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Abstract. An alternative notion of conditional probability (say AN) is dis-

cussed and investigated. If compared with the usual notion (regular condi-
tional distributions) AN gives up the measurability constraint but requires a

properness condition. An existence result for AN is provided. Also, some

consequences of AN are pointed out, with reference to Bayesian statistics,
exchangeability and compatibility.

1. Introduction

This note is split into two parts. The first (Section 2) deals with conditional prob-
ability, from a general point of view, while the second (Sections 3 and 4) highlights
some consequences of adopting an alternative notion of conditional probability.

Let us call SN the standard notion of conditional probability (i.e., regular condi-
tional distributions) and AN the alternative notion quoted above. Roughly speak-
ing, AN is obtained from SN giving up the measurability constraint and adding
a properness condition. As easily expected, this has both advantages and disad-
vantages. One major drawback of AN is that essential uniqueness is lost. This is
certainly disappointing, but possibly not so crucial in the subjective view of prob-
ability. As to the advantages, AN allows to overcome various paradoxes occurring
with SN. This is because, thanks to properness, one is actually conditioning on
events (and not on sub-σ-fields, as it happens under SN).

Finally, among the possible consequences of AN, we focus on those related to
Bayesian statistics, exchangeability and compatibility.

2. Conditional Probability

In the sequel, (Ω,A, P ) is a probability space, G ⊂ A a sub-σ-field, and

Q = {Q(ω) : ω ∈ Ω}

a collection of probability measures on A. We denote by Q(ω,A) the value of Q(ω)
at A ∈ A. Also, σ(Q) is the σ-field on Ω generated by the maps ω 7→ Q(ω,A) for
all A ∈ A.

In this notation, Q is a regular conditional distribution (r.c.d.) given G if

(a) σ(Q) ⊂ G;

(b) P (A ∩B) =
∫
B
Q(ω,A)P (dω) for all A ∈ A and B ∈ G.
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An r.c.d. can fail to exist. However, it exists and is a.s. unique under reasonable
conditions, such as A countably generated and P perfect; see e.g. [13].

(We recall that P is perfect if, for each A-measurable f : Ω → R, there is
I ∈ B(R) such that I ⊂ f(Ω) and P (f ∈ I) = 1. If Ω is separable metric and
A = B(Ω), perfectness is equivalent to tightness).

This is the standard notion of conditional probability, based on Kolmogorov’s
axioms and adopted almost universally. Indeed, apart from rare exceptions, a
conditional probability is meant as an r.c.d.

Using r.c.d.’s, however, one is conditioning on a σ-field and not on a specific
event. What does it mean? What is the information provided by a σ-field? Ac-
cording to the usual naive interpretation, the information provided by G is:

(*) For each event B ∈ G, it is known whether B is true or false.

Attaching interpretation (*) to r.c.d.’s is quite dangerous.

Example 1. (Continuous time processes). Let X = {Xt : t ≥ 0} be a real-
valued process on (Ω,A, P ), adapted to a filtration {Ft : t ≥ 0}, and let X be
the set of all functions from [0,∞) into R. Define N = {A ∈ A : P (A) = 0} and
suppose that

N ⊂ F0 and {X = x} ∈ N for each x ∈ X .

Even if very usual for continuous time processes, the above assumption conflicts
with (*). In fact, since {X = x} ∈ F0 for each x ∈ X , interpretation (*) would
imply that the actual X-path is already known at time 0. See also [5, Example 3].

Example 2. (Borel-Kolmogorov paradoxes). Let X and Y be random vari-
ables on (Ω,A, P ) such that {X = x} = {Y = y} for some x and y. Using r.c.d.’s,
the conditional probability given X = x is taken to be P (· | X = x) = QX(ω),
where QX is an r.c.d. given σ(X) and ω ∈ Ω is such that X(ω) = x. Similarly,
P (· | Y = y) = QY (ω) where QY is an r.c.d. given σ(Y ) and Y (ω) = y. But
since X and Y are different, it may be that P (· | X = x) 6= P (· | Y = y) even if
{X = x} = {Y = y}.

Example 3. (Properness). For interpretation (*) to make sense, Q should be
everywhere proper, in the sense that

Q(ω) = δω on G for each ω ∈ Ω.

In that case,

B = {ω ∈ Ω : Q(ω,B) = 1} ∈ σ(Q) for each B ∈ G,

so that G = σ(Q). Also, σ(Q) is countably generated whenever A is countably
generated. Thus, Q fails to be everywhere proper if A is countably generated but
G is not. A weaker notion of properness is

Q(ω) = δω on G for each ω ∈ B0(1)

where B0 ∈ G and P (B0) = 1. But even condition (1) typically fails unless G is
countably generated. In fact, condition (1) holds if and only if G ∩B0 is countably
generated for some B0 ∈ G with P (B0) = 1; see [4].
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A seminal paper on properness is [8]. Other related references are [4], [5], [15].

To make interpretation (*) effective, the notion of r.c.d. is to be modified. We
first recall that, for each ω ∈ Ω, the G-atom including ω is

H(ω) =
⋂

ω∈B∈G
B.

We also let

Π = {H(ω) : ω ∈ Ω}.
Note that Π is a partition of Ω and each element of G is a union of elements of Π.

Say that Q is a strategy given G, or a G-strategy, if

(a∗) Q(x) = Q(y) whenever x, y ∈ Ω and H(x) = H(y);

(b∗) There is a probability measure P̂ on σ(Q) such that

P (A) =

∫
Q(ω,A) P̂ (dω) for all A ∈ A;

(c) Q is everywhere proper, i.e., Q(ω) = δω on G for each ω ∈ Ω.

The above notion of G-strategy is inspired to Blackwell and Dubins [8] while the
term ”strategy” is borrowed from Dubins [9].

Some obvious properties of G-strategies are collected in the next lemma.

Lemma 4. Let Q be a G-strategy. Then, G ⊂ σ(Q) and

P (A ∩B) =

∫
B

Q(ω,A) P̂ (dω) for all A ∈ A and B ∈ G.

In particular, P̂ = P on G. Moreover, P̂ = P on A ∩ σ(Q) provided Π ⊂ G.

Proof. Let B ∈ G. By (c), B = {ω : Q(ω,B) = 1} ∈ σ(Q). Further,

P (A ∩B) =

∫
Q(ω,A ∩B) P̂ (dω) =

∫
B

Q(ω,A) P̂ (dω) for each A ∈ A,

where the first equality is by (b∗) and the second by (c). Finally, suppose Π ⊂ G
and fix A ∈ A∩σ(Q). By (a∗), each element of σ(Q) is a union of G-atoms. Hence,

Q(ω,A) ≥ Q(ω,H(ω)) = δω(H(ω)) = 1 whenever ω ∈ A.

Similarly, Q(ω,A) = 0 if ω /∈ A. Therefore,

P (A) =

∫
Q(ω,A) P̂ (dω) =

∫
1A(ω) P̂ (dω) = P̂ (A).

�

By Lemma 4, a G-strategy Q satisfies condition (b) whenever σ(Q) ⊂ G. Gen-
erally, however, ω 7→ Q(ω,A) is not G-measurable (or even A-measurable) and can

not be integrated against P . This is the reason for a mixing measure P̂ is involved
in condition (b∗).

Condition (a∗) is a weaker version of (a) (it is in fact a consequence of (a)).
Roughly speaking, the motivation of (a∗) is that, conditionally on G, one is actually
observing an element of the partition Π rather than a point of Ω. Thus, x and y
provide the same information if H(x) = H(y).
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Essentially, a G-strategy depends on G only through its atoms. In particular, if
G includes the singletons, then Π = {{ω} : ω ∈ Ω} ⊂ G and the only G-strategy is
Q(ω) = δω on A for all ω ∈ Ω. As an example, take G = {A ∈ A : P (A) ∈ {0, 1}}
and suppose that {ω} ∈ A and P ({ω}) = 0 for every ω ∈ Ω. Then, G includes
the singletons, so that Q(ω) = δω is the only G-strategy, while an r.c.d. given G
is Q(ω) = P . As a further example, take another sub-σ-field F ⊂ A. If F has
the same atoms as G and Π ⊂ F ∩ G, then Q is an F-strategy if and only if is a
G-strategy.

A last remark is that G-strategies are not uniquely determined by P . In partic-
ular, they are not essentially unique. This is technically a drawback, as well as a
major difference with r.c.d.’s. However, in the subjective view of probability, non
uniqueness is possibly not so crucial. In a sense, just as the choice of P is subjective,
the choice of Q (once P is given) can be seen as a subjective act as well.

Let us turn now to existence issues. Recall that (Ω,A) is a standard space if Ω
is a Borel subset of a Polish space and A = B(Ω). For an r.c.d. given G to exist,
it suffices that (Ω,A) is a standard space. Instead, for a G-strategy to exist, one
needs conditions on both (Ω,A) and G. The next statement is a translation of some
results from [2]-[3] concerning existence of disintegrations.

Theorem 5. Let

G =
{

(x, y) ∈ Ω× Ω : H(x) = H(y)
}
.

There is a G-strategy provided (Ω,A) is a standard space and at least one of the
following conditions is satisfied:

(i) G is a co-analytic subset of Ω× Ω;
(ii) G is an analytic subset of Ω×Ω and all but countably many elements of Π

are Fσ or Gδ.

Proof. In view of [2, Theorem 2] and [3, Theorem 8], under (i) or (ii), P admits
a σ-additive disintegration on the partition Π. This means that, under (i) or (ii),
there is a pair (α, β) such that:

• α(· | H) is a probability measure on σ(A ∪ Π) such that α(H|H) = 1 for
each H ∈ Π;

• β is a probability measure on σ(α), where σ(α) is the σ-field over Π gener-
ated by the maps H 7→ α(A|H) for all A ∈ A;

• P (A) =
∫

Π
α(A|H)β(dH) for all A ∈ A.

Given such (α, β), to obtain a G-strategy, it suffices to let

Q(ω,A) = α
(
A | H(ω)

)
for all ω ∈ Ω and A ∈ A.

In fact, Q meets (a∗) and (c) (to check (c), just recall that each member of G is a
union of elements of Π). To prove (b∗), for each S ⊂ Π, denote by S∗ the subset
of Ω obtained as the union of the elements of S. Then, σ(Q) = {S∗ : S ∈ σ(α)}.
Thus, letting P̂ (S∗) = β(S), one trivially obtains

P (A) =

∫
Π

α(A|H)β(dH) =

∫
Ω

Q(ω,A) P̂ (dω) for all A ∈ A.

�

Theorem 5 implies that a G-strategy exists whenever (Ω,A) is a standard space
and G is a Borel subset of Ω × Ω. This happens in several meaningful situations,
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including the cases where G is a tail or a symmetric sub-σ-field. In this cases, thus,
a G-strategy is available while a proper r.c.d. fails to exist in general; see [8] and
forthcoming Example 7.

To close this section, it would be nice to exhibit an example where a G-strategy
fails to exist. If Π ⊂ G and (Ω,A) is a standard space, however, such example is
not available under the usual axioms of set theory (the so called ZFC set theory).
Take in fact Ω = [0, 1], A = B([0, 1]), and consider the assertion:

”For every Borel partition Ψ of [0, 1], the Lebesgue measure on A admits a
strategy given σ(Ψ)”.

Then, as shown by Dubins and Prikry [10, Theorem 2], such an assertion is unde-
cidable in ZFC, in the sense that the assertion and its negation are both consistent
with ZFC.

Incidentally, as regards existence and non existence of G-strategies, things are
quite different in a finitely additive framework; see e.g. [9] and [16].

3. Bayesian statistical inference

Let (X , E) and (Θ,F) be measurable spaces to be regarded, respectively, as the
sample space and the parameter space. For the sake of simplicity, the E-atoms are
assumed to be the singletons. A statistical model is a measurable collection

P = {Pθ : θ ∈ Θ}

of probability measures on E , where measurability means that θ 7→ Pθ(A) is F-
measurable for each A ∈ E . A prior is a probability measure on F .

Roughly speaking, the problem is to make inference on the parameter θ given
the data x. To this end, in the notation of Section 2, one lets

(Ω,A) = (X ×Θ, E ⊗ F)

and takes G to be the sub-σ-field of A generated by the data, namely,

G = {A×Θ : A ∈ E}.

Since the E-atoms are the singletons, the partition of Ω in the G-atoms is

Π =
{
{x} ×Θ : x ∈ X

}
.

Also, given a statistical model P and a prior ν, the reference probability measure
P on A is

P (C) =

∫ ∫
1C(x, θ)Pθ(dx) ν(dθ) for all C ∈ A.

In this framework, a posterior is a conditional probability for P given G. Thus,
technically, how to define a posterior depends on the adopted notion of conditional
probability. Let

Q = {Qx : x ∈ X}

be a collection of probability measures on F , and let σ(Q) be the σ-field over X
generated by the maps x 7→ Qx(B) for all B ∈ F .
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As noted in Section 2, a conditional probability is usually meant as an r.c.d. In
that case, Q is a posterior provided

σ(Q) ⊂ E and P (C) =

∫ ∫
1C(x, θ)Qx(dθ)mν(dx) for all C ∈ A

where

mν(A) = P (A×Θ) =

∫
Pθ(A) ν(dθ) for all A ∈ E .

Instead, if a conditional probability is meant as a strategy, Q is a posterior
whenever

P (C) =

∫ ∫
1C(x, θ)Qx(dθ)m(dx), C ∈ A,(2)

where m is any probability measure on σ(Q). Note that Lemma 4 yields m = mν

on E , so that m is actually an extension of mν .
Therefore, the class of posteriors becomes larger if conditional probabilities are

meant as strategies and not as r.c.d.’s. Indeed, for Q to be a posterior, equation (2)
is enough and no measurability constraints are required to Q. This fact has some
consequences.

In the next result, a posterior is actually meant as a G-strategy, namely, a col-
lection Q = {Qx : x ∈ X} of probability measures on F satisfying equation (2) for
some m.

Theorem 6. Let P be a statistical model, ν a prior probability on F and
Y : (X , E)→ (Y,H) a measurable map. Suppose:

• card (E) ≤ card (R), card (F) ≤ card (R) and H is countably generated and
includes the singletons;

• Pθ is a perfect probability measure such that Pθ(Y = y) = 0 for all θ ∈ Θ
and y ∈ Y.

Then, there is a posterior Q = {Qx : x ∈ X} such that

x1, x2 ∈ X and Y (x1) = Y (x2) ⇒ Qx1
= Qx2

.

Proof. Two known facts are to be recalled. Let (D,D, µ) be any probability space.

(j) If D is countably generated, µ is perfect and µ(F ) = 0 for each D-atom F ,
then the collection of D-atoms has the cardinality of the continuum; see [1,
Lemma 2.3];

(jj) Let Γ be a class of probability measures on D and Σ the σ-field over Γ gener-
ated by the maps γ 7→ γ(D) for all D ∈ D. Suppose µ(D) =

∫
Γ
γ(D)β(dγ)

for all D ∈ D, where β is a finitely additive probability on Σ. Then, β is
σ-additive provided each γ ∈ Γ is 0-1-valued; see Theorem 11 and Example
15 of [7].

Next, recall that (Ω,A) = (X ×Θ, E ⊗ F) and define

V = {C ∈ A : P (C) > 0} and

L(C) =
{
y ∈ Y : (x, θ) ∈ C for some (x, θ) ∈ Ω with Y (x) = y

}
where C ⊂ Ω.

This proof is split into two parts. First, we prove the Theorem under the assumption

card (L(C)) ≥ card (R) for all C ∈ V(3)
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and then we show that (3) is actually true.
Suppose condition (3) holds. Then, since card (A) ≤ card (R), one obtains

card (L(C)) ≥ card (A) ≥ card (V) for all C ∈ V.

Hence, there is an injective map f : V → Y such that f(C) ∈ L(C) for each C ∈ V;
see [1, Lemma 2.1]. For each y ∈ Y, select a probability measure Uy on F as follows.
If y is not in the range of f , define Uy = δθ0 where θ0 ∈ Θ is arbitrary. Otherwise, if
y = f(C) for some (unique) C ∈ V, take (x, θ) ∈ C with Y (x) = y and set Uy = δθ.
For x ∈ X , define also

Qx = UY (x) and Tx(C) = Qx{θ ∈ Θ : (x, θ) ∈ C} for all C ∈ A.

Then, Tx is a probability measure on A such that Tx
(
{x} ×Θ

)
= 1. Further,

for each C ∈ V, there is x ∈ X such that Tx(C) = 1.

By [1, Lemma 2.2] and the above condition, there is a finitely additive probability
m0 on the power set of X such that∫ ∫

1C(x, θ)Qx(dθ)m0(dx) =

∫
Tx(C)m0(dx) = P (C) for all C ∈ A.

Let Q = {Qx : x ∈ X} and let m be the restriction of m0 on σ(Q). Then, m is σ-
additive because of (jj). Therefore, Q is a posterior such that Qx1 = Qx2 whenever
Y (x1) = Y (x2). This concludes the first part of the proof.

Finally, we prove (3). It suffices to show that P (C) = 0 whenever C ∈ A and
card (L(C)) < card (R). Fix one such C and take A ∈ E with

A ⊂
⋃

y∈L(C)

{
x ∈ X : Y (x) = y

}
.

Let D = A∩ σ(Y ) = {A∩B : B ∈ σ(Y )}. Since H is countably generated, σ(Y ) is
countably generated, which in turn implies that D is countably generated. Toward
a contradiction, suppose Pθ(A) > 0 for some θ ∈ Θ. Then, one can define

µ(A ∩B) =
Pθ(A ∩B)

Pθ(A)
for all B ∈ σ(Y ).

Since Pθ is perfect, µ is a perfect probability measure on D. Each atom F of D is
of the form F = A ∩ {Y = y} for some y, and

µ(F ) =
Pθ(A ∩ {Y = y})

Pθ(A)
= 0.

In view of (j), the set of D-atoms has the cardinality of the continuum, so that

card (L(C)) ≥ card {y ∈ Y : {Y = y} ∩A 6= ∅} = card {D-atoms} = card (R).

This is a contradiction, since card (L(C)) < card (R). Hence, it must be Pθ(A) = 0
for all θ. To conclude the proof, just note that

{x : (x, θ) ∈ C} ⊂
⋃

y∈L(C)

{
x ∈ X : Y (x) = y

}
for all θ.

It follows that

P (C) =

∫
Pθ{x : (x, θ) ∈ C} ν(dθ) = 0.

Hence, (3) holds and this concludes the proof. �
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Theorem 6 improves [1, Theorem 3.1] where the probability m involved in equa-
tion (2) is only finitely additive.

In the subjective framework, Theorem 6 has a nice interpretation in terms of
sufficiency; see [1]. In fact, think of Y as a statistic. Also, given a posterior Q, say
that Y is sufficient for Q if Qx1

= Qx2
whenever Y (x1) = Y (x2). Then, Theorem

6 essentially states that, for any prior ν and any statistic Y , there is a posterior Q
which makes Y sufficient provided only that Pθ(Y = y) = 0 for all θ and y. This
seems in line with both the substantial meaning of sufficiency and the subjective
view of probability. Indeed, the assessment of Q can be split into two steps. First,
the inferrer selects a partition of X , by grouping those samples which, according
to him/her, have the same inferential content. This step precisely amounts to the
choice of a sufficient statistic Y . Subsequently, a probability law on F is attached
to every element in the partition. If no such element has positive probability under
the statistical model, Theorem 6 implies that at least a posterior Q is consistent
with this procedure.

In addition to sufficiency, another intriguing point is whether improper priors
can be recovered when posteriors are regarded as strategies. This issue is actually
connected to compatibility. Thus, improper priors are postponed to Example 9.

4. Further consequences

In principle, in every framework where conditional probability plays a role, things
are quite different according to whether conditional probability is meant as an r.c.d.
or as a strategy. In Bayesian statistics, for instance, Theorem 6 would not be
available if a posterior would be regarded as an r.c.d. This section is in the spirit
of the previous one, namely, the different behaviors of r.c.d.’s and strategies are
compared in some special situations. Needless to say that many other analogous
examples could be given.

Example 7. (Exchangeability). Let (Ω,A) = (X∞, E∞) where (X , E) is a stan-
dard space. To each n ∈ N and each permutation (π1, . . . , πn) of (1, . . . , n), we can
associate a function f : Ω→ Ω defined by

f(x1, x2, . . .) = (xπ1 , . . . , xπn , xn+1, xn+2, . . .) for all (x1, x2, . . .) ∈ Ω.

Let F denote the class of all such functions, for all n ∈ N and all permutations of
(1, . . . , n). A probability measure P on A is exchangeable if P ◦ f−1 = P for all
f ∈ F . The symmetric sub-σ-field is

G = {A ∈ A : f−1(A) = A for all f ∈ F}.

Note that the G-atoms can be written as

H(ω) = {f(ω) : f ∈ F} for all ω ∈ Ω.

Suppose P exchangeable and P (∆) = 0, where ∆ = {(x, x, . . .) : x ∈ X} is the
diagonal. Since (X , E) is a standard space, there is an r.c.d. Q∗ for P given G. Since
P is exchangeable, by de Finetti’s theorem, Q∗(ω) is an i.i.d. probability measure
on A = E∞ for almost all ω ∈ Ω. Now, an i.i.d. probability measure vanishes on
singletons unless it is degenerate. Since P (∆) = 0 and H(ω) is countable, it follows
that

Q∗
(
ω, H(ω)

)
= 0 for almost all ω ∈ Ω.
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On the other hand, because of Theorem 5, P also admits a G-strategy Q. By
definition, Q satisfies

Q
(
ω, H(ω)

)
= 1 for all ω ∈ Ω.

Therefore, Q(ω) and Q∗(ω) are even singular for almost all ω ∈ Ω. Another curious
fact is that Q∗(ω) can be shown to be {0, 1}-valued on G, despite Q∗

(
ω, H(ω)

)
= 0,

for almost all ω ∈ Ω; see [5].

Example 8. (Compatibility). Let (Ω,A) be a measurable space, Gi ⊂ A a sub-
σ-field and Qi = {Qi(ω) : ω ∈ Ω} a collection of probability measures on A, where
i = 1, 2. Generally speaking, Q1 and Q2 are compatible if there is a probability
measure P on A which admits Q1 and Q2 as conditional probabilities given G1 and
G2, respectively; see e.g. [6] and references therein. Once again, this general idea can
be realized differently according to the selected notion of conditional probability.

If conditional probabilities are meant as r.c.d.’s, a necessary condition for com-
patibility is σ(Q1) ⊂ G1 and σ(Q2) ⊂ G2. In that case, Q1 and Q2 are compatible
if there is a probability measure P on A such that

P (A ∩B) =

∫
B

Qi(ω,A)P (dω) whenever i = 1, 2, B ∈ Gi and A ∈ A.(4)

If conditional probabilities are meant as strategies, the necessary condition for
compatibility turns into

Qi(ω) = Qi(υ) if Hi(ω) = Hi(υ) and Qi(ω) = δω on Gi
for i = 1, 2 and all ω, υ ∈ Ω, where Hi(ω) is the Gi-atom including ω. Under such
condition, Q1 and Q2 are compatible whenever∫

Q1(ω,A) P̂1(dω) =

∫
Q2(ω,A) P̂2(dω), A ∈ A,(5)

for some probability measures P̂1 on σ(Q1) and P̂2 on σ(Q2).
Condition (5) looks intriguing and possibly easier than (4) to work with.

A weaker version of (5) is obtained allowing P̂1 and P̂2 to be finitely additive
probabilities. In that case, compatibility essentially reduces to a notion of consis-
tency, introduced in [14] for Bayesian statistical inference; see also [11].

Example 9. (Improper priors). We adopt the notation and the assumptions of
Section 3. In addition, we assume the model P = {Pθ : θ ∈ Θ} dominated, namely,
Pθ(dx) = f(x, θ)λ(dx) for all θ ∈ Θ, where λ is a σ-finite measure on E and f a
non-negative measurable function on (Ω,A) = (X ×Θ, E ⊗ F). An improper prior
is a σ-finite measure γ on F such that γ(Θ) =∞. Let

ψ(x) =

∫
f(x, θ) γ(dθ) for all x ∈ X .

A standard practice is to fix an improper prior γ and to let

Qx(dθ) =
f(x, θ)

ψ(x)
γ(dθ) whenever ψ(x) ∈ (0,∞).(6)

Notice that no prior probability on F has been selected. In the sequel, we assume
ψ(x) ∈ (0,∞) for all x ∈ X , and we let Q = {Qx : x ∈ X} with Qx given by (6).

Define

G1 =
{
A×Θ : A ∈ E

}
and G2 =

{
X ×B : B ∈ F

}
.
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For C ∈ A and ω = (x, θ) ∈ Ω, define also

T1(ω)(C) = Qx{t ∈ Θ : (x, t) ∈ C} and T2(ω)(C) = Pθ{z ∈ X : (z, θ) ∈ C}.

Then, G1 and G2 are sub-σfields ofA while T1(ω) and T2(ω) are probability measures
on A. We say that P and Q are compatible to mean that T1 and T2 are compatible,
where Ti = {Ti(ω) : ω ∈ Ω} for i = 1, 2.

From the point of view of probability theory, using Q as a posterior makes sense
only if P and Q are compatible; see also [6, Example 3]. However, measurability
of f implies σ(Ti) ⊂ Gi for i = 1, 2. Therefore, as regards compatibility of P and
Q, using r.c.d.’s or strategies is equivalent. The situation is slightly different if the
assumption 0 < ψ <∞ is dropped.

On the other hand, in most real problems, P and Q fail to be compatible. To
get compatibility, and thus to make improper priors admissible, finitely additive
probabilities are to be involved; see [11], [12] and [14].
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