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Abstract. Let L be a linear space of real bounded random variables on
the probability space (Ω,A, P0). A finitely additive probability P on A
such that

P ∼ P0 and EP (X) = 0 for each X ∈ L
is called EMFA (equivalent martingale finitely additive probability). In
this note, EMFA’s are investigated in case P0 is atomic. Existence of
EMFA’s is characterized and various examples are given. Given y ∈ R
and a bounded random variable Y , it is also shown that Xn + y

a.s.−→ Y ,
for some sequence (Xn) ⊂ L, provided EMFA’s exist and EP (Y ) = y for
each EMFA P .
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1 Introduction

In the sequel, (Ω,A, P0) is a probability space and L a linear space of real
bounded random variables. We let P denote the set of finitely additive probabil-
ities on A and P0 ={P ∈ P : P is σ-additive}. In particular, P0 ∈ P0. We also
say that P ∈ P is an equivalent martingale finitely additive probability (EMFA)
if

P ∼ P0 and EP (X) = 0 for each X ∈ L.

Here, P ∼ P0 means that P and P0 have the same null sets. Further, the term
“martingale” (attached to P ) is motivated as follows.

Let F = (Ft : t ∈ T ) be a filtration and S = (St : t ∈ T ) a real F-adapted
process on (Ω,A, P0), where T ⊂ R is any index set. Suppose St a bounded
random variable for each t ∈ T and define

L(F , S) = Span {IA (St − Ss) : s, t ∈ T, s < t, A ∈ Fs}.



If P ∈ P0, then S is a P -martingale (with respect to F) if and only if EP (X) = 0
for all X ∈ L(F , S). If P ∈ P but P /∈ P0, it looks natural to define S a
P -martingale in case EP (X) = 0 for all X ∈ L(F , S).

Thus, the process S is a martingale under the probability P if and only if
EP (X) = 0 for each X in a suitable linear space L(F , S). Basing on this fact,
given any linear space L of bounded random variables, P is called a martingale
probability whenever EP (X) = 0 for all X ∈ L.

Existence of EMFA’s is investigated in [5]. The main results are recalled in
Subsection 2.2. Here, we try to motivate EMFA’s and we describe the content
of this note.

Quoting from [5], we list some reasons for dealing with EMFA’s. As usual, a
σ-additive EMFA is called equivalent martingale measure (EMM).

(i) Dating from de Finetti, the finitely additive theory of probability is well
founded and developed, even if not prevailing. Finitely additive probabilities
can be always extended to the power set and have a solid motivation in terms
of coherence. Also, there are problems which can not be solved in the usual
countably additive setting, while admit a finitely additive solution. Examples
are in conditional probability, convergence in distribution of non measurable
random elements, Bayesian statistics, stochastic integration and the first digit
problem. See e.g. [4] and references therein. Moreover, in the finitely additive
approach, one can clearly use σ-additive probabilities. Merely, one is not obliged
to do so.

(ii) Martingale probabilities play a role in various financial frameworks. Their
economic motivations, however, do not depend on whether they are σ-additive
or not. See e.g. Chapter 1 of [8]. In option pricing, for instance, EMFA’s give
arbitrage-free prices just as EMM’s. Note also that many underlying ideas, in
arbitrage price theory, were anticipated by de Finetti and Ramsey.

(iii) It may be that EMM’s fail to exist and yet EMFA’s are available. See
Examples 1 and 5. In addition, existence of EMFA’s can be given simple char-
acterizations; see Theorems 2, 3 and 4.

(iv) Each EMFA P can be written as P = αP1 +(1−α)Q, where α ∈ [0, 1),
P1 ∈ P is purely finitely additive and Q ∈ P0 is equivalent to P0; see Theorem
2. Even if one does not like finitely additive probabilities, when EMM’s do not
exist one may be content with an EMFA P whose α is small enough. In other
terms, a fraction α of the total mass must be sacrificed for having equivalent
martingale probabilities, but the approximation may look acceptable for small
α. An extreme situation of this type is exhibited in Example 5. In such example,
EMM’s do not exist and yet, for each fixed ε > 0, there is an EMFA P with
α ≤ ε.

In connection with points (iii)-(iv) above, and to make the notion of EMFA
more transparent, we report a simple example from [5].

Example 1. (Example 7 of [5]). Let Ω = {1, 2, . . .}, A the power set of Ω,
and P0{ω} = 2−ω for all ω ∈ Ω. For each n ≥ 0, define An = {n+ 1, n+ 2, . . .}.



Define also L = L(F , S), where

F0 = {∅, Ω}, Fn = σ
(
{1}, . . . , {n}

)
, S0 = 1, and

Sn(ω) =
1

2n
IAn(ω) +

ω2 + 2ω + 2

2ω
(1− IAn(ω)) for all ω ∈ Ω.

The process S has been introduced in [1]. Loosely speaking, ω could be
regarded as a (finite) stopping time and Sn(ω) as a price at time n. Such a price
falls by 50% at each time n < ω. Instead, for n ≥ ω, the price is constant with
respect to n and depends on ω only.

If P ∈ P is a martingale probability, then

1 = EP (S0) = EP (Sn) =
P (An)

2n
+

n∑
j=1

j2 + 2j + 2

2j
P{j}.

Letting n = 1 in the above equation yields P{1} = 1/4. By induction, one
obtains 2P{n} = 1/n(n + 1) for all n ≥ 1. Since

∑∞
n=1 P{n} = 1/2, then

P /∈ P0. Thus, EMM’s do not exist. Instead, EMFA’s are available. Define in
fact

P =
P1 +Q

2

where P1 and Q are probabilities on A such that P1{n} = 0 and Q{n} =
1/n(n+ 1) for all n ≥ 1. (Note that Q ∈ P0 while P1 is purely finitely additive).
Clearly, P ∼ P0. Given X ∈ L(F , S), since Sn+1 = Sn on Acn, one obtains

X =

k∑
j=0

bj IAj (Sj+1 − Sj) for some k ≥ 0 and b0, . . . , bk ∈ R.

Since Aj = {j + 1} ∪Aj+1 and Sj+1 − Sj = −1/2j+1 on Aj+1, it follows that

EP1
(X) =

k∑
j=0

bj
2j+1

{(
(j + 1)2 + 2(j + 1)

)
P1{j + 1} − P1(Aj+1)

}
= −

k∑
j=0

bj
2j+1

and

EQ(X) =

k∑
j=0

bj
2j+1

{(
(j + 1)2 + 2(j + 1)

)
Q{j + 1} −Q(Aj+1)

}
=

k∑
j=0

bj
2j+1

{ (j + 1)2 + 2(j + 1)

(j + 1)(j + 2)
− 1

(j + 2)

}
=

k∑
j=0

bj
2j+1

.

Therefore EP (X) = 0, that is, P is an EMFA.

This note investigates EMFA’s when the reference probability measure P0 is
atomic. There are essentially two reasons for focusing on atomic P0. One is that



P0 is actually atomic in several real situations. The other reason is a version of
the FTAP (fundamental theorem of asset pricing). Indeed, when P0 is atomic,
existence of EMFA’s amounts to

L− L+
∞ ∩ L+

∞ = {0} with the closure in the norm-topology;

we refer to Subsection 2.2 for details.
Three results are obtained for atomic P0. First, existence of EMFA’s is given

a new characterization (Theorem 4). Such a characterization looks practically
more useful than the existing ones. Second, the extreme situation mentioned in
point (iv) is realized (Example 5). Third, the following problem is addressed
(Theorem 6 and Example 8). Suppose EMFA’s exist and fix a bounded random
variable Y . If

EP (Y ) = y for some y ∈ R and all EMFA’s P,

does Y − y belong to the closure of L in some topology ? Or else, if EP (Y ) ≥ 0
for all EMFA’s P , can Y be approximated by random variables of the form
X + Z with X ∈ L and Z ≥ 0 ? Indeed, with EMM’s instead of EMFA’s, these
questions are classical; see [6], [9], [10], [13] and references therein. For instance,
if Y is regarded as a contingent claim, EP (Y ) = y for all EMFA’s P means
that y is the unique arbitrage-free price of Y . Similarly Y − y ∈ L, with the
closure in a suitable topology, can be seen as a weak form of completeness for
the underlying market.

A last note deals with the assumption that L consists of bounded random
variables. Even if strong, such an assumption can not be dropped. In fact, while
de Finetti’s coherence principle (our main tool) can be extended to unbounded
random variables, the extensions are very far from granting an integral repre-
sentation; see [2], [3] and references therein.

2 Known results

2.1 Notation

For each essentially bounded random variable X, we let

essup(X) = inf{a ∈ R : P0(X > a) = 0} = inf{ sup
A
X : A ∈ A, P0(A) = 1},

‖X‖ = ‖X‖∞ = essup(|X|).

Given P, T ∈ P, we write P � T if P (A) = 0 whenever A ∈ A and T (A) = 0,
and P ∼ T if P � T and T � P . We also write

EP (X) =

∫
X dP

whenever P ∈ P and X is a real bounded random variable.



A probability P ∈ P is pure if it does not have a non trivial σ-additive part.
Precisely, if P is pure and Γ is a σ-additive measure such that 0 ≤ Γ ≤ P ,
then Γ = 0. By a result of Yosida-Hewitt, any P ∈ P can be written as P =
αP1 + (1− α)Q where α ∈ [0, 1], P1 ∈ P is pure (unless α = 0) and Q ∈ P0.

A P0-atom is a set A ∈ A with P0(A) > 0 and P0(· | A) ∈ {0, 1}; P0 is atomic
if there is a countable partition A1, A2, . . . of Ω such that An is a P0-atom for
all n.

2.2 Existence of EMFA’s

We next state a couple of results from [5]. Let

M = {P ∈ P : P ∼ P0 and EP (X) = 0 for all X ∈ L}

be the set of EMFA’s. Note that M ∩ P0 is the set of EMM’s.

Theorem 2 Each P ∈M admits the representation P = αP1 +(1−α)Q where
α ∈ [0, 1), P1 ∈ P is pure (unless α = 0), Q ∈ P0 and Q ∼ P0. Moreover, M 6= ∅
if and only if

EQ(X) ≤ k essup(−X), X ∈ L, (1)

for some constant k > 0 and Q ∈ P0 with Q ∼ P0. In particular, under condition
(1), one obtains

k P1 +Q

k + 1
∈M for some P1 ∈ P.

In addition to characterizing M 6= ∅, Theorem 2 provides some information
on the weight 1−α of the σ-additive part Q of an EMFA. Indeed, under (1), there
is P ∈M such that α ≤ k/(k + 1). On the other hand, condition (1) is not very
helpful in real problems, for it requires to have Q in advance. A characterization
independent of Q would be more effective. We will come back to this point in
the next section.

We next turn to separation theorems. Write U − V = {u− v : u ∈ U, v ∈ V }
whenever U, V are subsets of a linear space. Let Lp = Lp(Ω,A, P0) for all
p ∈ [1,∞]. We regard L as a subspace of L∞ and we let L+

∞ = {X ∈ L∞ :
X ≥ 0}. Since L∞ is the dual of L1, it can be equipped with the weak-star
topology σ(L∞, L1). Thus, σ(L∞, L1) is the topology on L∞ generated by the
maps X 7→ EP0

(
X Y ) for all Y ∈ L1.

By a result of Kreps [11] (see also [12]) existence of EMM’s amounts to

L− L+
∞ ∩ L+

∞ = {0} with the closure in σ(L∞, L1).

On the other hand, it is usually argued that the norm topology on L∞ is ge-
ometrically more transparent than σ(L∞, L1), and results involving the former
are often viewed as superior. Thus, a (natural) question is what happens if the
closure is taken in the norm-topology.



Theorem 3 M 6= ∅ if and only if

L+
∞ ⊂ U ∪ {0} and (L− L+

∞) ∩ U = ∅
for some norm-open convex set U ⊂ L∞.

In particular, a necessary condition for M 6= ∅ is

L− L+
∞ ∩ L+

∞ = {0} with the closure in the norm-topology. (2)

If P0 is atomic, condition (2) is sufficient for M 6= ∅ as well.

Note that, in the particular case where L is a suitable class of stochastic inte-
grals (in a fixed time interval and driven by a fixed semi-martingale), condition
(2) agrees with the no free lunch with vanishing risk condition of [7]. See also
[8]. The main difference with [7] is that, in this note, L is an arbitrary subspace
of L∞.

It is still open whether condition (2) implies M 6= ∅ for arbitrary P0 ∈ P0.
However, (2) is equivalent to M 6= ∅ when P0 is atomic. This is a first reason
for paying special attention to the latter case. A second (and more important)
reason is that P0 is actually atomic in various real situations. Accordingly, in
the sequel we focus on the atomic case.

3 New results in case of atomic P0

In this section, P0 is atomic. Everything is well understood if P0 has finitely
many atoms only (such a case can be reduced to that of Ω finite). Thus, the P0-
atoms are assumed to be infinitely many. Let A1, A2, . . . be a countable partition
of Ω such that An is a P0-atom for each n. Also, X|An denotes the a.s.-constant
value of the random variable X on An.

Theorem 2 gives a general characterization of existence of EMFA’s. As al-
ready noted, however, a characterization not involving Q would be more usable
in real problems. In case P0 is atomic, one such characterization is actually
available.

Theorem 4 Suppose that, for each n ≥ 1, there is a constant kn > 0 such that

X|An ≤ kn essup(−X) for each X ∈ L. (3)

Letting β = infn kn, for each α ∈
(

β
1+β , 1

)
one obtains

αP1 + (1− α)Q ∈M for some P1 ∈ P and Q ∈ P0 with Q ∼ P0.

Moreover, condition (3) is necessary for M 6= ∅ (so that M 6= ∅ if and only if
(3) holds).



Proof. Suppose first M 6= ∅. Fix P ∈M, n ≥ 1 and X ∈ L. Since EP (X) = 0,

P (An)X|An ≤ P (An)X+|An ≤ EP (X+)

= EP (X) + EP (X−) = EP (X−) ≤ essup(−X).

Therefore, condition (3) holds with kn = 1/P (An). Conversely, suppose (3)
holds. Fix any sequence (qn : n ≥ 1) satisfying qn > 0 for all n,

∑
n qn = 1 and∑

n(qn/kn) <∞. For each A ∈ A, define

I(A) = {n : P0(A ∩An) > 0} and Q(A) =

∑
n∈I(A)(qn/kn)∑

n(qn/kn)
.

Then, Q ∈ P0 and Q ∼ P0. Also, for each X ∈ L, condition (3) yields

EQ(X) =
∑
n

Q(An)X|An ≤ essup(−X)
∑
n

Q(An) kn =
essup(−X)∑
n(qn/kn)

.

Thus, condition (1) holds with k =
{∑

n(qn/kn)
}−1

. By Theorem 2, there is

P1 ∈ P such that (k P1 + Q)/(k + 1) ∈ M. Finally, fix α ∈
(

β
1+β , 1

)
. Condition

(3) remains true if the kn are replaced by arbitrary constants k∗n ≥ kn. Thus, it
can be assumed supn kn =∞. In this case, it suffices to note that

k =
1∑

n(qn/kn)
=

α

1− α

for a suitable choice of (qn : n ≥ 1).

Next example has been discussed in point (iv) of Section 1.

Example 5. Let Ω = {1, 2, . . .}. Take A to be the power set and P0{n} = 2−n

for all n ∈ Ω. Define T = (2P0+P ∗−δ1)/2, where P ∗ ∈ P is any pure probability
and δ1 the point mass at 1. Since P ∗{n} = 0 for all n ∈ Ω, then T{1} = 0 and
T ∈ P. Let B = {2, 3, . . .} and define L to be the linear space generated by
{IA − T (A) IB : A ⊂ B}. If P ∈ P is a martingale probability, then

P{n, n+ 1, . . .} = T{n, n+ 1, . . .}P (B) ≥ P (B)

2
for all n > 1.

Thus, P /∈ P0 as far as P (B) > 0, so that M ∩ P0 = ∅. On the other hand,
Pε := ε T + (1− ε) δ1 ∈ M for all ε ∈ (0, 1). In fact, Pε{n} > 0 for all n ∈ Ω (so
that Pε ∼ P0) and

EPε(X) = εET (X) + (1− ε)X(1) = 0 for all X ∈ L.

To sum up, in this example, EMM’s do not exist and yet, for each ε > 0, there
is P ∈ M such that α(P ) ≤ ε. Here, α(P ) denotes the weight of the pure part
of P , in the sense that P = α(P )P1 + (1 − α(P ))Q for some pure P1 ∈ P and
Q ∈ P0 with Q ∼ P0.



The rest of this note is concerned with the following problem. Suppose M 6= ∅
and fix Y ∈ L∞. If EP (Y ) = y for some y ∈ R and all P ∈M, does Y −y belong
to the closure of L in some reasonable topology ? Or else, if EP (Y ) ≥ 0 for all
P ∈ M, can Y be approximated by random variables of the form X + Z with
X ∈ L and Z ∈ L+

∞ ? Up to replacing EMFA’s with EMM’s, questions of this
type are classical; see [6], [9], [10], [13] and references therein. Indeed, regarding
Y as a contingent claim, EP (Y ) = y for all P ∈ M means that y is the unique
arbitrage-free price of Y . Similarly Y − y ∈ L, with the closure in a suitable
topology, can be seen as a weak form of completeness for the underlying market.

In what follows, L∞ is equipped with the norm topology. Accordingly, for
each H ⊂ L∞, H denotes the closure of H in the norm topology.

Theorem 6 Suppose M 6= ∅ and fix Y ∈ L∞. Then,

(a) Y ∈ L− L+
∞ ⇐⇒ EP (Y ) ≤ 0 for each P ∈M,

(b) Y ∈
⋂
P∈M L

P ⇐⇒ EP (Y ) = 0 for each P ∈M,

where L
P

denotes the closure of L in the L1(P )-topology. In addition, if EP (Y ) =

0 for each P ∈M, then Xn
a.s.−→ Y for some sequence (Xn) ⊂ L.

Proof. First note that ”=⇒” is obvious in both (a) and (b). Suppose Y /∈
L− L+

∞. Fix A ∈ A with P0(A) > 0 and define

U = L− L+
∞, V = {αIA + (1− α)Y : 0 ≤ α ≤ 1}.

Then, U ∩ V = ∅. In fact, IA /∈ U because of M 6= ∅ and Theorem 3. If αIA +
(1 − α)Y ∈ U for some α < 1, there are (Xn) ⊂ L and (Zn) ⊂ L+

∞ such that

Xn − Zn
L∞−→ αIA + (1− α)Y , which in turn implies

Xn − (Zn + αIA)

1− α
L∞−→ Y.

But this is a contradiction, as Y /∈ U . Next, since U and V are convex and closed
with V compact, some linear (continuous) functional Φ :  L∞ → R satisfies

inf
f∈V

Φ(f) > sup
f∈U

Φ(f).

It is routine to verify that Φ is positive and Φ(1) > 0. Hence, Φ(f) = Φ(1)EPA(f)
for all f ∈ L∞ and some PA ∈ P with PA � P0. Since L is a linear space and
supf∈L Φ(f) ≤ supf∈U Φ(f) < ∞, then Φ = 0 on L. To sum up, PA satisfies
PA � P0, PA(A) > 0, EPA(Y ) > 0, and EPA(X) = 0 for all X ∈ L. It follows
that

P :=
∑
n

1

2n
PAn ∈M and EP (Y ) > 0.



This concludes the proof of (a). Suppose now that EP (Y ) = 0 for all P ∈M. By

(a), there are sequences (Xn) ⊂ L and (Zn) ⊂ L+
∞ such that Xn − Zn

L∞−→ Y .
For each P ∈M, since Zn ∈ L+

∞ and EP (Xn) = EP (Y ) = 0, one obtains

EP |Xn − Y | ≤ EP |Xn − Zn − Y |+ EP (Zn)

= EP |Xn − Zn − Y | − EP (Xn − Zn − Y ) ≤ 2 ‖Xn − Zn − Y ‖ −→ 0.

This proves (b). Finally, take P ∈M, say P = αP1 + (1−α)Q where α ∈ [0, 1),
P1 ∈ P, Q ∈ P0 and Q ∼ P0. Arguing as above,

EQ(Zn) ≤ EP (Zn)

1− α
≤ ‖Xn − Zn − Y ‖

1− α
−→ 0.

Thus, Znj
a.s.−→ 0 and Xnj = Znj + (Xnj − Znj )

a.s.−→ Y for some subsequence
(nj).

As regards part (b) of Theorem 6, a question is whether EP (Y ) = 0 for all
P ∈M implies Y ∈ L. We now prove that the answer is no. The following lemma
is useful.

Lemma 7 Let P ∈ P. If P � P0 and P (An) = P0(An) for all n, then P = P0.

Proof. Fix A ∈ A and n ≥ 1. If P0(A ∩ An) = 0, then P (A ∩ An) = 0 =
P0(A ∩An). If P0(A ∩An) > 0, then P0(Ac ∩An) = 0, and thus

P (A ∩An) = P (An) = P0(An) = P0(A ∩An).

It follows that P (A) ≥
∑n
i=1 P (A ∩ Ai) =

∑n
i=1 P0(A ∩ Ai). As n → ∞, one

obtains P (A) ≥ P0(A). Finally, taking complements yields P = P0.

Example 8. Let L be the linear space generated by {IAn − P0(An) : n ≥ 1}
and

Y =
IA

P0(A)
− IAc

P0(Ac)
where A = ∪∞n=1A2n.

Each P ∈ M meets P � P0 and P (An) = P0(An) for all n. Thus, Lemma 7
yields M = {P0}. Further, EP0

(Y ) = 0. However, Y /∈ L. Fix in fact X ∈ L.
Since X = x a.s. on the set

(
∪ni=1Ai

)c
, for some n ≥ 1 and x ∈ R, one obtains

‖Y −X‖ = sup
i
|(Y −X)|Ai| ≥ sup

i>n
|(Y − x)|Ai| ≥

1

P0(A)
∧ 1

P0(Ac)
.

In Example 8, M is quite small (its cardinality is 1). It looks reasonable
to conjecture that, with M large enough, EP (Y ) = 0 for all P ∈ M could
imply Y ∈ L. One more question is whether Theorem 6 holds in case P0 is not
atomic. Incidentally, this question is related to the open problem mentioned after
Theorem 3: is condition (2) equivalent to M 6= ∅ when P0 is not atomic ?
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−Probab. et Statist., 26, 451-460.

13. Tehranchi M.R. (2010) Characterizing attainable claims: a new proof, J. Appl.
Probab., 47, 1013-1022.


