measures on E ⊗ E . Let
B ∈ E and f(x) = (x, 1) for x ∈ [0, 1]. On noting that f : [0, 1] → X is Borel
measurable and using λ∗(I) = λ∗(J) = 1 again, one obtains

γ
(
B ×X

)
= λ∗

(
I ∩ {f ∈ B}

)
= λ(f ∈ B) = λ∗

(
J ∩ {f ∈ B}

)
= τ

(
B ×X

)
.

Hence, condition (2) holds. However, condition (1) fails for any f.a.p. P . Define in
fact h(x, r) = x for all (x, r) ∈ X . If (1) holds for some f.a.p. P , then

P
[
h(X) = h(Y ), Y ∈ {(x, 2) : x ∈ I}]

= γ
{

((x, r) , (y, k)) : x = y ∈ I, k = 2
}

= λ∗(I) = 1.

Similarly, P
[
h(X) = h(Z), Z ∈ {(x, 3) : x ∈ J}] = 1. Thus, one obtains the

contradiction P
[
h(X) ∈ I ∩ J

]
= 1.

Because of Example 1, some condition for (1) is needed. Next lemma is actually
fundamental for Theorem 8.

Lemma 2. Let γ be a f.a.p. on E ⊗ F and τ a f.a.p. on E ⊗ G. There is a f.a.p.
P on E ⊗ F ⊗ G satisfying condition (1) if and only if

γ∗
(
A× Y

)
≤ τ∗

(
A×Z

)
for all A ⊂ X .

Moreover, if condition (2) holds and X and Z are topological spaces (equipped with
the Borel σ-fields E and G) there is a f.a.p. P on E ⊗ F ⊗ G such that

P
[
(X,Y ) ∈ A

]
= γ(A) and P

[
(X,Z) ∈ B

]
= τ(B)

whenever A ∈ E ⊗ F , B ∈ E ⊗ G and τ∗(∂B) = 0.
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Proof. Suppose that (1) holds for some f.a.p. P . Let Q be a f.a.p. on the power
set of X × Y ×Z such that Q = P on E ⊗ F ⊗ G. By definition of inner and outer
measure and since Q extends P , it follows that

γ∗
(
A× Y

)
≤ P∗(X ∈ A) ≤ Q(X ∈ A) ≤ P ∗(X ∈ A) ≤ τ∗

(
A×Z

)
for all A ⊂ X .

Conversely, suppose γ∗
(
A×Y

)
≤ τ∗

(
A×Z

)
for all A ⊂ X . We need the following

result by Bhaskara Rao and Bhaskara Rao [5, Theorem 3.6.1].

(BR) For j = 1, 2, let Uj be a field on a set Ω and Pj a f.a.p. on Uj . There is a
f.a.p. P on the power set of Ω such that P = P1 on U1 and P = P2 on U2
if and only if P1(A) ≤ P2(B) whenever A ∈ U1, B ∈ U2 and A ⊂ B.

Let Ω = X × Y × Z and

U1 =
{
{(X,Y ) ∈ A} : A ∈ E ⊗ F

}
, U2 =

{
{(X,Z) ∈ B} : B ∈ E ⊗ G

}
,

P1

[
(X,Y ) ∈ A

]
= γ(A) and P2

[
(X,Z) ∈ B

]
= τ(B).

Fix A ∈ E ⊗ F and B ∈ E ⊗ G with {(X,Y ) ∈ A} ⊂ {(X,Z) ∈ B} and define

A0 = {x ∈ X : (x, y) ∈ A for some y ∈ Y}
to be the projection of A onto X . Since A0 ×Z ⊂ B, then

P1

[
(X,Y ) ∈ A

]
= γ(A) ≤ γ∗

(
A0 × Y

)
≤ τ∗

(
A0 ×Z

)
≤ τ(B) = P2

[
(X,Z) ∈ B

]
.

Therefore, in view of (BR), condition (1) holds for some f.a.p. P .
Finally, suppose condition (2) holds and X and Z are topological spaces equipped

with the Borel σ-fields E and G. Define the field

U2 =
{
{(X,Z) ∈ B} : B ∈ E ⊗ G, τ∗(∂B) = 0

}
and take U1, P1, P2 as above. Fix A ∈ E ⊗F and B ∈ E ⊗G such that τ∗(∂B) = 0
and {(X,Y ) ∈ A} ⊂ {(X,Z) ∈ B}. Since A0 ∈ E and τ∗(∂B) = 0,

P1

[
(X,Y ) ∈ A

]
≤ γ

(
A0 × Y

)
= τ

(
A0 ×Z

)
≤ τ∗(B) = τ(B) = P2

[
(X,Z) ∈ B

]
.

An application of (BR) concludes the proof. �

Remark 3. Other statements, similar to Lemma 2, can be proved by the same
argument. As an example, under condition (2), there is a f.a.p. Q on E ⊗ F ⊗ G
such that Q

[
X ∈ A, Y ∈ B

]
= γ(A × B) and Q

[
(X,Z) ∈ D

]
= τ(D) whenever

A ∈ E , B ∈ F and D ∈ E ⊗ G.

Usually, γ and τ are probability measures (and not merely f.a.p.’s) and a natural
question is whether condition (1) holds under a (σ-additive) probability measure
P . To address this issue, we first recall some definitions.

Let µ be a probability measure on (X , E). Say that µ is perfect if, for each E-
measurable function f : X → R, there is a Borel set B ⊂ R such that B ⊂ f(X ) and
µ(f ∈ B) = 1. If X is separable metric and E the Borel σ-field, then µ is perfect
if and only if it is tight. In particular, µ is perfect if X is a universally measurable
subset of a Polish space (in particular, a Borel subset) and E the Borel σ-field.

Let γ be a probability measure on E⊗F . Say that γ is disintegrable if γ admits a
regular conditional distribution given the sub-σ-field {A×Y : A ∈ E}. Equivalently,
there is a collection {α(x, ·) : x ∈ X} such that:

− α(x, ·) is a probability measure on F for x ∈ X ;
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− x 7→ α(x,B) is E-measurable for B ∈ F ;
− γ(H) =

∫
α(x,Hx)µ(dx) for H ∈ E ⊗ F , where µ is the marginal of γ on

E and Hx = {y ∈ Y : (x, y) ∈ H}.
The collection {α(x, ·) : x ∈ X} is said to be a disintegration for γ.

A disintegration can fail to exist. However, for γ to admit a disintegration, it
suffices that F is countably generated and the marginal of γ on F is perfect.

Some form of disintegrability yields condition (1) under a σ-additive P . This
fact is essentially known and implicit in all existing gluing or transfer results; see
e.g. [10, Section 6] and [16, pages 135-136 and 152-153]. For completeness (and
since we do not know of any explicit statement) we also provide a proof.

Lemma 4. Let γ be a probability measure on E ⊗ F and τ a probability measure
on E ⊗G. If condition (2) holds and one of γ and τ is disintegrable, then condition
(1) holds with P a probability measure on E ⊗ F ⊗ G.

Proof. Suppose γ disintegrable and take a disintegration {α(x, ·) : x ∈ X} for γ.
For all H ∈ E ⊗ F ⊗ G, define

P (H) =

∫
α(x, Hx,z) τ(dx, dz) where Hx,z = {y ∈ Y : (x, y, z) ∈ H}.

Then, P is a probability measure on E ⊗ F ⊗ G and P
[
(X,Z) ∈ B

]
= τ(B) for all

B ∈ E ⊗ G. Because of (2), γ and τ have a common marginal on E , say µ. Fix
A ∈ E ⊗ F and take H = {(X,Y ) ∈ A}. Since Hx,z = {y ∈ Y : (x, y) ∈ A} = Ax
for all (x, z) ∈ X × Z, it follows that

P
[
(X,Y ) ∈ A

]
=

∫
α(x, Ax)µ(dx) = γ(A).

This concludes the proof if γ is disintegrable. If τ is disintegrable, it suffices to take
a disintegration {β(x, ·) : x ∈ X} for τ and to let

P (H) =

∫
β(x, Hx,y) γ(dx, dy) where Hx,y = {z ∈ Z : (x, y, z) ∈ H}.

�

A quick consequence of Remark 3 and Lemma 4 is the following.

Corollary 5. Suppose condition (2) holds for the probability measures γ on E ⊗F
and τ on E ⊗ G. Then, condition (1) holds with a σ-additive P if at least one of
the following conditions is satisfied:

(j) F is countably generated and the marginal of γ on F is perfect;
(jj) G is countably generated and the marginal of τ on G is perfect;

(jjj) All but perhaps one of the marginals of γ and τ on E, F and G are perfect.

Proof. Under (j) or (jj), one of γ and τ is disintegrable, and the conclusion follows
from Lemma 4. Suppose (jjj) holds, and let R be the field on X ×Y ×Z generated
by the rectangles A × B × C with A ∈ E , B ∈ F and C ∈ G. By Remark
3, there is a f.a.p. P0 on R such that P0

[
X ∈ A, Y ∈ B

]
= γ(A × B) and

P0

[
X ∈ A, Z ∈ C

]
= τ(A× C) whenever A ∈ E , B ∈ F and C ∈ G. (Just take P0

to be the restriction of Q to R, with Q as in Remark 3). The marginals of P0 on
E , F and G are all σ-additive. Moreover, all but perhaps one of such marginals are
perfect. Hence, P0 is σ-additive by [12, Theorem 6]. Thus, it suffices to take P to
be the σ-additive extension of P0 to σ(R) = E ⊗ F ⊗ G. �



GLUING LEMMAS AND SKOROHOD REPRESENTATIONS 7

We close this section with a last result related to disintegrability and perfectness.
Assume condition (2) and let µ denote the (common) marginal of γ and τ on E . If

γ∗(A× Y) = µ∗(A) for all A ⊂ X ,(4)

then

γ∗(A× Y) = 1− γ∗(Ac × Y) = µ∗(A) ≤ τ∗(A×Z) ≤ τ∗(A×Z)

where the first inequality depends on the definition of inner measure while the
second is trivial. By Lemma 2, condition (1) holds for some f.a.p. P . Similarly,
condition (1) holds for some f.a.p. P whenever

τ∗(A×Z) = µ∗(A) for all A ⊂ X .

Thus, it may be useful to have conditions for (4).

Lemma 6. Let γ be a probability measure on E ⊗ F with marginals µ and ν on E
and F , respectively. Condition (4) holds provided, for each H ∈ E ⊗ F , there are
sub-σ-fields E0 ⊂ E and F0 ⊂ F such that H ∈ E0 ⊗ F0 and γ is disintegrable on
E0 ⊗F0. In particular, condition (4) holds if ν is perfect.

Proof. It suffices to prove that µ∗(A) ≤ γ∗(A×Y) (the opposite inequality follows
from the definition of outer measure). Fix A ⊂ X and take H ∈ E ⊗ F such that
H ⊃ A× Y and γ(H) = γ∗(A× Y). Take also E0 ⊂ E and F0 ⊂ F such that H ∈
E0 ⊗F0 and γ is disintegrable on E0 ⊗F0. Given a disintegration {α(x, ·) : x ∈ X}
for γ on E0 ⊗F0, define

B = {x ∈ X : α(x,Hx) = 1} where Hx = {y ∈ Y : (x, y) ∈ H}.

Since H ⊃ A × Y, then α(x,Hx) = α(x,Y) = 1 for each x ∈ A. Hence, A ⊂ B.
Further, B ∈ E0 ⊂ E , so that

γ∗(A× Y) = γ(H) =

∫
α(x,Hx)µ(dx) ≥ µ(B) ≥ µ∗(A).

Finally, suppose ν is perfect. Then, it suffices to note that each H ∈ E ⊗F actually
belongs to E ⊗ F0, for some countably generated sub-σ-field F0 ⊂ F , and γ is
disintegrable on E ⊗ F0 for ν is perfect and F0 countably generated. �

If γ is disintegrable (on all of E ⊗ F) one can take E0 = E and F0 = F . Thus,
since any product probability is disintegrable, Lemma 6 improves [8, Proposition
3.4.2] and [18, Lemma 1.2.5].

3. Skorohod representations

3.1. A Wasserstein-type “distance”. In this Section, (S, d) is a metric space, B
the Borel σ-field on S and P the set of probability measures on B. For each n ≥ 1,
Bn = B ⊗ . . .⊗ B denotes the product σ-field on Sn = S × . . .× S. Similarly, B∞
is the product σ-field on S∞, where S∞ is the set of sequences

ω = (ω0, ω1, . . .) with ωn ∈ S for each n ≥ 0.

Also, for µ, ν ∈ P, we let F(µ, ν) be the collection of those probability measures γ
on B2 such that

γ(A× S) = µ(A) and γ(S ×A) = ν(A) for each A ∈ B.
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If (S, d) is not separable, B2 may be strictly smaller than the Borel σ-field on
S2, and this could be a problem for defining a Wasserstein-type “distance”. Ac-
cordingly, we assume

(5) σ(d) ⊂ B2,

that is, the function d : S2 → [0,∞) is measurable with respect to B2.
Condition (5) is trivially true if (S, d) is separable, as well as in various non

separable situations. For instance, (5) holds if d is the uniform distance on some
space S of cadlag functions, or if d is the 0-1 distance and card(S) = card(R). A
necessary condition of (5) is that B ⊃ C for some countably generated σ-field C
including the singletons. Hence, (5) yields card(S) ≤ card(R).

In any case, under (5), we let

W (µ, ν) = inf
γ∈F(µ,ν)

∫
1 ∧ d(x, y) γ(dx, dy) = inf

γ∈F(µ,ν)
Eγ(1 ∧ d)

for all µ, ν ∈ P. We also introduce the bounded-Lipschitz-metric

L(µ, ν) = sup
f

∣∣∣∫ f dµ−
∫
f dν

∣∣∣
where sup is over those functions f : S → [−1, 1] such that |f(x)− f(y)| ≤ d(x, y)
for all x, y ∈ S.

It is worth noting that L ≤ 2W . Fix in fact γ ∈ F(µ, ν) and a function f such
that −1 ≤ f(x) ≤ 1 and |f(x) − f(y)| ≤ d(x, y) for all x, y ∈ S. If X and Y are
the coordinate projections on S2, then∣∣∣∫ f dµ−

∫
f dν

∣∣∣ = |Eγ{f(X)} − Eγ{f(Y )}| ≤ Eγ |f(X)− f(Y )| ≤ 2Eγ(1 ∧ d).

We do not know whether W is a distance on all of P. However, W looks a
reasonable discrepancy measure between elements of P and is a distance when
restricted on the subset {separable laws on B}.

Lemma 7. For all µ, ν ∈ P,

W (µ, ν) = W (ν, µ), W (µ, ν) = 0 ⇐⇒ µ = ν, and

W (µ, ν) ≤W (µ, λ) +W (λ, ν) if λ ∈ P is separable.

Proof. It is straightforward that W (µ, ν) = W (ν, µ) and W (µ, ν) = 0 if µ = ν.
Since L ≤ 2W and L is a distance on P, then µ = ν whenever W (µ, ν) = 0. Let
λ ∈ P be separable. Define

W0(µ, ν) = inf
γ∈D(µ,ν)

Eγ(1 ∧ d)

where D(µ, ν) is the set of disintegrable probability measures on B2 with marginals
µ and ν. Since D(µ, ν) ⊂ F(µ, ν), then W0(µ, ν) ≥ W (µ, ν). Because of [2,
Theorem 4.1], W0 satisfies the triangle inequality and separability of λ implies
W0(µ, λ) = W (µ, λ) and W0(λ, ν) = W (λ, ν). Thus,

W (µ, ν) ≤W0(µ, ν) ≤W0(µ, λ) +W0(λ, ν) = W (µ, λ) +W (λ, ν).

�
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3.2. A finitely additive Skorohod representation. To state our main result,
we let Xn denote the n-th coordinate projection on S∞, namely

Xn(ω) = ωn for all n ≥ 0 and ω = (ω0, ω1, . . .) ∈ S∞.

Theorem 8. Suppose σ(d) ⊂ B2 and (µn : n ≥ 0) is a sequence of probability
measures on B. Then,

lim
n
W (µn, µ0) = 0

if and only if there is a f.a.p. P on B∞ such that

(a) Xn
P−→ X0;

(b) there is a sequence γn ∈ F(µ0, µn), n ≥ 1, satisfying

P
[
(X0, Xn) ∈ A

]
= γn(A) whenever A ∈ B2 and γ∗n(∂A) = 0;

(c) P (X0 ∈ A) = µ0(A) for all A ∈ B.

Moreover, for each n ≥ 1, one also obtains

P
[
(X0, Xn) ∈ ·

]
= γn(·) on all of B2 whenever µn is perfect.

Proof. We first recall a known fact. Let f : S2 → R be a bounded continuous
function such that σ(f) ⊂ B2. Given a f.a.p. γ on B2, define the field U = {A ∈
B2 : γ∗(∂A) = 0}. Since ∂{f ≤ t} ⊂ {f = t} ∈ B2 for all t ∈ R, then {f ≤ t} ∈ U
except possibly for countably many values of t. Hence fk → f , uniformly, for some
sequence (fk) of U-simple functions.

Letting f = 1 ∧ d and

Un = {A ∈ B2 : γ∗n(∂A) = 0},
for each n ≥ 1 there is a sequence (fn,k : k ≥ 1) of Un-simple functions such that

fn,k −→ 1 ∧ d uniformly as k →∞.
Suppose now that conditions (a)-(b) hold for some γn ∈ F(µ0, µn) and some

f.a.p. P . For fixed n ≥ 1 and ε ∈ (0, 1), condition (b) yields

Eγn(1 ∧ d) = lim
k
Eγn(fn,k) = lim

k
EP
{
fn,k(X0, Xn)

}
= EP

{
1 ∧ d(X0, Xn)

}
≤ ε+ P

(
d(X0, Xn) > ε

)
.

Since γn ∈ F(µ0, µn), then W (µn, µ0) ≤ Eγn(1 ∧ d). Hence, condition (a) implies

lim sup
n

W (µn, µ0) ≤ lim sup
n

Eγn(1 ∧ d) ≤ ε for all ε ∈ (0, 1).

Conversely, suppose W (µn, µ0)→ 0, and take a sequence γn ∈ F(µ0, µn), n ≥ 1,
such that Eγn(1 ∧ d)→ 0. Define

Vn = B2 if µn is perfect and Vn = Un otherwise.

Apply Lemma 2 to γ = γ1 and τ = γ2. If µ2 is perfect, apply also Lemma 6 to
γ = γ2. It follows that there is a f.a.p. Q2 on B3 such that

Q2

[
(X0, X1) ∈ A

]
= γ1(A) for A ∈ B2 and Q2

[
(X0, X2) ∈ B

]
= γ2(B) for B ∈ V2.

In particular,

Q2(X0 ∈ ·) = µ0(·) on B and Q2

[
(X0, Xj) ∈ ·

]
= γj(·) on Vj for j = 1, 2.

By induction, let Qn be a f.a.p. on Bn+1 satisfying

Qn(X0 ∈ ·) = µ0(·) on B and Qn
[
(X0, Xj) ∈ ·

]
= γj(·) on Vj for j = 1, . . . , n.
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Define (X , E) = (Z,G) = (S,B), (Y,F) = (Sn,Bn), and note that

Qn
(
A× Sn

)
= µ0(A) = γn+1(A× S) for A ∈ B.

Apply Lemma 2 to γ = Qn and τ = γn+1. If µn+1 is perfect, apply also Lemma 6
to γ = γn+1. Then, there is a f.a.p. Qn+1 on Bn+2 such that

Qn+1

(
A× S

)
= Qn(A) for A ∈ Bn+1 and Qn+1

[
(X0, Xn+1) ∈ ·

]
= γn+1(·) on Vn+1.

Finally, for each n ≥ 2, take a f.a.p. Pn on B∞ such that

Pn
[
(X0, . . . , Xn) ∈ A

]
= Qn(A) for A ∈ Bn+1.

Define also

P (A) =

∫
Pn(A)π(dn) for A ∈ B∞,

where π is a f.a.p. on the power set of {1, 2, . . .} such that π{n} = 0 for all n.
Then, P is a f.a.p. on B∞ and

P
[
(X0, . . . , Xj) ∈ A

]
=

∫
{n:n≥j}

Pn
[
(X0, . . . , Xj) ∈ A

]
π(dn) = Qj(A)

for all j ≥ 1 and A ∈ Bj+1. Hence, conditions (b)-(c) are satisfied and

P
[
(X0, Xj) ∈ ·

]
= γj(·) on all of B2 whenever µj is perfect.

As to (a), the remark at the beginning of this proof yields

EP
{

1 ∧ d(X0, Xn)
}

= Eγn(1 ∧ d) −→ 0.

�

Motivations for Theorem 8 have been given in Section 1. Here, we make a last
remark.

For n ≥ 1, Theorem 8 implies P (Xn ∈ A) = µn(A) if A ∈ B and µn(∂A) = 0, or
equivalently EP

{
f(Xn)

}
=
∫
f dµn for all bounded continuous f : S → R. Unless

µn is perfect, however, one does not obtain P (Xn ∈ ·) = µn(·) on all of B. This
is certainly a drawback. On the other hand, this is also a typical finitely additive
situation. We mention [6] and [11] as remarkable examples.

References

[1] Berti P., Pratelli L., Rigo P. (2007) Skorohod representation on a given prob-
ability space, Probab. Theory Rel. Fields, 137, 277-288.

[2] Berti P., Pratelli L., Rigo P. (2010) Skorohod representation theorem via dis-
integrations, Sankhya, 72, 208-220.

[3] Berti P., Pratelli L., Rigo P. (2011) A Skorohod representation theorem for
uniform distance, Probab. Theory Rel. Fields, 150, 321-335.

[4] Berti P., Pratelli L., Rigo P. (2013) A Skorohod representation theorem without
separability, Electr. Commun. Probab., 18, 1-12.

[5] Bhaskara Rao K.P.S., Bhaskara Rao M. (1983) Theory of charges, Academic
Press.

[6] Dubins L.E. (1999) Paths of finitely additive Brownian motion need not be
bizarre, Semin. de Probab. XXXIII, L.N.M., Springer, 1709, 395-396.

[7] Dudley R.M. (1968) Distances of probability measures and random variables,
Ann. Math. Statist., 39, 1563-1572.



GLUING LEMMAS AND SKOROHOD REPRESENTATIONS 11

[8] Dudley R.M. (1999) Uniform central limit theorems, Cambridge University
Press.

[9] Jakubowski A. (1998) The almost sure Skorokhod representation for subse-
quences in nonmetric spaces, Theory Probab. Appl., 42, 167-174.

[10] Kallenberg O. (2002) Foundations of modern probability, Second edition,
Springer.

[11] Karandikar R.L. (1988) A general principle for limit theorems in finitely addi-
tive probability: the dependent case, J. Multivariate Anal., 24, 189-206.

[12] Ramachandran D. (1996) The marginal problem in arbitrary product spaces,
In: Distributions with fixed marginals and related topics (Ruschendorf,
Schweizer and Taylor eds.) IMS Lect. Notes Monog. Series, Vol. 28, 260-272.

[13] Sethuraman J. (2002) Some extensions of the Skorohod representation theo-
rem, Sankhya, 64, 884-893.

[14] Skorohod A.V. (1956) Limit theorems for stochastic processes, Theory Probab.
Appl., 1, 261-290.

[15] Thorisson H. (1995) Coupling methods in probability theory, Scand. J. Statist.,
22, 159-182.

[16] Thorisson H. (2000) Coupling, stationarity, and regeneration, Springer.
[17] Thorisson H. (2014) Convergence in density in finite time windows and the

Skorohod representation, Submitted.
[18] van der Vaart A., Wellner J.A. (1996) Weak convergence and empirical pro-

cesses, Springer.
[19] Villani C. (2009) Optimal transport, old and new, Springer.
[20] Wichura M.J. (1970) On the construction of almost uniformly convergent ran-

dom variables with given weakly convergent image laws, Ann. Math. Statist.,
41, 284-291.

Patrizia Berti, Dipartimento di Matematica Pura ed Applicata “G. Vitali”, Univer-
sita’ di Modena e Reggio-Emilia, via Campi 213/B, 41100 Modena, Italy

E-mail address: patrizia.berti@unimore.it

Luca Pratelli, Accademia Navale, viale Italia 72, 57100 Livorno, Italy

E-mail address: pratel@mail.dm.unipi.it

Pietro Rigo (corresponding author), Dipartimento di Matematica “F. Casorati”, Uni-

versita’ di Pavia, via Ferrata 1, 27100 Pavia, Italy

E-mail address: pietro.rigo@unipv.it


